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- Guest starring by prof Orçun Göksel

The course comes with a course text that covers
most – but not all ! – material. 
Slide decks for all lectures will be made available
on eDoz or similar
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We got questions about which course to take

Computer Vision (D-INFK), or
Image Analysis and Computer vision (this course)

IN ANY CASE, DO NOT TAKE BOTH ! 

If you took the introductory course on CV at D-INFK,
then best take Computer Vision

If you did not take that course, 
then best take Image Analysis and Computer Vision
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… it is crucial ...
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Vision

q half our brain is devoted to it

q developed many times during  evolution

q it is non-contact

q it can be implemented with high resolution

q works with ambient E-M waves

q yields colour, texture, depth, motion, shape 

Vision is important

è
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The central take-home message:

For people vision is their most 
crucial sense, for good reason
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… it is intriguing ...
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Vision The perception of color

The red squares have equal color…
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The horizontal lines are equally long…
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Vision The perception of curvatures

Illusions : interference of differently oriented 
patterns via adaptation

è
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Vision The perception of motion

The ̀ barber pole’ rotates about the vertical, 
it does not translate vertically…
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Vision It’s not that more context solves it all…

there is literally more than meets the eye, 
i.c. a lot of massively parallel processing
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The brain factors out illumination
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Kanisza illusion

Fill-in : averaging of perceived contrast 
at edges over regions possibly obtained 
via extrapolation of the edges…  in any 
case such illusion seems to help people
to detect patterns in the world. è

INTRO

perception
applications
light



Computer
Vision

è

INTRO

perception
applications
light



Computer
Vision

Human vision: 
Biederman, Bar & 
Ullman, Palmer, 
…

The role of context
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All encircled
patterns 

are identical:

The role of context
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Person?

The role of context
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The role of context
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Car?

The role of context

human vision is much more than a bottom-up
process of subsequent signal processing steps.INTRO
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The central take-home message:

Effective vision needs more than 
sheer filtering and measuring
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… it is hot ...
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The explosion of photography
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Easier than ever to take a photo
The cost is extremely low (cheap memory)
Most people carry a camera most of the time

The explosion of photography
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some areas do not allow for much control:   
medical IP, remote sensing, surveillance, etc.

currently CV is conquering the less controllable 
areas by storm

The development of computer vision apps

è

Most early applications where found in 
production environments, as these allow for 
controlled conditions and have little uncertainty
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Ex App: autonomous vehicles
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car detection:

Ex App: autonomous vehicles
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Ex App: autonomous vehicles

putting vision modalities together:



Computer
Vision Sagalassos SiteEx: autonomous mobile platform  
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Ex App: image retrieval, captioning, …
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Ex App: visual surveillance
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Ex App: Augm. Reality, eg sports
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Ex App: motion capture for movies/games
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Vision Ex App: computer-assisted surgery
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The central take-home message:

It is feasible now to let most
things see and interprete

their environment

è
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… it needs light ...
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Computer
Vision And then there was Light…

q no vision without light…
q … because it is influenced by objects

è
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Vision Kickoff: the light, surface, lens & cam
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q the nature of light

q interactions with matter

è
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Vision An option on optics

1. Geometrical optics

2. Physical optics, or

3. Quantum-mechanical optics

➔ wave character

è
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E

H

Light as electromagnetic waves
Self-sustaining exchange of electric and magnetic 
fields

wavelength

1.  wavelength

5.  direction of polarisation

amplitude

3.  amplitude E

phase

4.  phase

direction of propagation

2.  direction

è

wavelength

direction of propagation

amplitude

phase
INTRO

perception
applications
light



Computer
Vision

The spectrum
Normal ambient light is a mixture of wavelengths, 
polarisation directions, and phases
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Computer
Vision The visible range

Wavelength (in nm)

380 - 450
450 - 490
490 - 560
560 - 590
590 - 630
630 - 760

Colour

violet
blue
green
yellow
orange
red

NOTE : Cameras may have different spectral sensitivities 
(i.e. also different from human vision)

è
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Computer
Vision The visible range

NOTE : animals may have different spectral sensitivities 
(i.e. different from human vision), and may also have a 
Different number of cone types, like 4 in most birds.

è
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Overheating of transformer coils, with far IR

Near infra-red
(NIR) space image

NRG -> RGB for 
visualization (notice
the strong reflection in 
the NIR for vegetation)

è

Also cams for non-visible `light’, e.g. infrared
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Vision Interactions with matter

four types :

examplephenomenon

absorption blue water
scattering blue sky, red sunset
reflection coloured ink
refraction dispersion by a prism

+ diffraction

è
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four types :

examplephenomenon

absorption blue water
scattering blue sky, red sunset
reflection coloured ink
refraction dispersion by a prism

+ diffraction
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Computer
Vision Scattering

3 types depending on relative sizes of particles and 
wavelengths: 

1. small particles: Rayleigh (strongly wavelength dependent)

2. comparable sizes: Mie (weakly wavelength dependent)

3. Large particles: non-selective (wavelength independent)

è
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Mie scattering Rayleigh scatteringScattered
energy

S

λ (wavelength)

Wavelength dependence

Less haze in the infrared (long wavelengths -> little scatter)
Looking through clouds by radar (even longer wavelengths)
NOTE: without scatter we would wander mainly in the dark

è
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Atmospheric showcase

è

Rayleigh:
Tyndall effect (blue sky)
Red, setting sun

Non-selective:
Grey clouds

Mie:
Coloured cloud 
from volcanic
eruption
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Vision Interactions with matter

four types :

examplephenomenon

absorption blue water
scattering blue sky, red sunset
reflection coloured ink
refraction dispersion by a prism

+ diffraction

è

INTRO

perception
applications
light



Computer
Vision

Mirror reflection
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n1

n2

Mirror reflection

n

⊥rE

//rE
kr

⊥iE //iE

ki

∆r

∆i
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Angle of reflection  =  angle of incidence 
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Vision Mirror reflection : dielectric

Polarizer at Brewster angle

Full reflection at grazing angles
è
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Vision Mirror reflection : conductor

strong reflectors (under all angles)
more or less preserve polarization

è
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Computer
Vision Roughness of surfaces leads to `diffuse’ reflection

è

2.3. PHOTOMETRIC MODEL 21

(a) (b)

Figure 2.9: Examples of surface reflection: (a) Reflection for smooth surfaces,
where light rays are reflected in a direction that is rotated by 180� around the
surface normal n. (b) Reflection for surfaces with complex micro-geometry,
where lights rays are scattered in all directions.

One of the most general forms to characterize the reflective behavior of sur-
faces is the bidirectional reflectance distribution function (BRDF). This function
basically expresses the probability that light arriving from a given direction will
be reflected in another direction. For a given surface point x and wavelength
�, the BRDF is defined as the ratio of the di↵erential radiance reflected in
the excitant direction (!e), and the di↵erential irradiance3 incident through a
di↵erential solid angle (!i). It is denoted as,

f(!i,!e) = f(✓i,�i, ✓e,�e) =
dLe(!e)

Li(!i)cos✓id!i
(2.42)

The directions4 !i and !e are relative to some local coordinate frame on the
surface. Most surfaces are isotropic, i.e., they have no preferred direction as far
as light transport is concerned, with exceptions such as woven cloth or brushed
aluminum. In that case, we can simplify the BRDF to f(✓i, ✓e,�i � �e).

A variety of physically-based BRDF models of increasing sophistication have
been proposed to represent BRDFs [37, 185]. They start with specific assump-
tions about the surface micro-geometry, and result in a model with a small num-
ber of parameters. An example of a simplified Torrance-Sparrow model is shown
in Figure 2.10(b). Compared to the di↵use model shown in Figure 2.10(a), the
directional-di↵use character is clear and also responsible for highlights moving
when changing viewing direction.

Once we have that information, we can compute the reflection in a direction
!e through integration over any incident distribution. The excitant radiance at
a surface point is obtained as follows,

Le(!e) =

Z

⌦+
i

f(!i,!e)Li(!i)cos✓id!i (2.43)

3Irradiance is the radiated power or flux per unit area.
4The direction ! can also be written as a function ✓ and � as follows, ! =

[sin✓cos� sin✓sin� cos✓]>. Here ✓ is the angle the direction of interest makes with the
surface normal, and � is the azimuthal angle.

(a) Mirror or `specular’ reflection,  (b) diffuse reflection
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three types of reflection :

diffuse specular mixed

è

… and to mixed reflection for most real surfaces

Note : Lambertian example of diffuse reflection
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Upper 
leaf side

Lower 
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Spectral reflectance
e.g. vegetation
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Ideally: spectral BRDF at all points known

BRDF = bidirectional reflectance distribution function 

INTRO

perception
applications
light



Computer
Vision Interactions with matter

four types :

examplephenomenon

absorption blue water
scattering blue sky, red sunset
reflection coloured ink

refraction dispersion by a prism

+ diffraction

è
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Refraction

è
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n1

n2

Refraction

n

⊥tE

//tE

kt

∆t

⊥iE //iE

ki

∆i

è

n1 sinΔ i    =    n2 sinΔ t

Snell’s law
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Dispersion

è

Refraction is more complicated than
mirror reflection: the path orientation
of light rays is changed depending on
material AND wavelength  !!!
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Vision Interactions with matter

four types :

examplephenomenon

absorption blue water
scattering blue sky, red sunset
reflection coloured ink
refraction dispersion by a prism

+ diffraction

è
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n

è

Absorption
Dissipation of wavelengths specific for the medium

Based on resonance frequencies of molecules -> peaks
Holes in sky light spectrum observed by Fraunhofer

(index of
refraction)
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The solar spectrum

Peaks around 500nm, hence human sensitivity for that 
part of the spectrum

è

Spectral composition of
light above atmosphere

Spectral composition of
light below atmosphere
… some wavelengths get
strongly weakened due to
absorption
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Acquisition  
of Images
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Acquisition of images

è

We focus on :

1. illumination
2. cameras

ACQUIS.

illumination
cameras
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Acquisition of images

è

We focus on :

1. illumination
2. cameras
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Illumination
Well-designed illumination often is key in 
visual inspection

è
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Illumination techniques

1. back-lighting
2. directional-lighting
3. diffuse-lighting
4. polarized-lighting
5. coloured-lighting
6. structured-lighting
7. stroboscopic lighting

è

Simplify the image processing by controlling 
the environment

An overview of illumination techniques:

ACQUIS.

illumination
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Vision Back-lighting

lamps placed behind a transmitting diffuser plate,
light source behind the object

generates high-contrast silhouette images,
easy to handle with binary vision

often used in inspection

è
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Directional and diffuse lighting

Directional-lighting

Diffuse-lighting

generate sharp shadows
generation of specular reflection                         
(e.g. crack detection)
shadows and shading yield information about 
shape

illuminates uniformly from all directions
prevents sharp shadows and large intensity
variations over glossy surfaces:
all directions contribute extra diffuse reflection,
but contributions to the specular peak arise from
directions close to the mirror one onlyè

ACQUIS.

illumination
cameras



Computer
Vision Crack detection

è

ACQUIS.

illumination
cameras



Computer
Vision

Example directional lighting

è
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Example diffuse lighting

è
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Polarized lighting

è

1. to improve contrast between Lambertian and           
specular reflections

2. to improve contrasts between dielectrics and 
metals

2 uses:ACQUIS.

illumination
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Polarised lighting

polarizer/analyzer configurations

law of Malus :

θθ 2cos)0()( II =
è

ACQUIS.
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Polarized lighting

è

1. to improve contrast between Lambertian and           
specular reflections

2. to improve contrasts between dielectrics and 
metals

2 uses:ACQUIS.
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polarizer/analyzer crossed
prevents the large dynamic range caused by glare

Polarized lighting
specular reflection keeps polarisation :
diffuse reflection depolarises
suppression of specular reflection : 

è

ACQUIS.
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Example pol. lighting (pol./an.crossed)

è
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Polarized lighting

è

1. to improve contrast between Lambertian and           
specular reflections

2. to improve contrasts between dielectrics and 
metals

2 uses:ACQUIS.
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Vision Reflection : dielectric

Polarizer at Brewster angle

è

ACQUIS.
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Vision Reflection : conductor

strong reflectors
more or less preserve polarization

è
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Polarised lighting
distinction between specular reflection from 
dielectrics and metals;
works under the Brewster angle for the dielectric
dielectric has no parallel comp. ; metal does
suppression of specular reflection from dielectrics :

polarizer/analyzer aligned
distinguished metals and dielectrics

è
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Example pol. lighting (pol./an. aligned)

è
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Vision Coloured lighting

highlight regions of a similar colour

with band-pass filter: only light from projected pattern 
(e.g. monochromatic light from a laser)

differentiation between specular and diffuse reflection

comparing colours  ➾ same spectral composition of            
sources!

spectral sensitivity function of the sensors!

è
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spatially or temporally modulated light pattern

Structured and stroboscopic lighting

Structured lighting

e.g. : 3D shape : objects distort the projected 
pattern
(more on this later)

Stroboscopic lighting

high intensity light flash

to eliminate motion blur
è
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Stroboscopic lighting

è
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App: vegetable inspection (colored light + polarization)

è
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the pinhole model :

è
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the pinhole model :

è
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Vision Optics for image formation

the pinhole model :

m
Z
f

Y
Y

X
X

oo

i

o

i −=
−

==

(m = linear magnification)
è
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The thin-lens equation

lens to capture enough light :

fZZ iO

111 =−

assuming 
❑ spherical lens surfaces
❑ incoming light ± parallel to axis
❑ thickness << radii
❑ same refractive index on both sides

PO

è

ACQUIS.
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The depth-of-field

fbdfZ
fZZZZZ
−+

−=−=Δ −−

/ 
)(

0

00
000

decreases with d, increases with Z0

è

strike a balance between incoming light (d) and 
large depth-of-field (usable depth range)

Only reasonable sharpness in Z-interval

ACQUIS.
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The depth-of-field

fbdfZ
fZZZZZ
−+

−=−=Δ −−

/ 
)(

0

00
000

è

Similar expression for  Z   - Z O O
+
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The depth-of-field

fbdfZ
fZZZZZ
−+

−=−=Δ −−

/ 
)(

0

00
000

Ex 1: microscopes -> small DoF

è
Ex 2: special effects -> flood miniature scene with light
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Vision Deviations from the lens model

3 assumptions :

1. all rays from a point are focused onto 1 image point

2. all image points in a single plane

3. magnification is constant 

deviations from this ideal are aberrations

è
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Vision Aberrations 

chromatic : refractive index function of 
wavelength   (Snell’s law !!)

2 types :

1. geometrical

2. chromatic

geometrical : small for paraxial rays

è

ACQUIS.
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Vision Geometrical aberrations

❑ spherical aberration

❑ astigmatism

❑ radial distortion 

❑ coma

è

the most important type

ACQUIS.
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Vision Spherical aberration

rays parallel to the axis do not converge

outer portions of  the lens yield smaller 
focal lenghts

è

ACQUIS.
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Radial Distortion

magnification different for different angles of inclination2.1. CAMERA MODEL 11

(a) (b) (c)

Figure 2.3: Radial distortion examples: (a) Barrel distortion (magnification
decreases with distance from the optical axis), (b) Without distortion and (c)
Pincushion distortion (magnification increases with the distance from the optical
axis).

visible curvature in the projection of straight lines, with the distortion being
more prominent towards the image edges, see Figure 2.3. Two common types
can be discerned: barrel distortion (magnification decreases with distance from
the optical axis) and pincushion distortion (magnification increases with the
distance from the optical axis).

Compensating for radial distortion is easy, and can be done by extending
the perspective projection in the following way,

m ' KD([R> | � R>t]M) (2.10)

with D([x y z]>) ' [d ·x d ·y z]> and d = (1 + 1r2 + 2r4 + . . .) and r2 =
(x/z)2+(y/z)2 and 1, 2, . . . are parameters of radial distortion. The distortion
function D(·) is applied after perspective division but before scaling by focal
length and any sensor array transformation steps. This seems like the most
natural place to model radial distortion because then points (rays) are radially
displaced to and from the origin (optical axis). This placement also makes the
parameters 1, 2, . . . independent of image dimensions. The factor d, by which
points are displaced, is modeled by a Taylor expansion in the radial distance r,
and only contains even terms because of the symmetric nature of the distortion.
Typically, three distortion parameters su�ce.

In some cases the above simple model cannot model the true distortions
of complex lenses accurately enough. More complete analytic models also ac-
count for tangential distortions and decentering distortions caused by physical
elements in a lens not being perfectly aligned [161].

Given the calibration parameters K and the distortion parameters 1, 2,
. . ., the distortion from an image can be removed thereby making lines straight
again, in which case the linear perspective camera model is applicable.

barrel pincushionnone

ACQUIS.
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Radial Distortion

magnification different for different angles of inclination2.1. CAMERA MODEL 11

(a) (b) (c)

Figure 2.3: Radial distortion examples: (a) Barrel distortion (magnification
decreases with distance from the optical axis), (b) Without distortion and (c)
Pincushion distortion (magnification increases with the distance from the optical
axis).

visible curvature in the projection of straight lines, with the distortion being
more prominent towards the image edges, see Figure 2.3. Two common types
can be discerned: barrel distortion (magnification decreases with distance from
the optical axis) and pincushion distortion (magnification increases with the
distance from the optical axis).

Compensating for radial distortion is easy, and can be done by extending
the perspective projection in the following way,

m ' KD([R> | � R>t]M) (2.10)

with D([x y z]>) ' [d ·x d ·y z]> and d = (1 + 1r2 + 2r4 + . . .) and r2 =
(x/z)2+(y/z)2 and 1, 2, . . . are parameters of radial distortion. The distortion
function D(·) is applied after perspective division but before scaling by focal
length and any sensor array transformation steps. This seems like the most
natural place to model radial distortion because then points (rays) are radially
displaced to and from the origin (optical axis). This placement also makes the
parameters 1, 2, . . . independent of image dimensions. The factor d, by which
points are displaced, is modeled by a Taylor expansion in the radial distance r,
and only contains even terms because of the symmetric nature of the distortion.
Typically, three distortion parameters su�ce.

In some cases the above simple model cannot model the true distortions
of complex lenses accurately enough. More complete analytic models also ac-
count for tangential distortions and decentering distortions caused by physical
elements in a lens not being perfectly aligned [161].

Given the calibration parameters K and the distortion parameters 1, 2,
. . ., the distortion from an image can be removed thereby making lines straight
again, in which case the linear perspective camera model is applicable.

barrel pincushionnone

2.1. CAMERA MODEL 11

(a) (b) (c)

Figure 2.3: Radial distortion examples: (a) Barrel distortion (magnification
decreases with distance from the optical axis), (b) Without distortion and (c)
Pincushion distortion (magnification increases with the distance from the optical
axis).

visible curvature in the projection of straight lines, with the distortion being
more prominent towards the image edges, see Figure 2.3. Two common types
can be discerned: barrel distortion (magnification decreases with distance from
the optical axis) and pincushion distortion (magnification increases with the
distance from the optical axis).

Compensating for radial distortion is easy, and can be done by extending
the perspective projection in the following way,

m ' KD([R> | � R>t]M) (2.10)

with D([x y z]>) ' [d ·x d ·y z]> and d = (1 + 1r2 + 2r4 + . . .) and r2 =
(x/z)2+(y/z)2 and 1, 2, . . . are parameters of radial distortion. The distortion
function D(·) is applied after perspective division but before scaling by focal
length and any sensor array transformation steps. This seems like the most
natural place to model radial distortion because then points (rays) are radially
displaced to and from the origin (optical axis). This placement also makes the
parameters 1, 2, . . . independent of image dimensions. The factor d, by which
points are displaced, is modeled by a Taylor expansion in the radial distance r,
and only contains even terms because of the symmetric nature of the distortion.
Typically, three distortion parameters su�ce.

In some cases the above simple model cannot model the true distortions
of complex lenses accurately enough. More complete analytic models also ac-
count for tangential distortions and decentering distortions caused by physical
elements in a lens not being perfectly aligned [161].

Given the calibration parameters K and the distortion parameters 1, 2,
. . ., the distortion from an image can be removed thereby making lines straight
again, in which case the linear perspective camera model is applicable.

The result is pixels moving along lines 
through the center of the distortion 

– typically close to the image center – over a distance d, 
depending on the pixels’ distance r to the center 
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Computer
Vision

Radial Distortion

magnification different for different angles of inclination

This aberration type can be corrected by software
if the parameters (     ,     , … ) are known

2.1. CAMERA MODEL 11

(a) (b) (c)

Figure 2.3: Radial distortion examples: (a) Barrel distortion (magnification
decreases with distance from the optical axis), (b) Without distortion and (c)
Pincushion distortion (magnification increases with the distance from the optical
axis).

visible curvature in the projection of straight lines, with the distortion being
more prominent towards the image edges, see Figure 2.3. Two common types
can be discerned: barrel distortion (magnification decreases with distance from
the optical axis) and pincushion distortion (magnification increases with the
distance from the optical axis).

Compensating for radial distortion is easy, and can be done by extending
the perspective projection in the following way,

m ' KD([R> | � R>t]M) (2.10)

with D([x y z]>) ' [d ·x d ·y z]> and d = (1 + 1r2 + 2r4 + . . .) and r2 =
(x/z)2+(y/z)2 and 1, 2, . . . are parameters of radial distortion. The distortion
function D(·) is applied after perspective division but before scaling by focal
length and any sensor array transformation steps. This seems like the most
natural place to model radial distortion because then points (rays) are radially
displaced to and from the origin (optical axis). This placement also makes the
parameters 1, 2, . . . independent of image dimensions. The factor d, by which
points are displaced, is modeled by a Taylor expansion in the radial distance r,
and only contains even terms because of the symmetric nature of the distortion.
Typically, three distortion parameters su�ce.

In some cases the above simple model cannot model the true distortions
of complex lenses accurately enough. More complete analytic models also ac-
count for tangential distortions and decentering distortions caused by physical
elements in a lens not being perfectly aligned [161].

Given the calibration parameters K and the distortion parameters 1, 2,
. . ., the distortion from an image can be removed thereby making lines straight
again, in which case the linear perspective camera model is applicable.

2.1. CAMERA MODEL 11

(a) (b) (c)

Figure 2.3: Radial distortion examples: (a) Barrel distortion (magnification
decreases with distance from the optical axis), (b) Without distortion and (c)
Pincushion distortion (magnification increases with the distance from the optical
axis).

visible curvature in the projection of straight lines, with the distortion being
more prominent towards the image edges, see Figure 2.3. Two common types
can be discerned: barrel distortion (magnification decreases with distance from
the optical axis) and pincushion distortion (magnification increases with the
distance from the optical axis).

Compensating for radial distortion is easy, and can be done by extending
the perspective projection in the following way,

m ' KD([R> | � R>t]M) (2.10)

with D([x y z]>) ' [d ·x d ·y z]> and d = (1 + 1r2 + 2r4 + . . .) and r2 =
(x/z)2+(y/z)2 and 1, 2, . . . are parameters of radial distortion. The distortion
function D(·) is applied after perspective division but before scaling by focal
length and any sensor array transformation steps. This seems like the most
natural place to model radial distortion because then points (rays) are radially
displaced to and from the origin (optical axis). This placement also makes the
parameters 1, 2, . . . independent of image dimensions. The factor d, by which
points are displaced, is modeled by a Taylor expansion in the radial distance r,
and only contains even terms because of the symmetric nature of the distortion.
Typically, three distortion parameters su�ce.

In some cases the above simple model cannot model the true distortions
of complex lenses accurately enough. More complete analytic models also ac-
count for tangential distortions and decentering distortions caused by physical
elements in a lens not being perfectly aligned [161].

Given the calibration parameters K and the distortion parameters 1, 2,
. . ., the distortion from an image can be removed thereby making lines straight
again, in which case the linear perspective camera model is applicable.



Computer
Vision

Radial Distortion

magnification different for different angles of inclination

Some methods do this by looking how straight lines
curve instead of being straight 



Computer
Vision

rays of different wavelengths focused in different planes

cannot be removed completely
but achromatization can be achieved at some well    
chosen wavelength pair, by                                       
combining lenses made of                                         
different glasses

sometimes achromatization
is achieved for more than 2 wavelengths

Chromatic aberration

è
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Computer
Vision

Lens materials

the figure shows wavelengths that materials let pass

additional considerations :
humidity and temperature resistance, weight, price,...

è

Crown Glass

Fused Quartz & Fused Silica

Plastic (PMMA)

Calcium Fluoride

Saphire

Zinc Selenide

6000

18000

Germanium  14000

9000

100     200    400     600     800     1000   1200   1400   1600   1800   2000   2200   2400

WAVELENGTH (nm)
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Computer
Vision

Cameras

we consider 2 types :

è

1. CCD

2. CMOS

ACQUIS.
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Computer
Vision

Cameras

CCD    = Charge-coupled device
CMOS = Complementary Metal Oxide Semiconductor 

ACQUIS.
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Computer
Vision CCD

separate photo sensor at regular positions
no scanning
charge-coupled devices (CCDs)
area CCDs and linear CCDs
2 area architectures : 

interline transfer and frame transfer

photosensitive

storage

è

ACQUIS.
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Computer
Vision The CCD (inter-line) camera
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Computer
Vision

CMOS

Same sensor elements as CCD
Each photo sensor has its own amplifier

More noise (reduced by subtracting ‘black’ image)
Lower sensitivity (lower fill rate)

Uses standard CMOS technology
Allows to put other components on chip
‘Smart’ pixels

ACQUIS.
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Vision

CMOS
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Computer
Vision

CCD vs. CMOS

• Niche applications
• Specific technology
• High production cost
• High power consumption
• Higher fill rate
• Blooming
• Sequential readout

• Consumer cameras
• Standard IC technology
• Cheap
• Low power
• Less sensitive
• Per pixel amplification
• Random pixel access
• Smart pixels
• On chip integration with other 

components

2006 was year of sales cross-over

ACQUIS.
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Computer
Vision

CCD vs. CMOS

• Niche applications
• Specific technology
• High production cost
• High power consumption
• Higher fill rate
• Blooming
• Sequential readout

• Consumer cameras
• Standard IC technology
• Cheap
• Low power
• Less sensitive
• Per pixel amplification
• Random pixel access
• Smart pixels
• On chip integration with other 

components

In 2015 Sony said to stop CCD chip production
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Computer
Vision

Colour cameras

We consider 3 concepts:

1. Prism (with 3 sensors)
2. Filter mosaic
3. Filter wheel

ACQUIS.
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Computer
Vision Prism colour camera

Separate light in 3 beams using dichroic prism
Requires 3 sensors & precise alignment
Good color separation

ACQUIS.
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Computer
Vision

Prism colour camera
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Computer
Vision

Coat filter directly on sensor

Demosaicing (obtain full colour & full resolution image)

Filter mosaic 

ACQUIS.
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Computer
Vision

Filter mosaic 

Color filters lower the effective resolution,
hence microlenses often added to gain 

more light on the small pixels

ACQUIS.
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Computer
Vision Filter wheel

Rotate multiple filters in front of lens
Allows more than 3 colour bands

Only suitable for static scenes

ACQUIS.
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Computer
Vision

Prism vs. mosaic vs. wheel

Wheel
1

Good
Average
Low
Motion
3 or more

approach
# sensors
Resolution
Cost
Framerate
Artefacts
Bands

Prism
3

High
High
High
Low
3

High-end
cameras

Mosaic
1

Average
Low
High
Aliasing
3

Low-end
cameras

Scientific 
applications

ACQUIS.
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Computer
Vision

Geometric camera model

(Man Drawing a Lute, woodcut, 1525, Albrecht Dürer)

perspective projection
ACQUIS.
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Computer
Vision Models for camera projection

the pinhole model revisited :

center of the lens = center of projection

notice the virtual image plane

this is called perspective projection
è
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Computer
Vision Models for camera projection

è

We had the virtual plane also in the original reference sketch:ACQUIS.
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Computer
Vision Perspective projection

❑ origin lies at the center of projection 
❑ the Zc axis coincides with the optical axis
❑ Xc-axis || to image rows, Yc-axis || to columns

è

Yc

Zc

Xc
v

u
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Computer
Vision Perspective projection

u = f X
Z Z

Yfv =
è

Yc

Zc

Xc
v

u

ACQUIS.
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Computer
Vision Pseudo-orthographic projection

Z
Xfu =

Z
Yfv =

If Z is constant ⇒ x = kX and y = kY,
where k =f/Z

i.e. orthographic projection + a scaling

Good approximation if ƒ/Z± constant, i.e. if objects 
are small compared to their distance from the camera

è
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Computer
Vision

Pictoral comparison

è

Pseudo -
orthographic PerspectiveACQUIS.
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Computer
Vision

Projection matrices

the perspective projection model is incomplete :
what if : 

1. 3D coordinates are specified in a 
world coordinate frame

2. Image coordinates are expressed as 
row and column numbers

We will not consider additional refinements,
such as radial distortions,...

è
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Computer
Vision

Projection 
matrices

X

Z

Y

0

v

u

(u,v)

C

P (X,Y,Z)

r1
r3

r2

)()()(
)()()(
)()()(
)()()(

333232131

323222121

333232131

313212111

CZrCYrCXr
CZrCYrCXrfv

CZrCYrCXr
CZrCYrCXrfu

−+−+−
−+−+−=

−+−+−
−+−+−=

C,Pr
C,Pr

fv

C,Pr
C,Pr

fu

−
−

=

−
−

=

3

2

3

1

è
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Computer
Vision

Projection matrices
Image coordinates are to be expressed as 
pixel coordinates

⎩
⎨
⎧

+          =
+   + =

0

0

yvky
xvsukx

y

x

→ (x0, y0) the pixel coordinates of the principal point 
→ kx the number of pixels per unit length horizontally
→ ky the number of pixels per unit length vertically
→ s indicates the skew ; typically s = 0

with : 

x

y
m

n

0 1 2
0
1
2
3

è

ACQUIS.

illumination
cameras



Computer
Vision

Projection matrices
Image coordinates are to be expressed as 
pixel coordinates

⎩
⎨
⎧

+          =
+   + =

0

0

yvky
xvsukx

y

x

with : 

NB1: often only integer pixel coordinates matter

x

y
m

n

0 1 2
0
1
2
3

è
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Computer
Vision

Projection matrices
Image coordinates are to be expressed as 
pixel coordinates

⎩
⎨
⎧

+          =
+   + =

0

0

yvky
xvsukx

y

x

with : 

NB2 : ky/kx is called the aspect ratio

x

y
m

n

0 1 2
0
1
2
3

è
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Computer
Vision

Projection matrices
Image coordinates are to be expressed as 
pixel coordinates

⎩
⎨
⎧

+          =
+   + =

0

0

yvky
xvsukx

y

x

with : 

NB1: often only integer pixel coordinates matterNB2 : ky/kx is called the aspect ratioNB3 : kx,ky,s,x0 and y0 are called internal camera
parameters

x

y
m

n

0 1 2
0
1
2
3

è
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Computer
Vision

Projection matrices
Image coordinates are to be expressed as 
pixel coordinates

⎩
⎨
⎧

+          =
+   + =

0

0

yvky
xvsukx

y

x

with : 

NB2 : ky/kx is called the aspect ratioNB4 : when they are known, the camera is 
internally calibrated

x

y
m

n

0 1 2
0
1
2
3

è
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Computer
Vision

Projection matrices
Image coordinates are to be expressed as 
pixel coordinates

⎩
⎨
⎧

+          =
+   + =

0

0

yvky
xvsukx

y

x

with : 

NB1: often only integer pixel coordinates matterNB2 : ky/kx is called the aspect ratioNB3 : kx,ky,s,x0 and y0 are called internal camera
parameters
NB4 : when they are known, the camera is 
internally calibrated
NB5 : vector C and matrix R∈ SO (3) are the
external camera parameters

x

y
m

n

0 1 2
0
1
2
3

è
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Computer
Vision

Projection matrices
Image coordinates are to be expressed as 
pixel coordinates

⎩
⎨
⎧

+          =
+   + =

0

0

yvky
xvsukx

y

x

with : 

NB1: often only integer pixel coordinates matterNB2 : ky/kx is called the aspect ratioNB3 : kx,ky,s,x0 and y0 are called internal camera
parameters
NB4 : when they are known, the camera is 
internally calibrated
NB5 : vector C and matrix R∈ SO (3) are the
external camera parameters
NB6 : when these are known, the camera is
externally calibrated

x

y
m

n

0 1 2
0
1
2
3

è
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Computer
Vision

Projection matrices
Image coordinates are to be expressed as 
pixel coordinates

⎩
⎨
⎧

+          =
+   + =

0

0

yvky
xvsukx

y

x

with : 

NB1: often only integer pixel coordinates matterNB2 : ky/kx is called the aspect ratioNB3 : kx,ky,s,x0 and y0 are called internal camera
parameters
NB4 : when they are known, the camera is 
internally calibrated
NB5 : vector C and matrix R∈ SO (3) are the
external camera parameters
NB6 : when these are known, the camera is
externally calibrated
NB7 : fully calibrated means internally and           
externally calibrated

x

y
m

n

0 1 2
0
1
2
3

è
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Computer
Vision Homogeneous coordinates

x
y
z

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
→

x / z
y / z

⎛
⎝⎜

⎞
⎠⎟

è

Often used to linearize non-linear relations

X
Y
Z
W

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

→
X /W
Y /W
Z /W

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

2D

3D

Homogeneous coordinates are only defined up to a factor
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Computer
Vision Projection matrices

Exploiting homogeneous coordinates :  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

             
       
         

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

    

  

3

2

1

333231

232221

131211

1 CZ
CY
CX

rrr
rfrfrf
rfrfrf

v
u

τ

è

)()()(
)()()(
)()()(
)()()(

333232131

323222121

333232131

313212111

CZrCYrCXr
CZrCYrCXrfv

CZrCYrCXr
CZrCYrCXrfu

−+−+−
−+−+−=

−+−+−
−+−+−=
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Computer
Vision Projection matrices

Exploiting homogeneous coordinates :  

τ
x
y
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
=

kx   s    x0

0    ky   y0

0    0    1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
τ
u
v
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

è

⎩
⎨
⎧

+          =
+   + =

0

0

yvky
xvsukx

y

x
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Computer
Vision Projection matrices

Thus, we have :  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

             
       
         

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

    

  

3

2

1

333231

232221

131211

1 CZ
CY
CX

rrr
rfrfrf
rfrfrf

v
u

τ

è

τ
x
y
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
=

kx   s    x0

0    ky   y0

0    0    1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
τ
u
v
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
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Computer
Vision Projection matrices

Concatenating the results :  

τ
x
y
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
=

kx   s    x0

0    ky   y0

0    0    1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

f  r11    f  r12    f  r13

f  r21   f  r22    f  r23

   r31       r32         r33

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

X −C1

Y −C2

Z −C3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

è

Or, equivalently :  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

    
    
    

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

       
      
      

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

        

       
     

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

3

2

1

333231

232221

131211

0

0

100
00
00

100

0
1 CZ

CY
CX

rrr
rrr
rrr

f
f

yk
xsk

y
x

y

x

τ
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Computer
Vision Projection matrices

Re-combining matrices in the concatenation :  

è

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

              

         
       

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

      
     
     

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

       

     
     

=
0

100

0
100
00
00

100

0 00

0

ykf
xsfkf

f
f

yk
xsk

K y

x

y

x

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

    
    
    

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

       
      
      

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

        

       
     

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

3

2

1

333231

232221

131211

0

0

100
00
00

100

0
1 CZ

CY
CX

rrr
rrr
rrr

f
f

yk
xsk

y
x

y

x

τ

yields the calibration matrix K:
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Computer
Vision

Projection matrices

We define

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=     
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=     

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

1

~,;
1

Z
Y
X

P
Z
Y
X

Py
x

p

yielding

)( CPKRp t −=ρ for some non-zero ρ ∈ ℝ

or, PtMp ~)|(=ρ with rank M = 3

è

or, ( )PCRRKp tt ~| −=ρ
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Computer
Vision From object radiance to pixel grey levels

After the geometric camera model...
…  a                                 camera model

2 steps:

1. from object radiance to image irradiance

2. from image irradiance to pixel grey level

ACQUIS.
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Computer
Vision Image irradiance and object radiance

we look at the irradiance that an object patch
will cause in the image

assumptions :
radiance R assumed known    and
object at large distance compared to the focal length

Is image irradiance directly related to the radiance 
of the image patch?

è
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Computer
Vision

The viewing conditions

è

I = R Al
f 2
cos4α

the cos4  law
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Computer
Vision The cos4  law cont’d

è

Especially strong effects
for wide-angle and 

fisheye lenses

ACQUIS.

illumination
cameras



Computer
Vision From irradiance to gray levels

dIgf      += γ

Gain

“gamma”

Dark reference

ACQUIS.
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Computer
Vision From irradiance to gray levels

dIgf      += γ

Gain

“gamma”

Dark reference

set w. size diaphragm

close to 1 nowadays

signal w. cam cap on
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