Introduction

 toComputer Vision

Taught by

- prof. Luc Van Gool
- Prof. Ender Konukoglu
- Guest starring by prof Orçun Göksel

The course comes with a course text that covers most - but not all ! - material.
Slide decks for all lectures will be made available on eDoz or similar

We got questions about which course to take
Computer Vision (D-INFK), or
Image Analysis and Computer vision (this course)
IN ANY CASE, DO NOT TAKE BOTH !
If you took the introductory course on CV at D-INFK, then best take Computer Vision

If you did not take that course, then best take Image Analysis and Computer Vision

Computer
Vision
\square half our brain is devoted to it
\square developed many times during evolution
\square it is non-contact
\square it can be implemented with high resolution
\square works with ambient E-M waves
\square yields colour, texture, depth, motion, shape

Computer
Vision

The central take-home message:
For people vision is their most crucial sense, for good reason

Computer

 Vision
INTRO

perception applications light

Computer Vision

The perception of intensity

INTRO

perception applications light

Computer Vision

The perception of color

INTRO
perception applications light

The red squares have equal color...

Computer Vision

The perception of length

INTRO

perception applications light

A

B

C
Computer
Vision

The perception of length

INTRO

perception applications light

A

B

C

The horizontal lines are equally long...

Computer
Vision
The perception of lines being straight

INTRO
perception applications light

Computer Vision

The perception of parallelism

INTRO
perception
applications light

Computer Vision

INTRO
perception applications light

The perception of curvatures

Illusions : interference of differently oriented patterns via adaptation

The perception of motion

INTRO

perception applications light

The 'barber pole' rotates about the vertical, it does not translate vertically...

Computer Vision

It's not that more context solves it all...

INTRO
perception applications light there is literally more than meets the eye, i.c. a lot of massively parallel processing

Computer Vision
 The perception of intensity

INTRO

perception applications light

Computer
Vision

INTRO

perception
applications light

Computer Vision

INTRO

perception applications light

Parallelism again...

Computer Vision

INTRO

perception applications light

Kanisza illusion

K

Fill-in : averaging of perceived contrast at edges over regions possibly obtained via extrapolation of the edges... in any case such illusion seems to help people to detect patterns in the world.

Computer Vision

INTRO

perception applications light

Computer
Vision

INTRO

perception applications light

The role of context

Computer Vision

INTRO

perception applications light

The role of context

All encircled patterns are identical:

Computer Vision

INTRO
perception applications light

The role of context

Computer Vision

INTRO
perception applications light

The role of context

Computer Vision

INTRO
perception applications light

The role of context

Computer Vision

INTRO
perception applications light

The role of context

Computer Vision

INTRO

perception applications light

The role of context

human vision is much more than a bottom-up process of subsequent signal processing steps.
Computer Vision

INTRO

perception applications light

The central take-home message:

Effective vision needs more than sheer filtering and measuring

Computer

 VisionINTRO
perception applications light

... it is hot ...

Computer Vision

```
INTRO
```

perception applications light

The explosion of photography

Computer Vision

INTRO
perception applications light

The explosion of photography

\square Tablets

2016

Digital cameras

2017

Mobile phones

Easier than ever to take a photo
The cost is extremely low (cheap memory)
Most people carry a camera most of the time

Computer Vision

The development of computer vision apps

Most early applications where found in production environments, as these allow for controlled conditions and have little uncertainty
some areas do not allow for much control: medical IP, remote sensing, surveillance, etc.
currently CV is conquering the less controllable areas by storm

Computer
 Vision

Ex App: autonomous vehicles

(3) exus

Computer
Vision

Ex App: autonomous vehicles

car detection:

INTRO

perception applications light

Computer Vision

Ex App: autonomous vehicles

putting vision modalities together:

Computer Vision

Ex: autonomous mobile platform

Computer
 Ex App: image retrieval, captioning, ...

Vision

A person riding a motorcycle on a dirt road.

A group of young people playing a game of frisbee.

A herd of elephants walking across a dry grass field.

Describes with minor errors

Two dogs play in the grass.

Two hockey players are fighting over the puck.

A close up of a cat laying on a couch.

Somewhat related to the image

A skateboarder does a trick on a ramp.

A little girl in a pink hat is blowing bubbles.

A red motorcycle parked on the side of the road.

Unrelated to the image

A dog is jumping to catch a frisbee.

A refrigerator filled with lots of food and drinks.

A yellow school bus parked in a parking lot.

Computer
 Ex App: visual surveillance

Vision

LLANE STAT] fVerage sperd/Lane (km/h)
GATE[Z] LANE: [2]29

Computer
Vision

Ex App: Augm. Reality, eg sports

Computer
Vision

Ex App: motion capture for movies/games

Computer
Vision

Ex App: computer-assisted surgery

Computer Vision

Mobile mapping

INTRO

perception applications light

Computer Vision

INTRO
perception applications light

The central take-home message:
It is feasible now to let most things see and interprete their environment

Computer

 VisionINTRO
perception applications light
... it needs light ...

Computer Vision

INTRO
perception applications light

And then there was Light...

\square no vision without light...
\square... because it is influenced by objects

"What the...?"

Computer Vision

Kickoff: the light, surface, lens \& cam

INTRO

perception applications light

Computer Vision

Kickoff: the light, surface, lens \& cam

INTRO
perception applications light

Computer
Vision

topics

INTRO
perception applications light

\square the nature of light

\square interactions with matter

Computer Vision

An option on optics

1. Geometrical optics
perception applications light
2. Physical optics, or
3. Quantum-mechanical optics
\rightarrow wave character

Computer Vision

INTRO
perception applications light

Light as electromagnetic waves

Computer Vision

INTRO

perception applications light

Light as electromagnetic waves

Self-sustaining exchange of electric and magnetic fields

2. direction
3. amplitude E

Computer Vision

The spectrum

Normal ambient light is a mixture of wavelengths, polarisation directions, and phases

INTRO

perception applications light

Plate I. Color spectrum seen by passing white light through a prism. (Courtesy of General Electric Co., Lamp Business Division.)

Computer Vision

The visible range

INTRO

perception applications light

```
Wavelength (in nm) Colour
380-450 }\longrightarrow\mathrm{ violet
450-490 \longrightarrow blue
490-560
560-590
590-630
630-760
```

Wavelength (in $n m$)
Colour
violet blue green yellow
orange
red

NOTE : Cameras may have different spectral sensitivities (i.e. also different from human vision)

Computer Vision

INTRO

perception applications light

The visible range

NOTE : animals may have different spectral sensitivities (i.e. different from human vision), and may also have a Different number of cone types, like 4 in most birds.

Computer Vision

INTRO

perception applications light

Also cams for non-visible `light', e.g. infrared

Overheating of transformer coils, with far IR

Near infra-red (NIR) space image

NRG -> RGB for visualization (notice the strong reflection in the NIR for vegetation)

Computer Vision

Interactions with matter

INTRO
perception applications light

four types :

phenomenon
absorption
scattering reflection refraction
example
blue water
blue sky, red sunset
coloured ink
dispersion by a prism

+ diffraction

Computer Vision

Interactions with matter

INTRO
perception applications light

four types :

phenomenon
absorption scattering reflection refraction
example
blue water
blue sky, red sunset
coloured ink
dispersion by a prism

+ diffraction

Scattering

INTRO

perception applications light wavelengths:

3 types depending on relative sizes of particles and

1. small particles: Rayleigh (strongly wavelength dependent)
2. comparable sizes: Mie (weakly wavelength dependent)
3. Large particles: non-selective (wavelength independent)

Computer Vision

Wavelength dependence

INTRO

perception applications light

Less haze in the infrared (long wavelengths -> little scatter) Looking through clouds by radar (even longer wavelengths) NOTE: without scatter we would wander mainly in the dark

Computer Vision

INTRO

perception applications light

Atmospheric showcase

Rayleigh:
Tyndall effect (blue sky)
Red, setting sun
Non-selective: Grey clouds

Mie:
Coloured cloud from volcanic eruption

Computer Vision

Interactions with matter

INTRO
perception applications light

four types :

phenomenon
absorption
scattering reflection refraction
example
blue water
blue sky, red sunset
coloured ink
dispersion by a prism

+ diffraction

Computer Vision

INTRO
perception applications light

Mirror reflection

Computer Vision

INTRO

perception applications light

Mirror reflection

Angle of reflection $=$ angle of incidence

Computer Vision

Mirror reflection : dielectric

Polarizer at Brewster angle

Full reflection at grazing angles

Computer Vision

Mirror reflection : conductor

 INTROperception applications light

strong reflectors (under all angles) more or less preserve polarization

Computer Vision

Roughness of surfaces leads to `diffuse' reflection

INTRO

perception applications light

(a) Mirror or `specular' reflection, (b) diffuse reflection

Computer Vision

... and to mixed reflection for most real surfaces

INTRO
perception applications light
three types of reflection :

> mixed

Note : Lambertian example of diffuse reflection

Computer Vision

INTRO

perception applications light

Spectral reflectance
 e.g. vegetation

WAVELENGTH ($\mu \mathrm{m}$)

Computer
Vision

INTRO
perception applications light

Ideally: spectral BRDF at all points known

Computer Vision

Interactions with matter

INTRO
perception applications light

four types :

phenomenon	example
absorption	blue water
scattering	blue sky, red sunset
reflection	coloured ink
refraction	dispersion by a prism

phenomenon
absorption scattering reflection refraction

+ diffraction

Computer Vision

INTRO

perception applications light

Refraction

Computer Vision

INTRO

perception applications light

Refraction

Computer Vision

INTRO

perception applications light

Dispersion

Refraction is more complicated than mirror reflection: the path orientation of light rays is changed depending on material AND wavelength !!!

Computer Vision

Interactions with matter

INTRO
perception applications light

four types :

phenomenon absorption
scattering reflection refraction

+ diffraction

INTRO

perception applications light

Absorption

Dissipation of wavelengths specific for the medium

Based on resonance frequencies of molecules -> peaks
Holes in sky light spectrum observed by Fraunhofer

Computer Vision

The solar spectrum

Peaks around 500 nm , hence human sensitivity for that part of the spectrum

INTRO

perception applications light

Acquisition of Images

Computer Vision

ACQUIS.

illumination cameras

Acquisition of images

We focus on :

1. illumination

2. cameras

Image Plane

Sensor Array

Lens System

Light Source

Surface Reflection

Computer Vision

ACQUIS.

illumination cameras

Acquisition of images

We focus on :

1. illumination

2. cameras

Image Plane

Sensor Array

Computer Vision

ACQUIS.

illumination cameras

Acquisition of images

We focus on :

1. illumination

2. cameras

Image Plane

Sensor Array

Lens System

Light Source

Surface Reflection

Computer
Vision
illumination

Computer Vision

ACQUIS.
illumination cameras

Illumination

Well-designed illumination often is key in visual inspection

The light was good, but
the hot wax was a problem...

Illumination techniques

Simplify the image processing by controlling the environment

An overview of illumination techniques:

1. back-lighting
2. directional-lighting
3. diffuse-lighting
4. polarized-lighting
5. coloured-lighting
6. structured-lighting
7. stroboscopic lighting

Back-lighting

ACQUIS.

illumination cameras
lamps placed behind a transmitting diffuser plate, light source behind the object
generates high-contrast silhouette images, easy to handle with binary vision
often used in inspection

Computer Vision

Example backlighting

ACQUIS.
illumination cameras

ACQUIS.

illumination cameras

Directional and diffuse lighting

Directional-lighting

generate sharp shadows
generation of specular reflection
(e.g. crack detection)
shadows and shading yield information about shape

Diffuse-lighting

illuminates uniformly from all directions prevents sharp shadows and large intensity variations over glossy surfaces: all directions contribute extra diffuse reflection, but contributions to the specular peak arise from directions close to the mirror one only

Computer Vision

Crack detection

ACQUIS.
illumination cameras

Computer

Example directional lighting

ACQUIS.
illumination cameras

Computer Vision

ACQUIS.
illumination cameras

Example diffuse lighting

ACQUIS.

illumination cameras

Polarized lighting

2 uses:

1. to improve contrast between Lambertian and specular reflections
2. to improve contrasts between dielectrics and metals

Computer Vision

ACQUIS.

illumination cameras

Polarised lighting

polarizer/analyzer configurations

law of Malus :
$I(\theta)=I(0) \cos ^{2} \theta$

Computer Vision

ACQUIS.

illumination cameras

Polarized lighting

2 uses:

1. to improve contrast between Lambertian and specular reflections
2. to improve contrasts between dielectrics and metals

Computer Vision

ACQUIS.
illumination cameras

Polarized lighting

specular reflection keeps polarisation : diffuse reflection depolarises

suppression of specular reflection :

polarizer/analyzer crossed
prevents the large dynamic range caused by glare

Computer Vision

ACQUIS.
illumination cameras

Example pol. lighting (pol./an.crossed)

Computer Vision

ACQUIS.

illumination cameras

Polarized lighting

2 uses:

1. to improve contrast between Lambertian and specular reflections
2. to improve contrasts between dielectrics and metals

Computer Vision

Reflection : dielectric

Polarizer at Brewster angle

Computer Vision

Reflection : conductor

ACQUIS.

illumination cameras

strong reflectors more or less preserve polarization

Computer Vision

ACQUIS.

illumination cameras

Polarised lighting

distinction between specular reflection from dielectrics and metals; works under the Brewster angle for the dielectric dielectric has no parallel comp. ; metal does suppression of specular reflection from dielectrics :

polarizer/analyzer aligned distinguished metals and dielectrics

Computer Vision

ACQUIS.
illumination cameras

Example pol. lighting (pol./an. aligned)

ACQUIS.

illumination cameras

Coloured lighting

highlight regions of a similar colour
with band-pass filter: only light from projected pattern (e.g. monochromatic light from a laser)
differentiation between specular and diffuse reflection
comparing colours \Rightarrow same spectral composition of sources!
spectral sensitivity function of the sensors!

Computer
Vision

Example coloured lighting

ACQUIS.
illumination cameras

ACQUIS.
illumination cameras

Structured and stroboscopic lighting

 spatially or temporally modulated light pattern
Structured lighting

e.g. : 3D shape : objects distort the projected pattern
(more on this later)

Stroboscopic lighting
high intensity light flash
to eliminate motion blur

Computer
Vision

ACQUIS.
illumination cameras

Stroboscopic lighting

Computer
 App: vegetable inspection (colored light + polarization)

 VisionACQUIS.
illumination cameras

Computer
Vision
cameras

Computer Vision

Optics for image formation

the pinhole model :

ACQUIS.

illumination cameras

Computer Vision

Optics for image formation

the pinhole model :
ACQUIS.
illumination cameras

hence the name: CAMERA obscura

Computer Vision

Optics for image formation

the pinhole model :
ACQUIS.
illumination cameras

$$
\frac{X_{i}}{X_{o}}=\frac{Y_{i}}{Y_{o}}=\frac{f}{-Z_{o}}=-m
$$

(m = linear magnification)

Computer Vision

ACQUIS.
illumination cameras

Camera obscura + lens

Computer Vision

The thin-lens equation

lens to capture enough light :

ACQUIS.

illumination cameras

$$
\frac{1}{Z_{O}}-\frac{1}{Z_{i}}=\frac{1}{f}
$$

assuming
\square spherical lens surfaces
\square incoming light \pm parallel to axis
\square thickness << radii
\square same refractive index on both sides

Computer Vision

The depth-of-field

Only reasonable sharpness in Z-interval
ACQUIS.
illumination cameras

$$
\Delta Z_{0}^{-}=Z_{0}-Z_{0}^{-}=\frac{Z_{0}\left(Z_{0}-f\right)}{Z_{0}+f d / b-f}
$$

decreases with d, increases with Z_{0}
strike a balance between incoming light (d) and large depth-of-field (usable depth range)

Computer Vision

ACQUIS.

illumination cameras

The depth-of-field

$$
\Delta Z_{0}^{-}=Z_{0}-Z_{0}^{-}=\frac{Z_{0}\left(Z_{0}-f\right)}{Z_{0}+f d / b-f}
$$

Similar expression for $Z_{O}^{+}-Z_{O}$

Computer Vision

ACQUIS.

illumination cameras

The depth-of-field

$$
\Delta Z_{0}^{-}=Z_{0}-Z_{0}^{-}=\frac{Z_{0}\left(Z_{0}-f\right)}{Z_{0}+f d / b-f}
$$

Ex 1: microscopes -> small DoF
Ex 2: special effects -> flood miniature scene with light

Deviations from the lens model

ACQUIS.

illumination cameras

3 assumptions:

1. all rays from a point are focused onto 1 image point
2. all image points in a single plane
3. magnification is constant
deviations from this ideal are aberrations

Aberrations

ACQUIS.

2 types :

1. geometrical
2. chromatic
geometrical : small for paraxial rays
chromatic : refractive index function of wavelength (Snell's law !!)

Computer Vision

Geometrical aberrations

ACQUIS.
illumination cameras
\square spherical aberration
\square astigmatism

the most important type

\square radial distortion
\square coma

Computer Vision

ACQUIS.
illumination cameras

Spherical aberration

rays parallel to the axis do not converge

outer portions of the lens yield smaller focal lenghts

Computer Vision

Radial Distortion

ACQUIS.
illumination cameras
magnification different for different angles of inclination

barrel

none

pincushion

Radial Distortion

ACQUIS.
illumination cameras
magnification different for different angles of inclination

barrel

none

pincushion

The result is pixels moving along lines through the center of the distortion

- typically close to the image center - over a distance d, depending on the pixels' distance r to the center

$$
d=\left(1+\kappa_{1} r^{2}+\kappa_{2} r^{4}+\ldots\right)
$$

Computer Vision

Radial Distortion

magnification different for different angles of inclination

This aberration type can be corrected by software if the parameters $\left(\kappa_{1}, \kappa_{2}, \ldots\right)$ are known

Radial Distortion

magnification different for different angles of inclination

Some methods do this by looking how straight lines curve instead of being straight

Computer Vision ACQUIS.
illumination cameras

Chromatic aberration

rays of different wavelengths focused in different planes

cannot be removed completely
but achromatization can be achieved at some well chosen wavelength pair, by combining lenses made of different glasses

sometimes achromatization is achieved for more than 2 wavelengths

Computer Vision

ACQUIS.

illumination cameras

Lens materials

the figure shows wavelengths that materials let pass
additional considerations :
humidity and temperature resistance, weight, price,...

Computer
Vision

ACQUIS.

we consider 2 types:

1. $C C D$

2. CMOS

Computer Vision

ACQUIS.
illumination cameras

Cameras

CCD
photon to electron
CMOS

CCD = Charge-coupled device
CMOS = Complementary Metal Oxide Semiconductor

ACQUIS.
illumination cameras

CCD

separate photo sensor at regular positions no scanning
charge-coupled devices (CCDs) area CCDs and linear CCDs
2 area architectures:
interline transfer and frame transfer
\square photosensitive
\square storage

Computer Vision

The CCD (inter-line) camera

ACQUIS.

illumination cameras

Computer Vision ACQUIS.
illumination cameras

CMOS

Same sensor elements as CCD

Each photo sensor has its own amplifier
More noise (reduced by subtracting 'black' image)
Lower sensitivity (lower fill rate)
Uses standard CMOS technology
Allows to put other components on chip
'Smart' pixels


```
CMOS image sensor
```


Computer Vision

ACQUIS.

illumination cameras

CMOS

Resolution trend in mobile phones
Volume and revenue opportunity for high resolution sensors

[^0]ACQUIS.
illumination cameras

CCD vs. CMOS

- Niche applications
- Specific technology
- High production cost
- High power consumption
- Higher fill rate
- Blooming
- Sequential readout
- Consumer cameras
- Standard IC technology
- Cheap
- Low power
- Less sensitive
- Per pixel amplification
- Random pixel access
- Smart pixels
- On chip integration with other components

2006 was year of sales cross-over

CCD vs. CMOS

ACQUIS.
illumination cameras

- Niche applications
- Specific technology
- High production cost
- High power consumption
- Higher fill rate
- Blooming
- Sequential readout
- Consumer cameras
- Standard IC technology
- Cheap
- Low power
- Less sensitive
- Per pixel amplification
- Random pixel access
- Smart pixels
- On chip integration with other components

In 2015 Sony said to stop CCD chip production

Computer Vision

Colour cameras

ACQUIS.

illumination cameras

We consider 3 concepts:

1. Prism (with 3 sensors)
2. Filter mosaic
3. Filter wheel

Prism colour camera

ACQUIS.

illumination cameras

Separate light in 3 beams using dichroic prism Requires 3 sensors \& precise alignment

Good color separation

Computer
Vision

ACQUIS.
illumination cameras

Prism colour camera

Computer Vision

ACQUIS.
illumination cameras

Filter mosaic

Coat filter directly on sensor

Demosaicing (obtain full colour \& full resolution image)

Computer Vision

Filter mosaic

Sensor Architecture

ACQUIS.

illumination cameras

Color filters lower the effective resolution,
Fuiji Corporation hence microlenses often added to gain more light on the small pixels

Computer Vision

Filter wheel

ACQUIS.

illumination cameras

Rotate multiple filters in front of lens
Allows more than 3 colour bands

Only suitable for static scenes

Prism vs. mosaic vs. wheel

ACQUIS.

illumination cameras

	approach	Prism
ACQUIS.	\# sensors	3
	Resolution	High
illumination	Cost	High
cameras	Framerate	High
	Artefacts	Low
	Bands	3

High-end cameras

Mosaic
1
Average
Low
High
Aliasing
3

Low-end
cameras

Wheel 1
Good
Average
Low
Motion
3 or more

Scientific applications

Computer Vision

Geometric camera model

perspective projection

ACQUIS.
illumination cameras

(Man Drawing a Lute, woodcut, 1525, Albrecht Dürer)

Models for camera projection

 the pinhole model revisited :
ACQUIS.

illumination cameras

center of the lens $=$ center of projection
notice the virtual image plane
this is called perspective projection

Computer Vision

ACQUIS.

illumination cameras

Models for camera projection

We had the virtual plane also in the original reference sketch:

Computer Vision

ACQUIS.

illumination cameras

Perspective projection

\square origin lies at the center of projection
\square the Z_{c} axis coincides with the optical axis
$\square X_{c}$-axis || to image rows, Y_{c}-axis || to columns

Computer Vision

ACQUIS.

illumination cameras

Perspective projection

$$
u=f \frac{X}{Z}
$$

$$
v=f \frac{Y}{Z}
$$

Computer Vision

ACQUIS.
illumination cameras

Pseudo-orthographic projection

$$
u=f \frac{X}{Z} \quad v=f \frac{Y}{Z}
$$

If Z is constant $\Rightarrow x=k X$ and $y=k Y$, where $k=f / Z$
i.e. orthographic projection + a scaling

Good approximation if $f / Z \pm$ constant, i.e. if objects are small compared to their distance from the camera

Computer Vision

ACQUIS.
illumination cameras

Pictoral comparison

Pseudo orthographic

Perspective

illumination cameras

Projection matrices

the perspective projection model is incomplete : what if :

1. 3 D coordinates are specified in a world coordinate frame
2. Image coordinates are expressed as row and column numbers

We will not consider additional refinements, such as radial distortions,...

Computer Vision ACQUIS.
illumination cameras
Projection

Computer Vision

ACQUIS.
illumination cameras

Projection matrices

Image coordinates are to be expressed as pixel coordinates

$\rightarrow(x 0, y 0)$ the pixel coordinates of the principal point
$\rightarrow k x$ the number of pixels per unit length horizontally
$\rightarrow k y$ the number of pixels per unit length vertically
$\rightarrow s$ indicates the skew ; typically $s=0$

Computer Vision

ACQUIS.

illumination cameras

Projection matrices

Image coordinates are to be expressed as pixel coordinates

NB1: often only integer pixel coordinates matter

Computer Vision

ACQUIS.

illumination cameras

Projection matrices

Image coordinates are to be expressed as pixel coordinates

NB2 : $k y / k x$ is called the aspect ratio

Computer Vision

ACQUIS.

illumination cameras

Projection matrices

Image coordinates are to be expressed as pixel coordinates

NB3: $k x, k_{y}, s, x_{0}$ and y_{0} are called internal camera parameters

Computer Vision

ACQUIS.

illumination cameras

Projection matrices

Image coordinates are to be expressed as pixel coordinates

NB4: when they are known, the camera is internally calibrated

Computer Vision

ACQUIS.

illumination cameras

Projection matrices

Image coordinates are to be expressed as pixel coordinates

NB5 : vector C and matrix $\mathrm{R} \in \mathrm{SO}$ (3) are the ra external camera parameters

Computer Vision

ACQUIS.

illumination cameras

Projection matrices

Image coordinates are to be expressed as

 pixel coordinates

NB6 : when these are known, the camera is э ra externally calibrated

Computer Vision

ACQUIS.

illumination cameras

Projection matrices

Image coordinates are to be expressed as pixel coordinates

NB7 : fully calibrated means internally and externally calibrated

Computer Vision

Homogeneous coordinates

ACQUIS.
illumination cameras

Often used to linearize non-linear relations

2D $\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \rightarrow\binom{x / z}{y / z}$
3D $\left(\begin{array}{l}X \\ Y \\ Z \\ W\end{array}\right) \rightarrow\left(\begin{array}{l}X / W \\ Y / W \\ Z / W\end{array}\right)$
Homogeneous coordinates are only defined up to a factor

Computer Vision

Projection matrices

ACQUIS.

illumination cameras

$$
\begin{aligned}
& u=f \frac{r_{11}\left(X-C_{1}\right)+r_{12}\left(Y-C_{2}\right)+r_{13}\left(Z-C_{3}\right)}{r_{31}\left(X-C_{1}\right)+r_{32}\left(Y-C_{2}\right)+r_{33}\left(Z-C_{3}\right)} \\
& v=f \frac{r_{21}\left(X-C_{1}\right)+r_{22}\left(Y-C_{2}\right)+r_{23}\left(Z-C_{3}\right)}{r_{31}\left(X-C_{1}\right)+r_{32}\left(Y-C_{2}\right)+r_{33}\left(Z-C_{3}\right)}
\end{aligned}
$$

Exploiting homogeneous coordinates:
$\tau\left(\begin{array}{l}u \\ v \\ 1\end{array}\right)=\left(\begin{array}{ccc}f r_{11} & f r_{12} & f r_{13} \\ f r_{21} & f r_{22} & f r_{23} \\ r_{31} & r_{32} & r_{33}\end{array}\right)\left(\begin{array}{c}X-C_{1} \\ Y-C_{2} \\ Z-C_{3}\end{array}\right)$

Computer Vision

Projection matrices

ACQUIS.
illumination cameras

$$
\left\{\begin{array}{l}
x=k_{x} u+s v+x_{0} \\
y=k_{y} v+y_{0}
\end{array}\right.
$$

Exploiting homogeneous coordinates:

$$
\tau\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=\left(\begin{array}{ccc}
k_{x} & s & x_{0} \\
0 & k_{y} & y_{0} \\
0 & 0 & 1
\end{array}\right) \tau\left(\begin{array}{l}
u \\
v \\
1
\end{array}\right)
$$

Computer Vision

Projection matrices

Thus, we have :

ACQUIS.

illumination cameras

$$
\begin{gathered}
\tau\left(\begin{array}{l}
u \\
v \\
1
\end{array}\right)=\left(\begin{array}{ccc}
f r_{11} & f r_{12} & f r_{13} \\
f r_{21} & f r_{22} & f \\
r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right)\left(\begin{array}{c}
X-C_{1} \\
Y-C_{2} \\
Z-C_{3}
\end{array}\right) \\
\tau\left(\begin{array}{c}
x \\
y \\
1
\end{array}\right)=\left(\begin{array}{ccc}
k_{x} & s & x_{0} \\
0 & k_{y} & y_{0} \\
0 & 0 & 1
\end{array}\right) \tau\left(\begin{array}{l}
u \\
v \\
1
\end{array}\right)
\end{gathered}
$$

Computer Vision

Projection matrices

Concatenating the results :

ACQUIS.

illumination cameras
$\tau\left(\begin{array}{l}x \\ y \\ 1\end{array}\right)=\left(\begin{array}{ccc}k_{x} & s & x_{0} \\ 0 & k_{y} & y_{0} \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{cccc}f r_{11} & f & r_{12} & f \\ r_{13} \\ f & r_{21} & f & r_{22} \\ r_{31} & f & r_{23} \\ r_{32} & & r_{33}\end{array}\right)\left(\begin{array}{l}X-C_{1} \\ Y-C_{2} \\ Z-C_{3}\end{array}\right)$
Or, equivalently :
$\tau\left(\begin{array}{l}x \\ y \\ 1\end{array}\right)=\left(\begin{array}{ccc}k_{x} & s & x_{0} \\ 0 & k_{y} & y_{0} \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{lll}r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33}\end{array}\right)\left(\begin{array}{l}X-C_{1} \\ Y-C_{2} \\ Z-C_{3}\end{array}\right)$

Computer Vision

ACQUIS.

illumination cameras

Projection matrices

Re-combining matrices in the concatenation :

$$
\tau\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=\left(\begin{array}{ccc}
k_{x} & s & x_{0} \\
0 & k_{y} & y_{0} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right)\left(\begin{array}{c}
X-C_{1} \\
Y-C_{2} \\
Z-C_{3}
\end{array}\right)
$$

yields the calibration matrix K :

$$
K=\left(\begin{array}{lll}
k_{x} & s & x_{0} \\
0 & k_{y} & y_{0} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
f k_{x} f s & x_{0} \\
0 & f k_{y} & y_{0} \\
0 & 0 & 1
\end{array}\right)
$$

Computer Vision

ACQUIS.

illumination cameras

Projection matrices

We define

$$
p=\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right) ; \quad P=\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right), \quad \widetilde{P}=\left(\begin{array}{l}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

yielding
$\rho p=K R^{t}(P-C)$ for some non-zero $\rho \in \mathbb{R}$
or, $\quad \rho p=K\left(R^{t} \mid-R^{t} C\right) \widetilde{P}$
or, $\quad \rho p=(M \mid t) \widetilde{P}$ with rank $M=3$

Computer Vision

ACQUIS.
illumination cameras

From object radiance to pixel grey levels

After the geometric camera model...
... a p1010m91fle camera model

2 steps:

1. from object radiance to image irradiance
2. from image irradiance to pixel grey level

ACQUIS.

illumination cameras

Image irradiance and object radiance

we look at the irradiance that an object patch will cause in the image
assumptions:
radiance R assumed known and
object at large distance compared to the focal length

Is image irradiance directly related to the radiance of the image patch?

Computer Vision

ACQUIS.

illumination cameras

The viewing conditions

$$
I=R \frac{A_{l}}{f^{2}} \cos ^{4} \alpha
$$

the $\cos ^{4}$ law

Computer Vision

ACQUIS.
illumination cameras

The $\cos ^{4}$ law cont' d

Especially strong effects for wide-angle and fisheye lenses

Computer
 Vision

From irradiance to gray levels

ACQUIS.

illumination cameras

Dark reference

Computer
 Vision

From irradiance to gray levels

ACQUIS.

illumination cameras
$f=g I_{\text {diaphragm }}^{\gamma}+d$
Dark reference

[^0]: Source: TSR, CCD/CMOS Area Image Sensor Market Analysis, dated June 2011

