
Computer 
Vision Tracking 

Many thanks to: H. Grabner, L. van Gool, and V. Ferrari for some of the slides & videos. 

Dictionary: 
•  [noun] “The pursuit (of a person or animal) by following 

tracks or marks they left behind” 
•  [verb] “Observe or plot the moving path of something  

(e.g., to track a missile)” 
 

 What does it mean in Computer Vision? 
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What is Tracking 

actual object position 

Time t+1 Time t 

LOCALIZE “IT” IN THE NEXT FRAMES 

… 
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Why do we need it 
What is tracking for you? Why do you 
think it is relevant and may be important?   
Where could it be useful, in real-life 
application/engineering scenarios? 
 
Task: “List applications you can think 
of on a piece of paper” 
 
Discuss in groups of 3-4 
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Autonomous Driving 
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Surveillance, Safety, Security 
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Applications: VR/AR glasses 
•  Hand tracking 
•  Room tracking 
•  Eye tracking 

Microsoft HoloLens 
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Medical Guidance 
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Sports 
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Video Editing 
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SfM: Structure from Motion 

•  Tracked Points gives correspondences 
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Defense 

“Top Gun” 
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Of course, “very importantly” 
The Cow Tracker 
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Applications 
•  Structure-from-Motion 
•  Autonomous Driving 
•  Gesture/Action Recognition 
•  Augmented Reality 
•  Navigation 
•  Safety and Security 
•  Medical Targeting / Guidance 
•  Motion Compensation 
•  … 
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You will be able to: 
1. Determine applications of tracking and 
identify problems solvable by tracking 
2. Analyze what methods could work in a 
practical scenario / situation 
3. Assess potential limitations / pitfalls of 
particular approaches and scenarios 
4. Propose an optimal tracking solution 
 

How will we get there: 
•  (some) common tracking methods 
•  Few particular keywords & implementation 
•  What not: details of all individual implementations; 

cf. “how to google” 
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What to track? 

center 
point 
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What to track? 

multiple 
points 
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What to track? 

structure 
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What to track? 

(body) 
parts 
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What to track? 

region 
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What to track? 

outline 
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Approaches 

 
(i) Feature tracking 

generic 
corners, blob/contours, regions, … 

 
(ii) Model-based tracking 

  application-specific 
face, human body, … 
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Tracking Requirements 

•  Strongly depends on the application! 

Robust, Accurate, Fast,… 

•  Constrain the tracking task! 

Information about the object, dynamics,
… 
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Saliency 

Object 

Model/  
Tracking History 

Scene 

Tracking Cues 
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Motion as a Cue 
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Motion as a Cue 
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Motion as a Cue 

•  Eye perceptive to temporal changes (gradients) 
•  “Event based camera” 
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General Tracking Loop 
predict to t+1 

time t 

measure at t+1 

update location 
update model 
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Which strategy to use? 
Depends, No single solution 

Some rule-of-thumb suggestions: 
•  If you can alter the “object” to be tracked, 
è modify/add tracking info 
e.g. optical IR markers, mark with patterns, etc 

•  If object is fixed/known, but modification not possible/
desired  è  Utilize known info 
e.g. use a template image and/or known object features 

•  If object unknown/variable object, but  
resides in a known (static) environment è utilize this! 

•  If none above, simply follow from initial image/location 

 
Tracking v.s. segmentation/localization:  
Key difference is TEMPORAL consistency  
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Trajectory 
(Temporal Filtering) 
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Temporal Filtering/Predictions 
•  To predict location 
•  To reduce noise 
•  To disambiguate 

multiple objects 

Kalman Filtering 
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Steps of Tracking 

•  Recap: Particle filtering 
–  Tracking can be seen as the process of 

propagating the posterior distribution of state 
given measurements across time. 

predict correct 
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)|,( 111 −−− ttt zppp !

)|,( 1−ttt zppp !

prediction 

)|( tt pzpweighing with 

)|,( ttt zppp !

update 
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Particle Filter 
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Traditional/Simple Tracking 

t=1 
 

initialization 

t=2 
position in prev. frame 

 
candidate new positions 

(e.g., dynamics) 

best new position 
(e.g., max color similarity) 
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Tracking-by-Detection 

… 

detect object(s) independently in 
each frame 

associate detections over time into 
tracks 
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Outline 
•  Region Tracking 
•  Point Tracking 

•  Template Tracking 

•  Tracking-by-Detection 

–  of a specific target 
–  of the object class 

•  Model-based Body Articulation 
•  On-line Learning 

•  Misc (preventing drift, context, issues) 
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Region Tracking 
(and Mean Shift Algorithm) 
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Background Modeling 

Input Background Model 

Moving  
Foreground 

Blobs (Objects) 

- 
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Deformable models 
•  One option: Fit deformable curves 



Computer 
Vision 

Orcun Goksel,  ETH Zurich 

Mean Shift Tracking 

•  The mean shift tracker tracks a region, 
with a prescribed (color) distribution 

•  The similarity between the tracked 
region and the target region is 
maximized, through evolution towards 
higher density in a parameter space  

•  Typically this search only takes a few 
iterations 
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Meanshift Tracking 

Region of 
interest (Kernel) Center of 

mass 

Mean Shift 
vector Measurements 
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Intuitive Description 
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Intuitive Desciption 
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Example: Safety Monitoring 
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Outline 
•  Region Tracking 
•  Point Tracking 

•  Template Tracking 

•  Tracking-by-Detection 

–  of a specific target 
–  of the object class 

•  Model-based Body Articulation 
•  On-line Learning 

•  Misc (preventing drift, context, issues) 
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Point Tracking 
(and Aperture Problem) 
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Estimate Optimal 
Transformation 
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When can we estimate motion? 

Q1. Which direction is the pattern 
behind the circular hole moving? 

? 

Q2. 1D motion: We cannot determine the direction of 
motion from red to green line on the right.  Why not? 

Q3. Any similarity/connection  
       between Q1 & Q2? 

a) d) ? c) b) 

gradients 
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Sum of Squared Differences 

I0(x) 

I0(x+h) 

E(h) = [I0(x+h) – I1(x)]2 

h 

I1(x) = 
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Displacement 

   2 I0’(x) [ I0(x) + hI0’(x) – I1(x) ] = 0 
h
E
∂

∂
≈

 I1(x) – I0(x) 
h I0’(x) 

E(h)    [ I0(x) + hI0’(x) – I1(x) ]2 ≈

≈

E(h) = [ I0(x+h) – I1(x) ]2 
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Intuition 

I0(x) 

h 
I1(x) 

I1(x)-I0(x) 

I0’ (x) 

 I1(x) – I0(x) 
h I0’(x) 
≈
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Problem 1: Zero Gradient 

≈

? 

 I1(x) – I0(x) 
h I0’(x) 
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Problem 1: “Aperture problem” 
•  Tracking needs gradients in all possible 

directions to be well defined 
•  If no gradient along one direction, we cannot 

determine relative motion in that axis 
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Problem 2: Local Minima 

(a) (b) 

•  Motion to closest minimum has to be assumed 
•  Indirect result: Frame-rate should be faster 

than motion of half-wavelength (Nyquist rate) 
•  Nonconvex regions may indicate multiple sols 
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Problem 2: Local Minima 
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Recall: Optical Flow 

•  OF recovers (smooth) motion everywhere 
•  Least-squares regularization: Horn-Schunk 

makes smooth spatial change assumption 
•  In contrast, tracking seeks a single motion! 
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1 equation in 2 unknowns 

, =
dt
dxu

dt
dyv =

, 
x
II x ∂

∂
= , 

∂
∂

=
y
II y t

IIt ∂
∂

=

Recall: Optical Flow 

0  =++ tyx IvIuI
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Treating Aperture Problem  
in Tracking 

•  Get additional info to constrain motion: 
– OF: Smoothly regularize in space 
– Tracking: Assume single motion for a region 

•  Spatial coherence constraint:   
“A pixel’s neighbours  
all move together” 

I0(x) 

I1(x) 
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Least Squares Problem: 
Single motion with multiple equations 

Pseudo Inverse 

Over determined System  
of Equations 
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Eigenvectors of ATA 

•  Haven’t we seen an equation like this 
before? 

•  Recall Harris corner detector! 
•  Thus, “good image features are also 

good for tracking” 
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Interpreting the Eigenvalues 

“Corner” 
            and large 

“Edge”  

“Edge”  

“Flat” 
region 
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Samples: Edge / Low Texture / 
High Texture 
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Example 
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Outline 
•  Region Tracking 
•  Point Tracking 

•  Template Tracking 

•  Tracking-by-Detection 

–  of a specific target 
–  of the object class 

•  Model-based Body Articulation 
•  On-line Learning 

•  Misc (preventing drift, context, issues) 
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Template Tracking 
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Lucas-Kanade Template Tracker  

•  Lucas-Kanade is typically for small patches, e.g. 5x5 
•  Why not run it for the entire object (for a larger window) 

•  Locally, translation is sufficient to explain motion; but… 
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Lucas-Kanade Template Tracker  

•  Nonetheless, we can easily generalize the 
motion model to other parametric models! 

 e.g., translation, affine, projective, “warp” 

•  Motion is more complex in a larger window 

) 
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Lucas-Kanade Template Tracker  

•  From Points to templates 
•  Estimate „optimal“ warp W 
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Step 1. 

Step 2. 

Step 3. 

Step 4. 

Step 5. 

Step 6. 

Step 7. 

Step 8. 

Step 9. 

Lucas-Kanade Template Tracker  
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Example 
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Example: Tracking Liver in 
Ultrasound 

Our tracking 
Manual annotation 
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Outline 
•  Region Tracking 
•  Point Tracking 

•  Template Tracking 

•  Tracking-by-Detection 

–  of a specific target 
–  of the object class 

•  Model-based Body Articulation 
•  On-line Learning 

•  Misc (preventing drift, context, issues) 
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Tracking by 
Detection 

(of a specific target) 



Computer 
Vision 

Orcun Goksel,  ETH Zurich 

3D Object Detection 

Reference image(s) of 
the object to detect 

Test image 
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3D Object Detection 

Reference image(s) of 
the object to detect 

Test image 

MathWorks 
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1. Detect Keypoints 

–  invariant to scale, rotation, or perspective  

100 strongest feature points 
in the reference image 

300 strongest feature points 
in the test image 
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2. Build Feature Descriptors 
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3. Match Keypoint 
Descriptors 

•  Search in the Database 

Query 
(from image) 

Database 
 (of object) 
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3. Search in the Database 
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4. Outlier Elimination 
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Summary 

Search in the 
Database 

Robust 3D Pose 
Calculation  

 
(RANSAC) 

Keypoint Detection 

Keypoint Recognition 

Geometric 
verification 
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Outline 
•  Region Tracking 
•  Point Tracking 

•  Template Tracking 

•  Tracking-by-Detection 

–  of a specific target 
–  of the object class 

•  Model-based Body Articulation 
•  On-line Learning 

•  Misc (preventing drift, context, issues) 
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Tracking by 
Detection 

(of the object class) 
 

“Multiple Object 
Tracking” 
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Tracking-by-Detection 

… 

detect object(s) independently in 
each frame 

associate detections over time into 
tracks 
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Multiple Objects 

Frame 5 Frame 1 Frame 9 
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Examples:  
Multiple Object Tracking 
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How to get the detections? 

Persons Background 

Supervised Learning 
 
(Support Vector Machines, 
Random Forests, 
Neural Networks, ...) 
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Using the classifier 
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Space-Time Analysis 

•  Collect detections in space-time 
volume 
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Detections 

Space Time Volume 
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Trajectory Estimation 

•  Trajectory growing and selection 

x 

t 

z 

Space Time Volume 
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Trajectory Estimation 

•  Trajectory growing and selection 

x 

t 

z 

H1 
H2 

Space Time Volume 
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Input (Object Detections) “Tracking” Result 

Driving 
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Outline 
•  Region Tracking  (and Mean Shift Algorithm) 
•  Point Tracking  (and Aperture Problem) 

•  Template Tracking  (Lucas-Kanade) 

•  Tracking-by-Detection 

–  a specific target (e.g., keypoints + Ransac)  
–  object class  (multiple object tracking) 

•  Model-based Body Articulation 
•  On-line Learning 

•  Misc (preventing drift, context, issues) 
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Model based 
Tracking 
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Articulated Tracking: Part-Based Models  
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Parts-based analysis 
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Parts-based analysis 
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Walking 

• What	temporal	info	can	we	use	
for	tracking?	

• What	varia8on	would	we	expect	
in	popula8on?	
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Tracking	Ar8culated	Mo8on	as	High-Dimensional	Inference	
•  Walking	cycles	have	one	main	(periodic)	DOF		
•  Regressors	to	learn	this	(latent)	space,	and	its	varia8on		

(Gaussian	Process	regression,	PCA,	etc)	
•  (Pose,SilhoueLe)	training	data	can	be	obtained	by	3D	rendering	

Mo8on		
Capture	
	

3D	Render	

Mul8ple	manual	
orienta8ons	(ω)	

Pose	Data	(p)	 SilhoueLes	(s)	

Articulation Space 
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P(Pose|k)	
recover	pose	
from	latent	space	

P(Silhoue1e|k)	
perform	inference	
on	silhoueLes	

Articulation Space 
Tracking	Ar8culated	Mo8on	as	High-Dimensional	Inference	
•  Walking	cycles	have	one	main	(periodic)	DOF		
•  Regressors	to	learn	this	(latent)	space,	and	its	varia8on		

(Gaussian	Process	regression,	PCA,	etc)	
•  (Pose,SilhoueLe)	training	data	can	be	obtained	by	3D	rendering	
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Articulation Space Tracking 
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Outline 
•  Region Tracking  (and Mean Shift Algorithm) 
•  Point Tracking  (and Aperture Problem) 

•  Template Tracking  (Lucas-Kanade) 

•  Tracking-by-Detection 

–  a specific target (e.g., keypoints + Ransac)  
–  object class  (multiple object tracking) 

•  Model-based Body Articulation 
•  On-line Learning 

•  Misc (preventing drift, context, issues) 
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Tracking  

as On-line learning 
(updating tracking models) 
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Tracking as Classification 
•  Learning current object appearance vs. local 

background. 

current 
background 

current 
obj. appearance 
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Tracking as Classification 

object 

background 
vs. 
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Tracking as Classification 

object 

background 
vs. 
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Tracking Loop 

- 

+ 

- - 

- 

search Region 

actual object position 

from time t to t+1 

create confidence map 
analyze map and set new 

object position  update classifier (tracker)  

evaluate classifier on sub-patches 
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“Tracking the Invisible” 
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When does it fail… 
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When does it fail… 

 
 

WHY? 
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- 

+ 

- - 

- 

search Region 

actual object position 

from time t to t+1 

create confidence map 
analyze map and 

set new object 
position  

update 
classifier 
(tracker)  

evaluate classifier on 
sub-patches 

 Self-learning!  
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Drift 

Tracked Patches Confidence 
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Drift 
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Outline 
•  Region Tracking  (and Mean Shift Algorithm) 
•  Point Tracking  (and Aperture Problem) 

•  Template Tracking  (Lucas-Kanade) 

•  Tracking-by-Detection 

–  a specific target (e.g., keypoints + Ransac)  
–  object class  (multiple object tracking) 

•  Model-based Body Articulation 
•  On-line Learning 

•  Misc (preventing drift, context, issues) 
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Combining 
Tracking and 

Detection 
(to avoid drift) 
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Refining an object model 

•  Only thing we are sure about the object is 
its initial model (e.g. appearance in first 
frame) 

•  We can “anchor” / correct our model with 
that 

•  This can limit drift 

Fix (initial) Model 

Current Model 



Computer 
Vision 

Orcun Goksel,  ETH Zurich 

Recover from Drift 
using a fixed/anchor model (e.g. first frame) 
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Context 
in Tracking 
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Humans use context to track 
•  … objects which 

change there 
appearance very 
quickly. 

•  … occluded 
objects or object 
outside the image. 

•  … small and/or 
low textured 
objects or even 
“virtual points”. 
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Using Supporters 
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With Supporters 

Assumptions should hold 
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Problems in 

Tracking 
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Tracking Issues 

•  Initialization 
 

object position 

Time t = 0 
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Tracking Issues 

•  Obtaining observation… 
– Generative: “render” the state on top of 

the image and compare 
– Discriminative: classifier or detector 

score 
•  …and dynamics model 

–  specify using domain knowledge 
–  learn (very difficult) 



Computer 
Vision 

Orcun Goksel,  ETH Zurich 

Tracking Issues 

•  Model- vs. Model-free-Tracking 
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Tracking Issues 

•  Nonlinear dynamics 
– Sometimes needed to 

keep multiple trackers 
in parallel 

– E.g., for abrupt 
direction changes 
(„Persons“) Wrong prediction 

Correct  
prediction 



Computer 
Vision 

Orcun Goksel,  ETH Zurich 

Tracking Issues 

•  Prediction vs. Correction  (cf. Kalman Filtering) 
–  If the dynamics model is too strong,  

tracking will end up ignoring the data. 
–  If the observation model is too strong,  

tracking is reduced to repeated detection. 

 

http://www.ethlife.ethz.ch/archive_articles/091008_kalman_per/index 

08.10.2009 
<< Rudolf Kalman, ETH-Zurich emeritus 
professor of mathematics, is awarded 
the National Medal of Science by 
Barack Obama – one of the highest 
accolades for researchers in the USA.   
 
In January 2008, Hungarian-born 
Kalman received the Charles Draper 
Prize, which is regarded as the “Nobel 
Prize” of the engineering world. >> 
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Tracking Issues 

•  Data Association –  
Multiple Object Tracking 
– What if we don’t know which measurements 

to associate with which tracks? 
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Tracking Issues 

•  Data Association –  
Occlusions / Self Occlusions 



Computer 
Vision 

Orcun Goksel,  ETH Zurich 

Tracking Issues 

•  Data Association – Fast Motion 
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Tracking Issues 

•  Data Association –  
Background / Appearance Change 
– Cluttered Background  
– Changes in shape, orientation, color,… 
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Tracking Issues 

•  Drift 
– Errors caused by dynamical model, 

observation model, and data association 
tend to accumulate over time 
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Summary 
•  Region Tracking  (and Mean Shift Algorithm) 
•  Point Tracking  (and Aperture Problem) 

•  Template Tracking  (Lucas-Kanade) 

•  Tracking-by-Detection 

–  a specific target (e.g., keypoints + Ransac)  
–  object class  (multiple object tracking) 

•  Model-based Body Articulation 
•  On-line Learning 

•  Misc (preventing drift, context, issues) 
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Let’s apply 
Q. What tracking method would you use in 
each following application scenario? 
What limitations you may expect? 
Task: “Discuss one (or more) in groups” 
 

App1. Safety: In a lumbar mill, you wish to use 
CV to stop the blade if a hand reaches nearby. 
App2. Medical: You wish to track the motion of 
an ultrasound probe, to relate images in space. 
App3. Autonomous driving: Tracking other 
nearby vehicles to adjust speed and course 
AppX. Your favorite tracking app 
 
 


