

Dictionary:

- [noun] "The pursuit (of a person or animal) by following tracks or marks they left behind"
- [verb] "Observe or plot the moving path of something (e.g., to track a missile)"

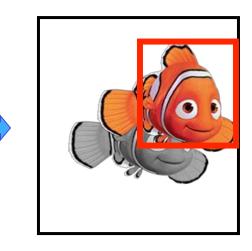
What does it mean in Computer Vision?

Many thanks to: H. Grabner, L. van Gool, and V. Ferrari for some of the slides & videos.

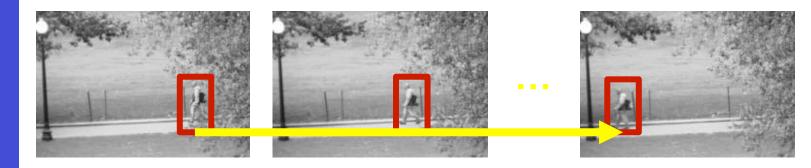
What is Tracking

Time t

Time t+1



LOCALIZE "IT" IN THE NEXT FRAMES



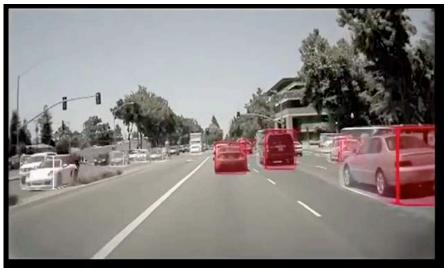
Why do we need it

What is tracking for you? Why do you think it is relevant and may be important? Where could it be useful, in real-life application/engineering scenarios?

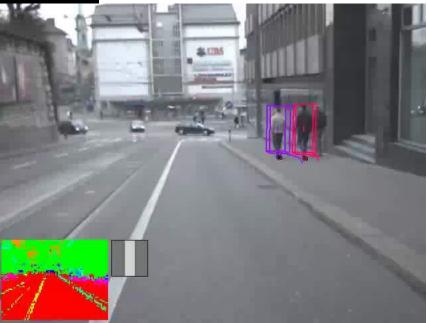
Task: "List <u>applications</u> you can think of on a piece of paper"

Discuss in groups of 3-4

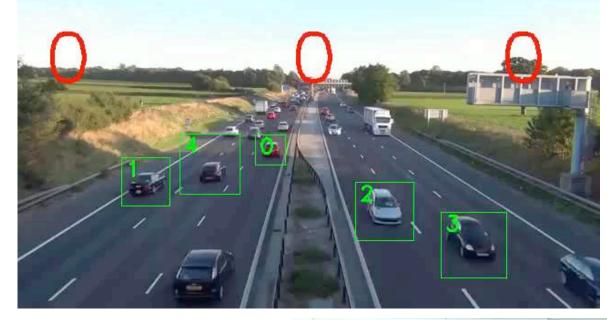
Autonomous Driving

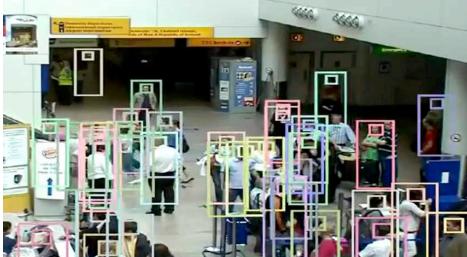


NVIDIA GTC Europe



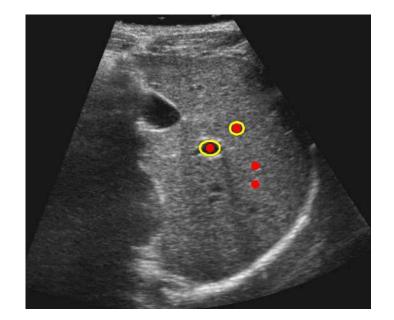
Surveillance, Safety, Security

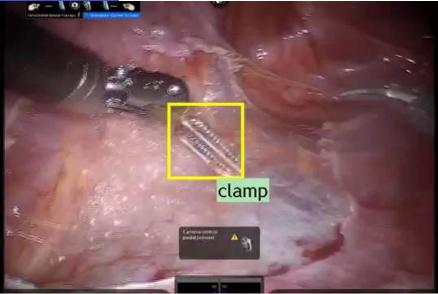


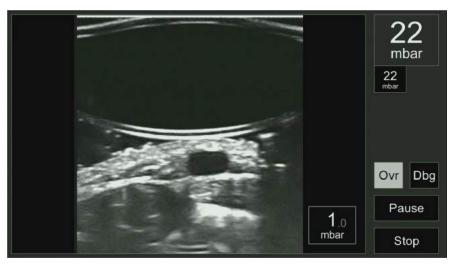


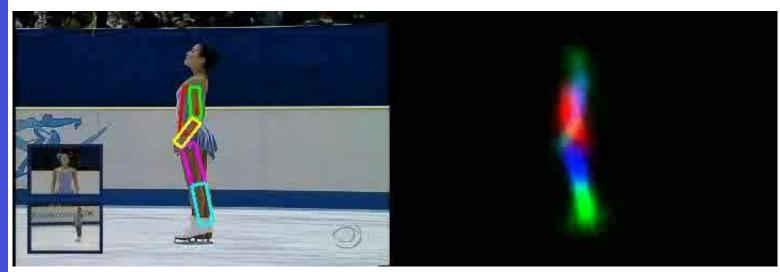
Applications: VR/AR glasses

Medical Guidance









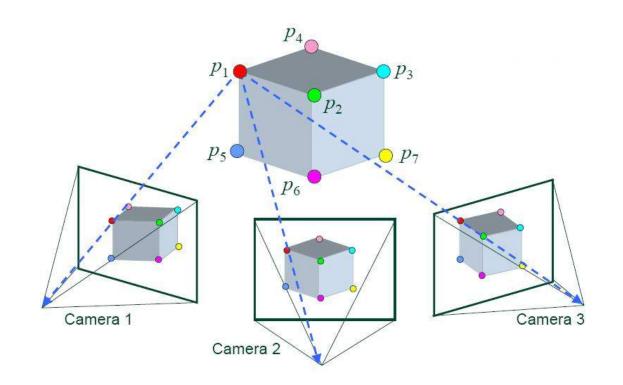
Video Editing

Adobe After Effects "Plexus Hands"

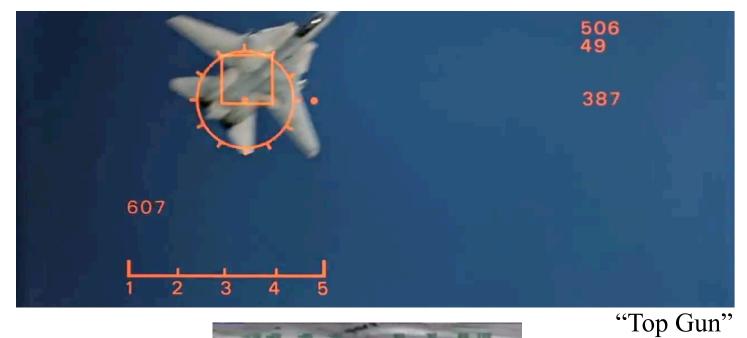
by Mazyar Sharifian

SfM: Structure from Motion

• Tracked Points gives correspondences



Defense



Of course, "very importantly" The Cow Tracker

Applications

- Structure-from-Motion
- Autonomous Driving
- Gesture/Action Recognition
- Augmented Reality
- Navigation
- Safety and Security
- Medical Targeting / Guidance
- Motion Compensation

•

You will be able to:

1. Determine applications of tracking and identify problems solvable by tracking

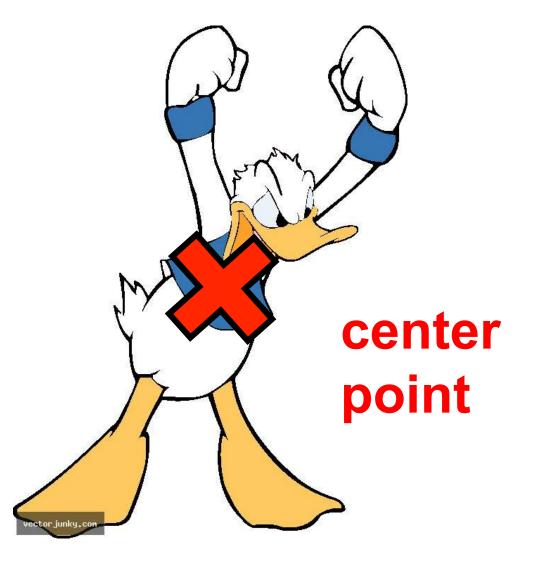
2. Analyze what methods could work in a practical scenario / situation

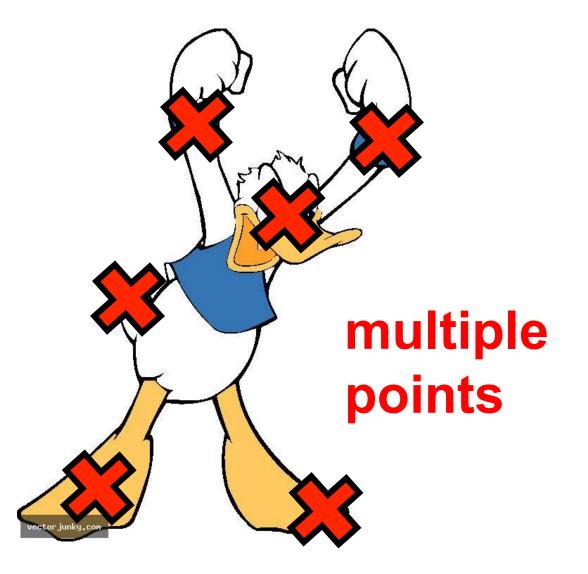
3. Assess potential limitations / pitfalls of particular approaches and scenarios

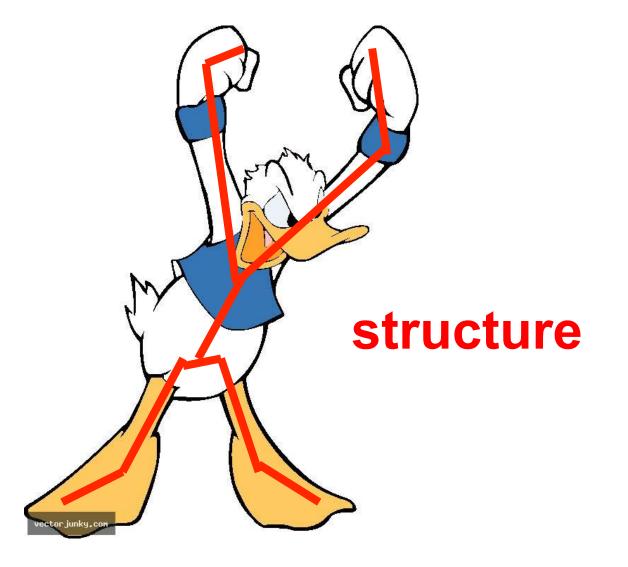
4. Propose an optimal tracking solution

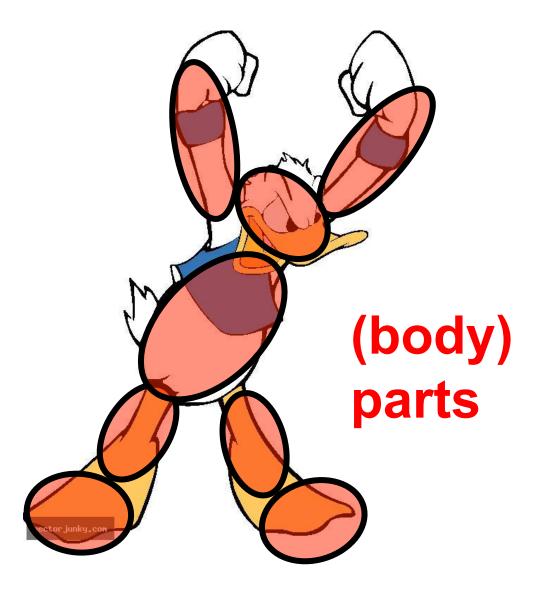
How will we get there:

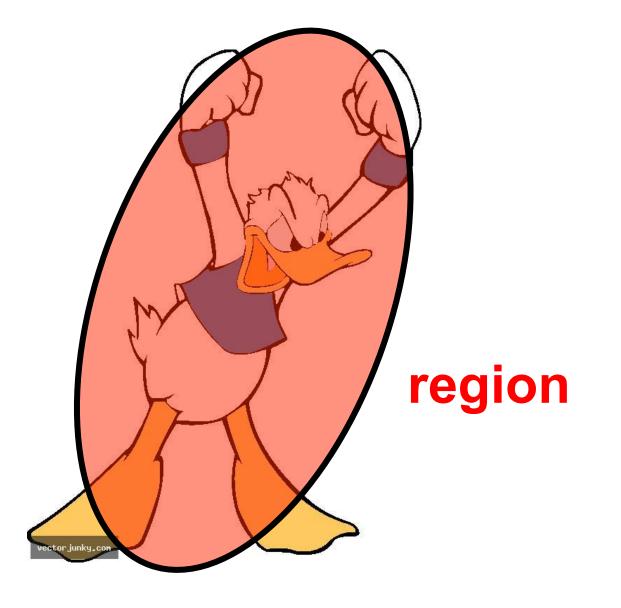
- (some) common tracking methods
- Few particular keywords & implementation
- What not: details of all individual implementations; cf. "how to google"











Approaches

(i) Feature tracking generic

corners, blob/contours, regions, ...

(ii) Model-based tracking application-specific face, human body, ...

Tracking Requirements

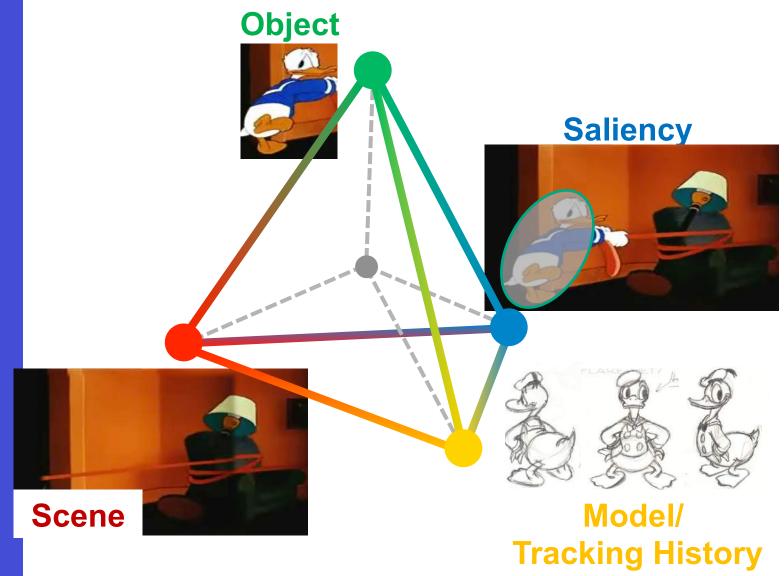
• Strongly depends on the **application**!

Robust, Accurate, Fast,...

• Constrain the tracking task!

Information about the object, dynamics,

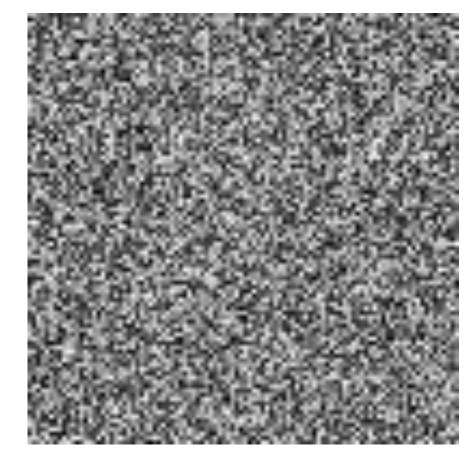
Tracking Cues



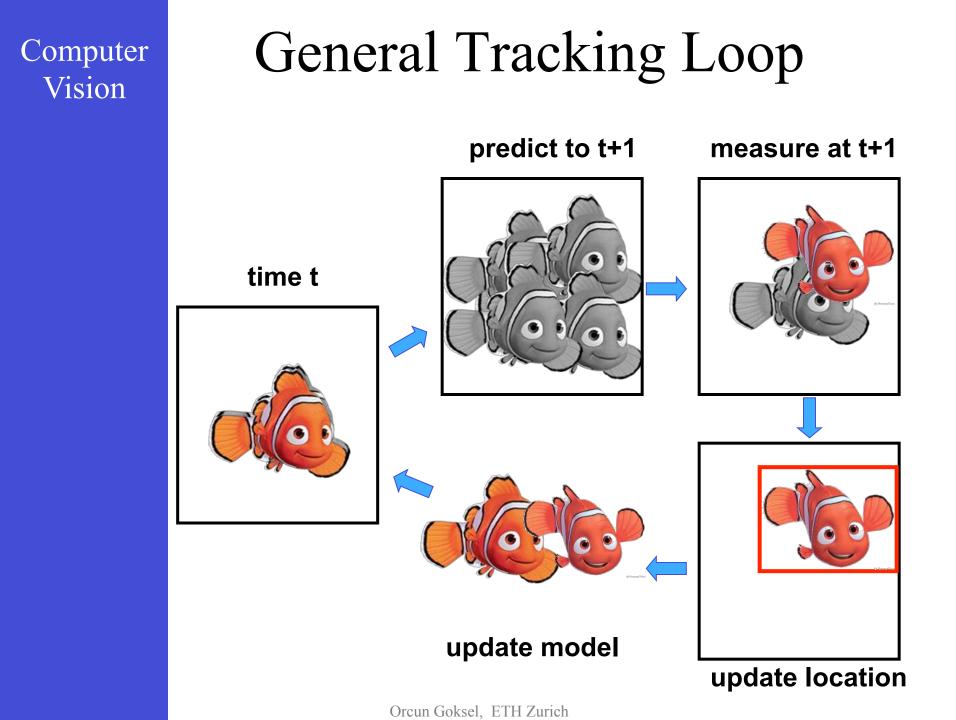
Motion as a Cue

Motion as a Cue

Motion as a Cue



- Eye perceptive to temporal changes (gradients)
- "Event based camera"



Which strategy to use? Depends, No single solution

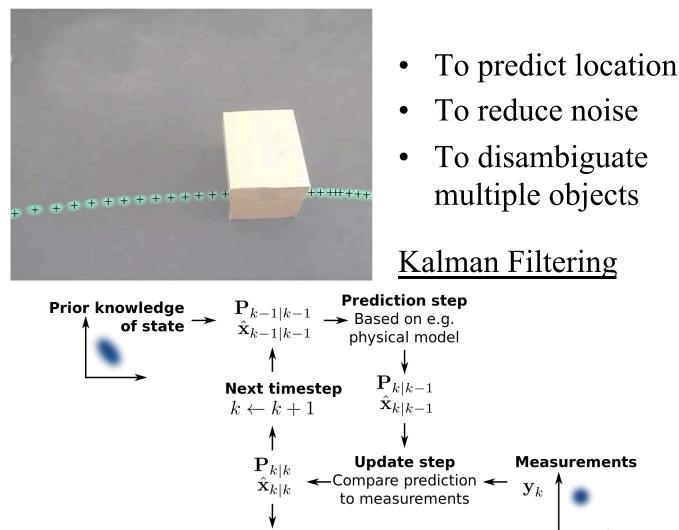
Some rule-of-thumb suggestions:

- If you can alter the "object" to be tracked,
- → <u>modify/add tracking info</u> e.g. optical IR markers, mark with patterns, etc
- If object is fixed/known, but modification not possible/ desired → <u>Utilize known info</u>
 e.g. use a template image and/or known object features
- If object unknown/variable object, but resides in a known (static) environment → utilize this!
- If none above, simply follow from initial image/location

Tracking v.s. segmentation/localization: Key difference is TEMPORAL consistency

Trajectory (Temporal Filtering)

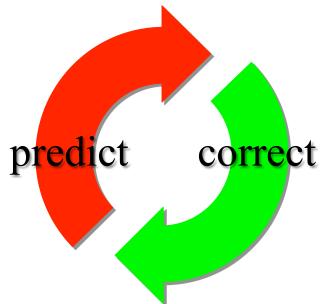
Temporal Filtering/Predictions



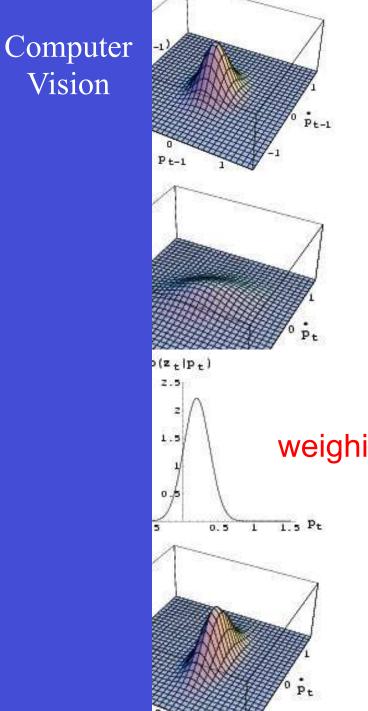
Orcun Goksel, ETH Zurich

Output estimate of state

Steps of Tracking



- Recap: Particle filtering
 - Tracking can be seen as the process of propagating the posterior distribution of state given measurements across time.



Particle Filter

 $p(p_{t-1}, \dot{p}_{t-1} | z_{t-1})$

prediction

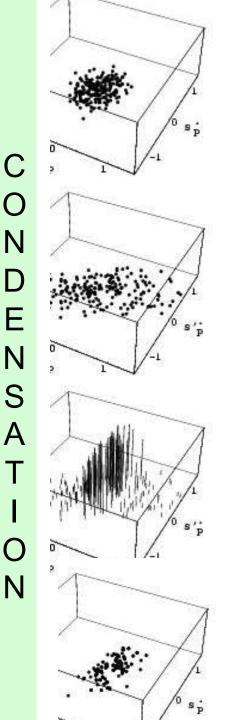
 $p(p_t, \dot{p}_t | z_{t-1})$

weighing with $p(z_t | p_t)$

update

 $p(p_t, \dot{p}_t | z_t)$

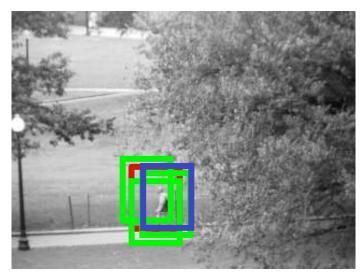
Joksel, ETH Zurich



Traditional/Simple Tracking

t=1

initialization



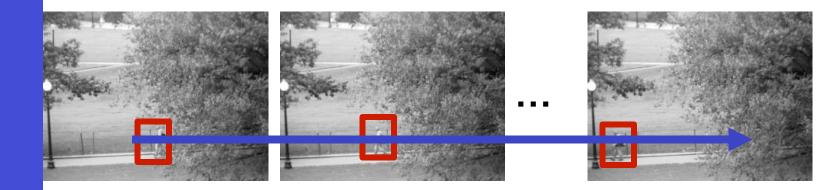
t=2

position in prev. frame

candidate new positions (e.g., dynamics)

best new position (e.g., max color similarity)

Tracking-by-Detection



detect object(s) independently in each frame

associate detections over time into tracks

Outline

- Region Tracking
- Region Tracking
 Point Tracking
 Template Tracking
 - Tracking-by-Detection
 - of a specific target
 - of the object class
- Model Model-based Body Articulation
 - On-line Learning
 - Misc (preventing drift, context, issues)

Region Tracking (and Mean Shift Algorithm)

Background Modeling

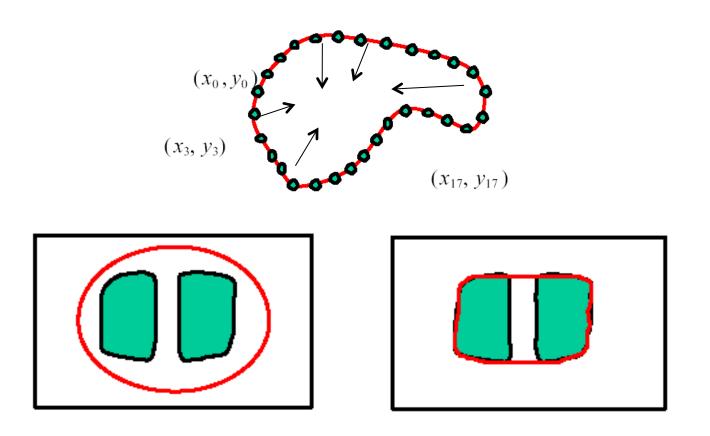
Input

Background Model

Moving Foreground Blobs (Objects)

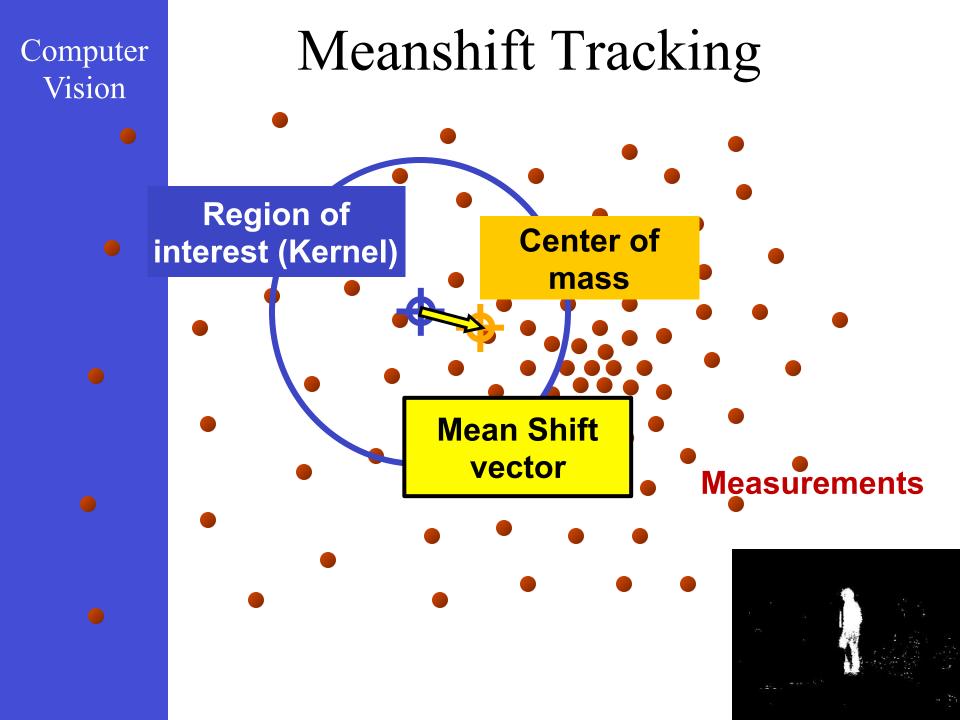
Deformable models

• One option: Fit deformable curves

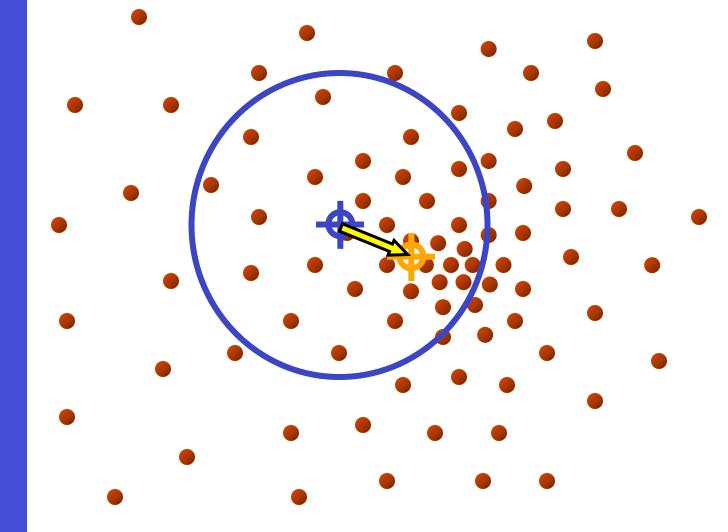


Mean Shift Tracking

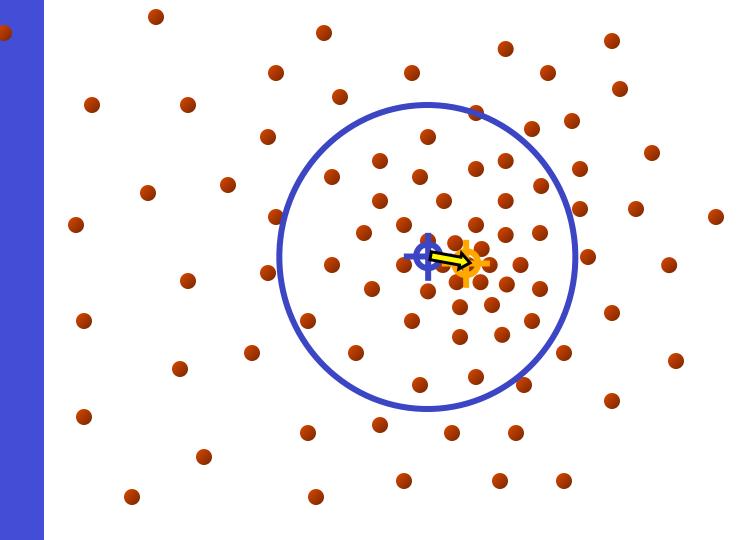
- The mean shift tracker tracks a region, with a prescribed (color) distribution
- The similarity between the tracked region and the target region is maximized, through evolution towards higher density in a parameter space
- [Comaniciu and Meer, ICCV'99]
 - Typically this search only takes a few iterations



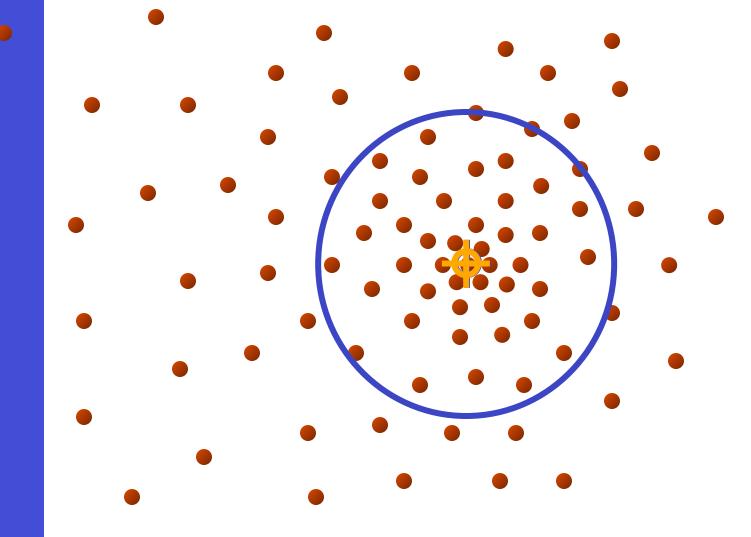
Intuitive Description

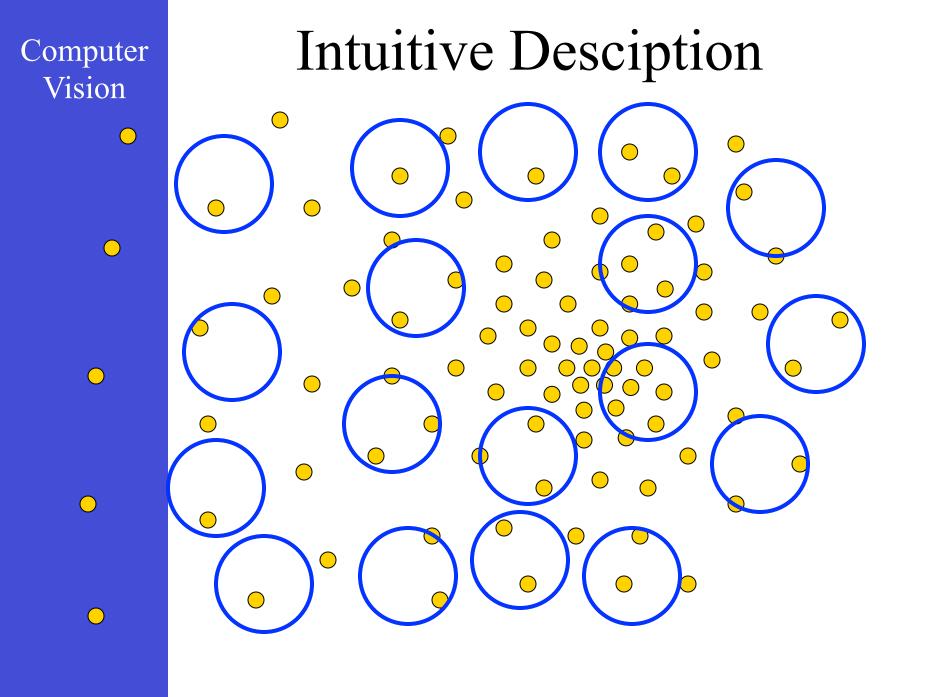


Intuitive Description



Intuitive Description





Example: Safety Monitoring

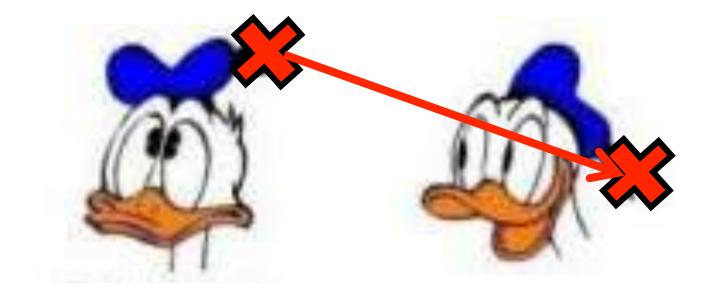
Outline

- Region Tracking

- Region Tracking
 Point Tracking
 Template Tracking
 - Tracking-by-Detection
 - of a specific target
 - of the object class
- Model Model-based Body Articulation
 - On-line Learning
 - Misc (preventing drift, context, issues)

Point Tracking (and Aperture Problem)

Estimate Optimal Transformation

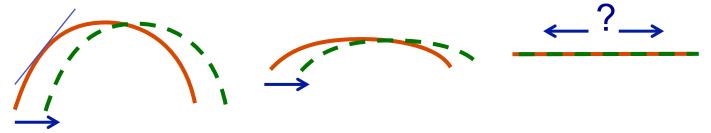


When can we estimate motion?

Q1. Which direction is the pattern behind the circular hole moving?

a)
$$(b) \leftarrow c) (d)?$$

Q2. 1D motion: We cannot determine the direction of motion from red to green line on the right. Why not?



Q3. Any similarity/connection between Q1 & Q2?

Sum of Squared Differences Computer Vision $I_0(x)$ $I_1(x) =$ $I_0(x+h)$ h

$E(h) = [I_0(x+h) - I_1(x)]^2$

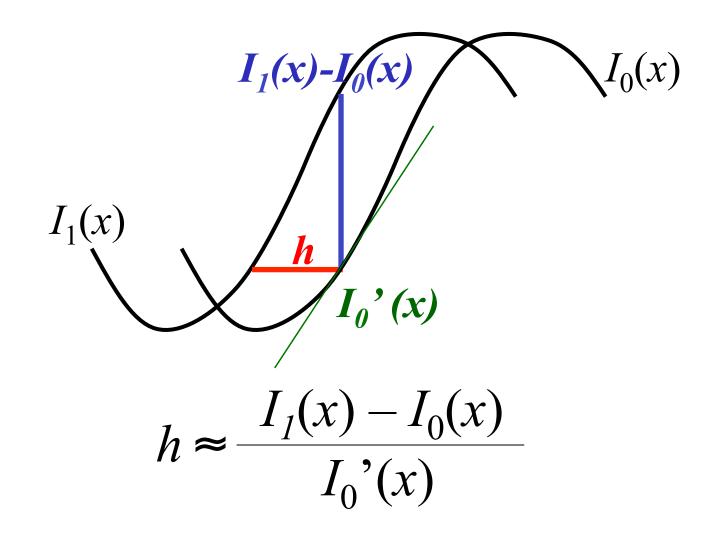
Displacement

$$E(h) = [I_0(x+h) - I_1(x)]^2$$
$$E(h) \approx [I_0(x) + hI_0'(x) - I_1(x)]^2$$

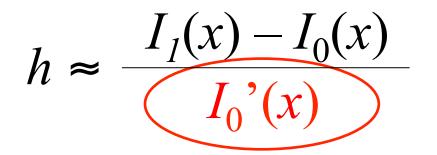
 $\frac{\partial E}{\partial h} \approx 2 I_0'(x) \left[I_0(x) + h I_0'(x) - I_1(x) \right] = 0$

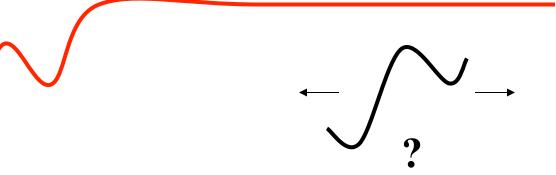
 $h \approx \frac{I_1(x) - I_0(x)}{I_0'(x)}$

Intuition



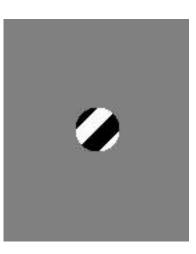
Problem 1: Zero Gradient



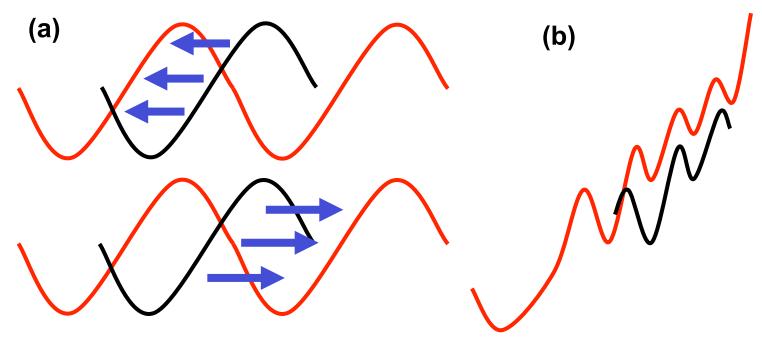


Problem 1: "Aperture problem"

- Tracking needs gradients in all possible directions to be well defined
- If no gradient along one direction, we cannot determine relative motion in that axis

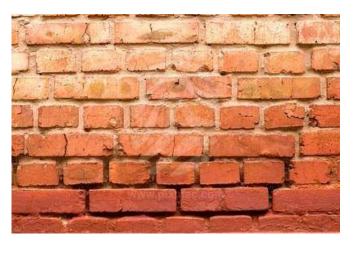


Problem 2: Local Minima

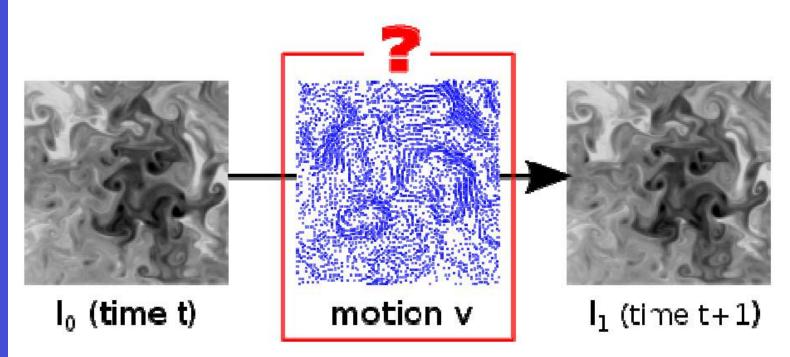


- Motion to closest minimum has to be assumed
- Indirect result: Frame-rate should be faster than motion of half-wavelength (Nyquist rate)
- Nonconvex regions may indicate multiple sols

Problem 2: Local Minima



Recall: Optical Flow



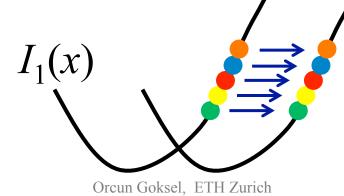
- OF recovers (smooth) motion everywhere
- Least-squares regularization: Horn-Schunk makes smooth spatial change assumption
- In contrast, tracking seeks a single motion!

Recall: Optical Flow Computer Vision $I_x u + I_y v + I_t = 0$ $I_x = \frac{\partial I}{\partial x}, \quad I_y = \frac{\partial I}{\partial y}, \quad I_t = \frac{\partial I}{\partial t}$ $u = \frac{dx}{dt}, \quad v = \frac{dy}{dt}$

1 equation in **2** unknowns

Treating Aperture Problem in Tracking

- Get additional info to constrain motion:
 - OF: Smoothly regularize in space
 - Tracking: Assume single motion for a region
- Spatial coherence constraint: "A pixel's neighbours $I_0(x)$ all move together"



Least Squares Problem: Single motion with multiple equations

$$\begin{bmatrix} I_x(\mathbf{p_1}) & I_y(\mathbf{p_1}) \\ I_x(\mathbf{p_2}) & I_y(\mathbf{p_2}) \\ \vdots & \vdots \\ I_x(\mathbf{p_{25}}) & I_y(\mathbf{p_{25}}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p_1}) \\ I_t(\mathbf{p_2}) \\ \vdots \\ I_t(\mathbf{p_{25}}) \end{bmatrix}$$

Over determined System of Equations

Pseudo Inverse

 $A \quad d = b$ 25x2 2x1 25x1

 $(A^T A) \begin{array}{c} d = A^T b \\ 2 \times 2 \end{array} \begin{array}{c} 2 \times 1 \end{array} \begin{array}{c} 2 \times 1 \end{array}$

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$

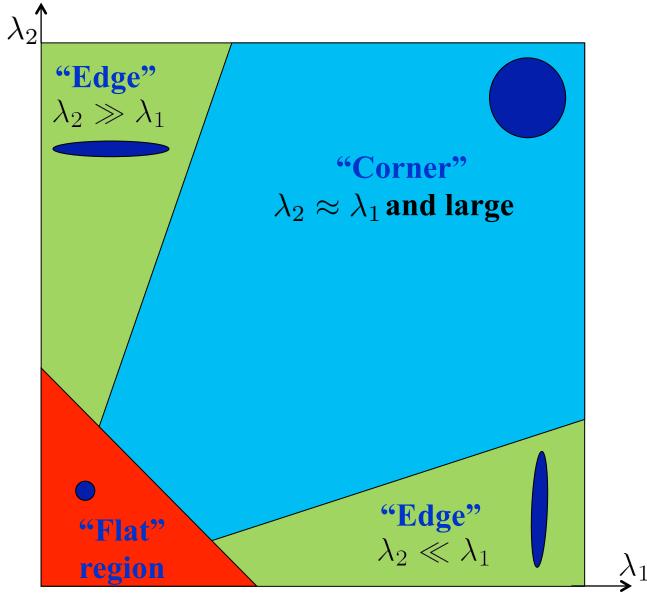
Eigenvectors of A^TA

$$A^{T}A = \begin{bmatrix} \sum I_{x}I_{x} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & \sum I_{y}I_{y} \end{bmatrix} = \sum \begin{bmatrix} I_{x} \\ I_{y} \end{bmatrix} [I_{x} I_{y}] = \sum \nabla I(\nabla I)^{T}$$

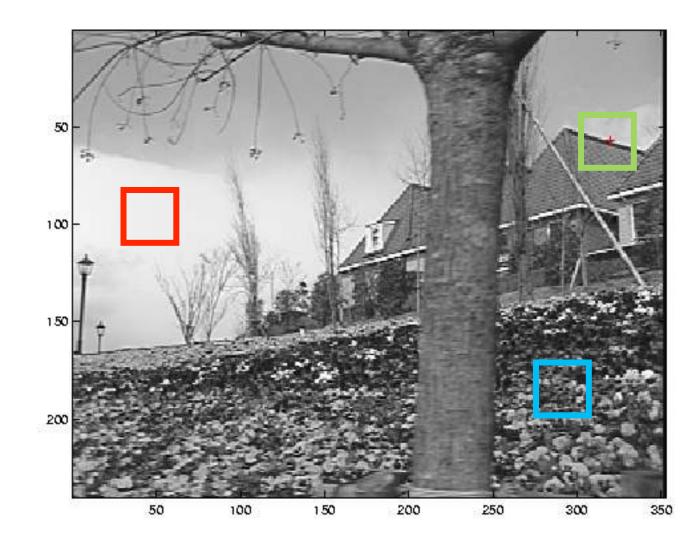
• Haven't we seen an equation like this before?

- Recall Harris corner detector!
- Thus, "good image features are also good for tracking"

Interpreting the Eigenvalues



Samples: Edge / Low Texture / High Texture



Example

Outline

- Region Tracking
- Region Tracking
 Point Tracking
 Template Tracking
 - Tracking-by-Detection
 - of a specific target
 - of the object class
- Model Model-based Body Articulation
 - On-line Learning
 - Misc (preventing drift, context, issues)

Template Tracking

Lucas-Kanade Template Tracker

- Lucas-Kanade is typically for small patches, e.g. 5x5
- Why not run it for the entire object (for a larger window)

• Locally, translation is sufficient to explain motion; but...

Lucas-Kanade Template Tracker

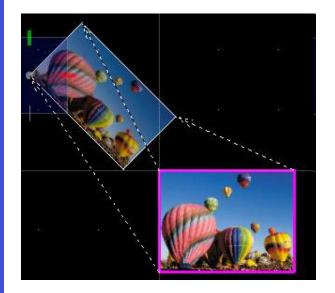
• Motion is more complex in a larger window

• Nonetheless, we can easily generalize the motion model to other parametric models! e.g., translation, affine, projective, "warp"

$$E(u, v) = \sum_{x, y} [I(x + u, y + v) - T(x, y)]^2$$
$$E(u, v) = \sum_{x, y} [I(W(x; p)) - T(x, y)]^2$$

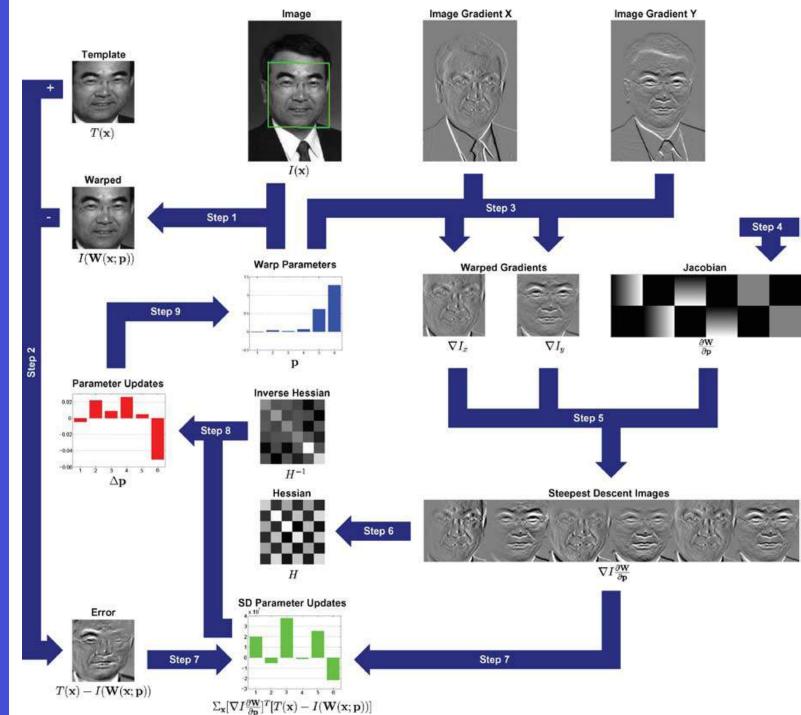
Lucas-Kanade Template Tracker

- From Points to templates
- Estimate "optimal" warp W



$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x};\mathbf{p})) - T(\mathbf{x})]^2$$
$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x};\mathbf{p} + \Delta \mathbf{p})) - T(\mathbf{x})]^2$$

Lucas-Kanade Framework] 04 IJCV' ng fγi Uni Matthews, K СО B Я [Baker 20 Yea1



Lucas-Kanade Template Tracker

Step 1. Warp I to obtain I(W([x y]; P))

Step 2. Compute the error image T(x) - I(W([x y]; P))

Step 3. Warp the gradient ∇I with W([x y]; P)

Step 4. Evaluate $\frac{\partial W}{\partial P}$ at ([x y]; P) (Jacobian)

Step 5. Compute steepest descent images $\nabla I \frac{\partial W}{\partial P}$

Step 6. Compute Hessian matrix $\sum (\nabla I \frac{\partial W}{\partial P})^T (\nabla I \frac{\partial W}{\partial P})$ Step 7. Compute $\sum (\nabla I \frac{\partial W}{\partial P})^T (\nabla I \frac{\partial W}{\partial P})$

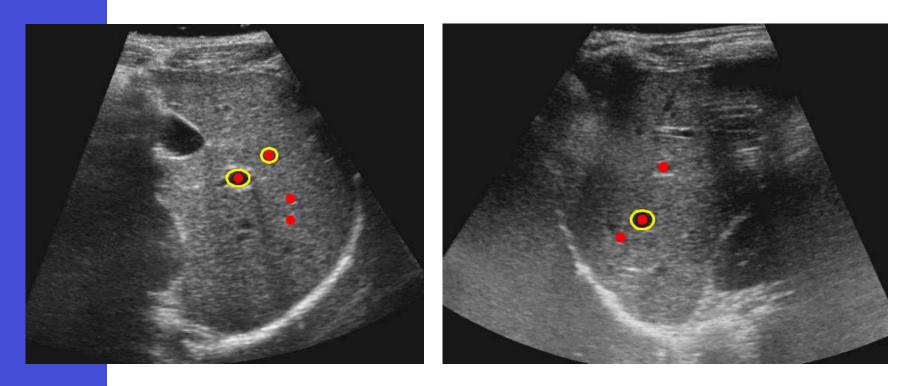
Step 7. Compute $\sum (\nabla I \frac{\partial W}{\partial P})^T (T(x, y) - I(W([x, y]; P)))$

Step 8. Compute ΔP

Step 9. Update $P \leftarrow P + \Delta P$

Example

Example: Tracking Liver in Ultrasound



Our trackingManual annotation

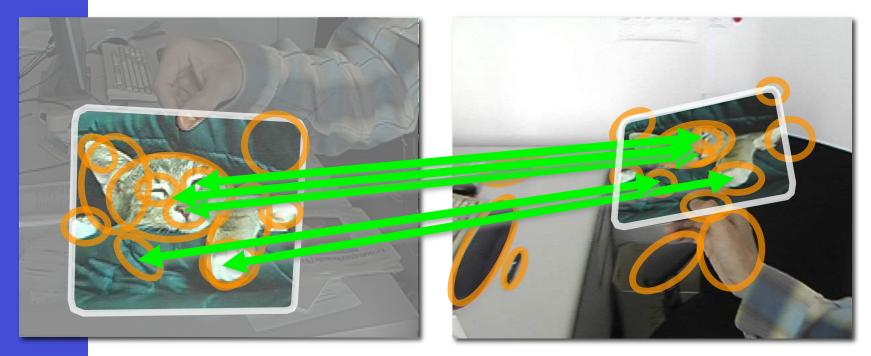
Outline

- Region Tracking
- Region Tracking
 Point Tracking
 Template Tracking
 - Tracking-by-Detection
 - of a specific target

- of the object class
- Model Model-based Body Articulation
 - On-line Learning
 - Misc (preventing drift, context, issues)

Tracking by Detection(of a specific target)

3D Object Detection



Reference image(s) of the object to detect

Test image

3D Object Detection

MathWorks

Reference image(s) of the object to detect

Test image

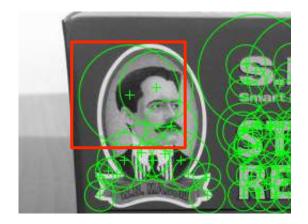
1. Detect Keypoints

- invariant to scale, rotation, or perspective

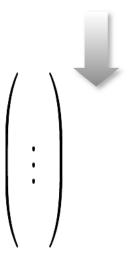
100 strongest feature points in the reference image

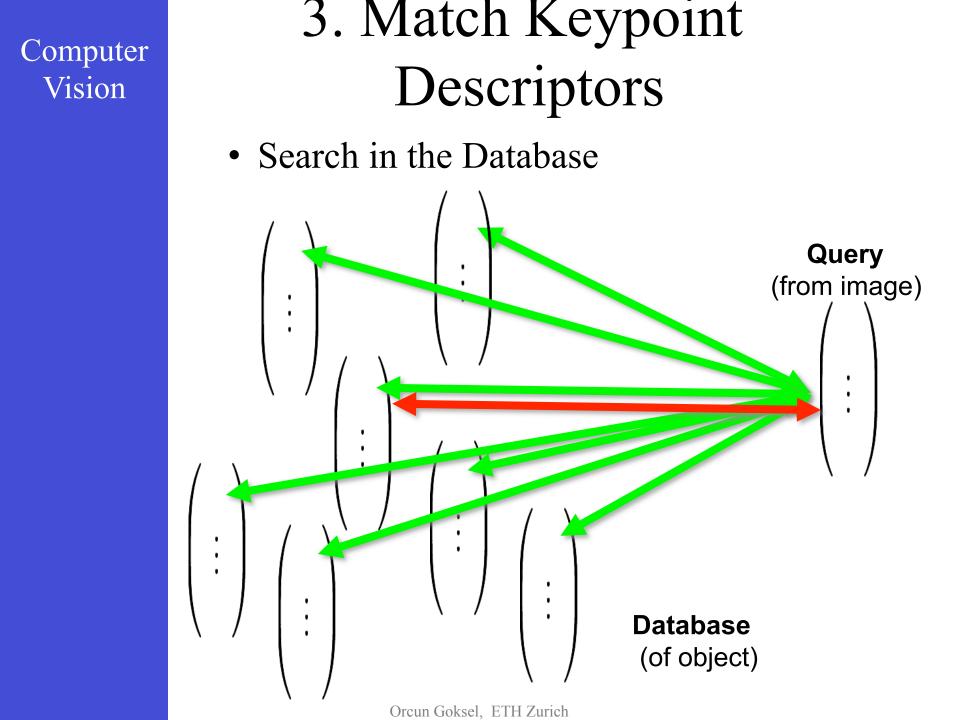
300 strongest feature points in the test image

2. Build Feature Descriptors

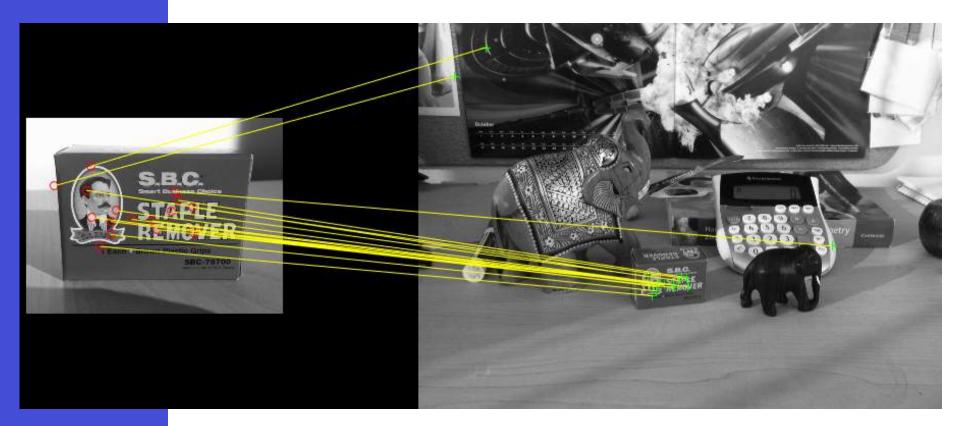


:

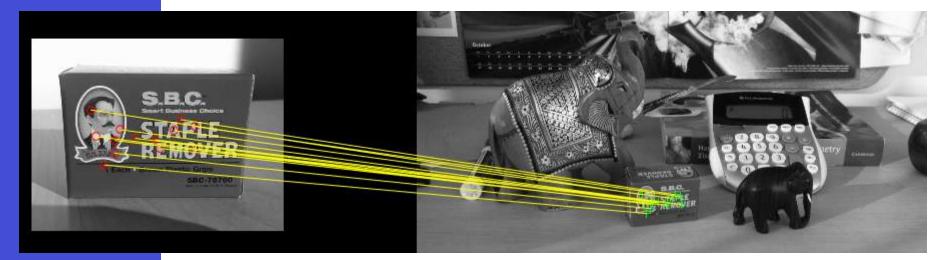




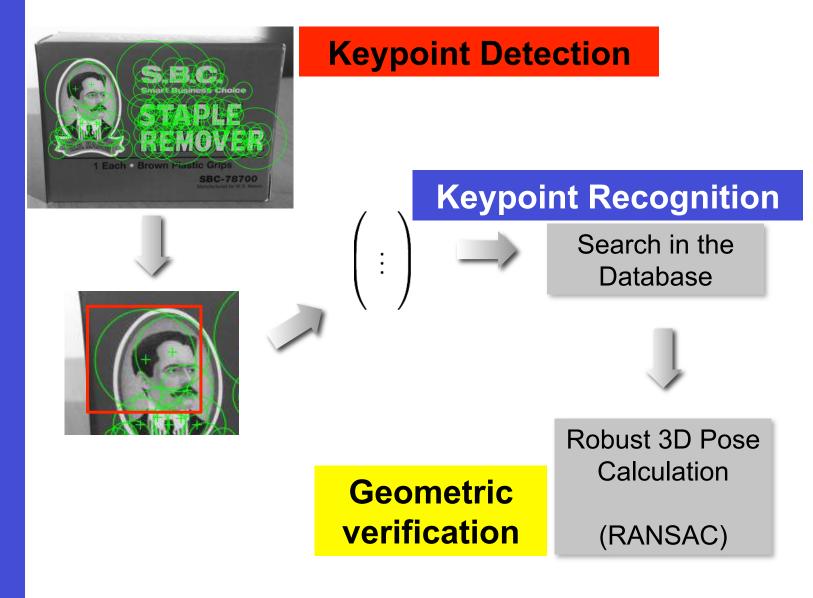
3. Search in the Database

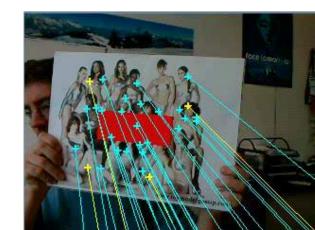


4. Outlier Elimination

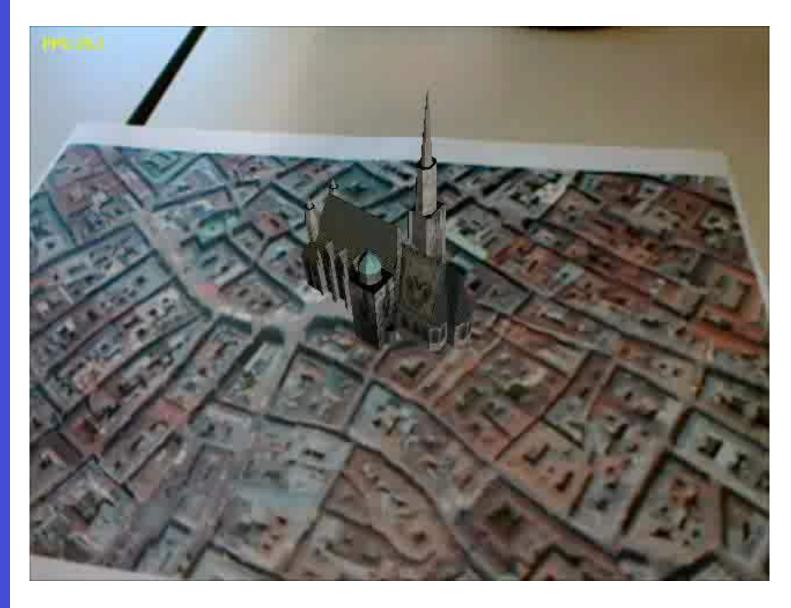


Summary





Overall: 3.42 ms Find Pts: 1.25 ms Track Pts: 0.32 ms Features: 1.16 ms Outliers: 0.50 ms Pose: 0.19 ms Corners: 166 Matched Features: 29 Wrong Rotation: 0 Bad Linetest: 0 Bad Homographytest: 0 Correct: 29 From Cache: 0 From ActiveSearch: 20 Levels: 000000000 Rotation: 6 Avg. Reproj. Err: 1.31



Outline

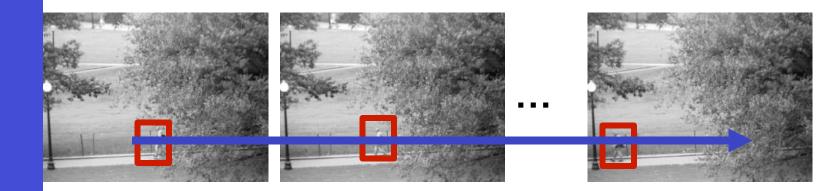
- Region Tracking
- Region Tracking
 Point Tracking
 Template Tracking
 - Tracking-by-Detection
 - of a specific target
 - of the object class

- Model Model-based Body Articulation
 - On-line Learning
 - Misc (preventing drift, context, issues)

Tracking by Detection(of the object class)

"Multiple Object Tracking"

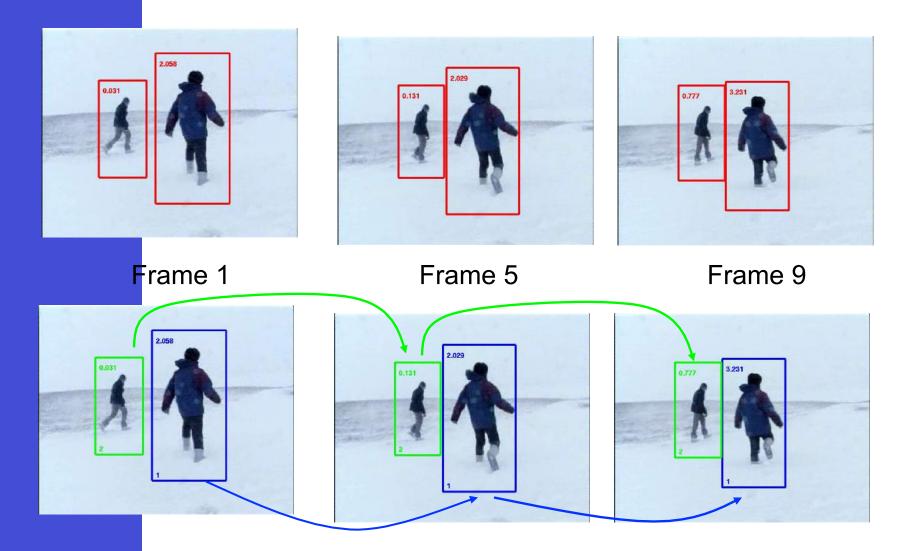
Tracking-by-Detection



detect object(s) independently in each frame

associate detections over time into tracks

Multiple Objects



Examples: Multiple Object Tracking

How to get the detections?

Background

Orcun Goksel, ETH Zurich

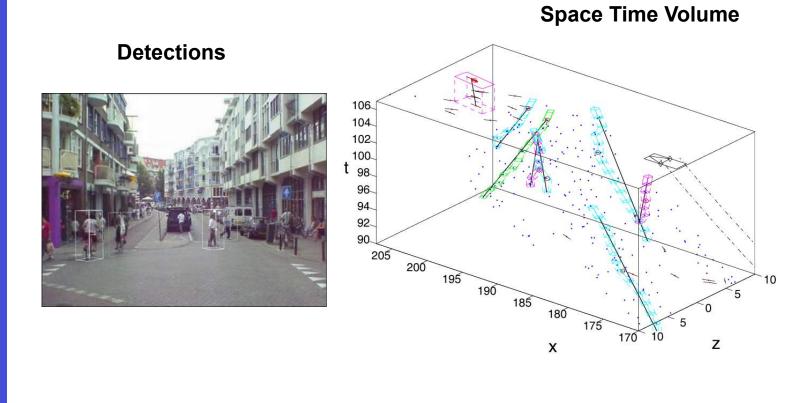
Supervised Learning

(Support Vector Machines, Random Forests, Neural Networks, ...)

Using the classifier

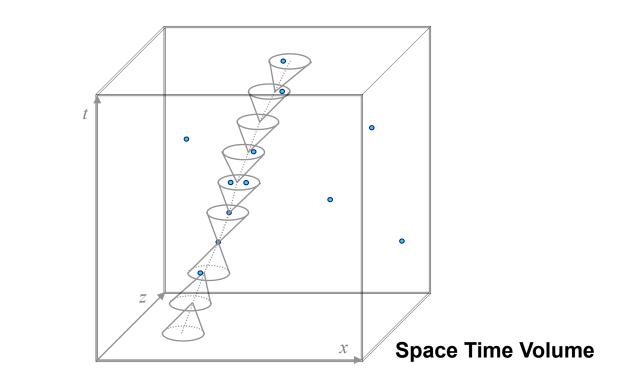
Space-Time Analysis

• Collect detections in space-time volume



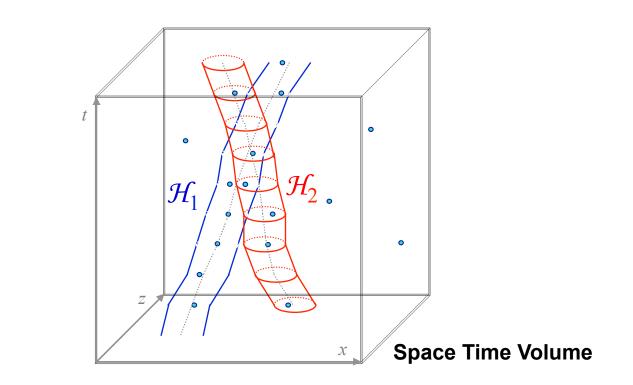
Trajectory Estimation

• Trajectory growing and selection



Trajectory Estimation

• Trajectory growing and selection

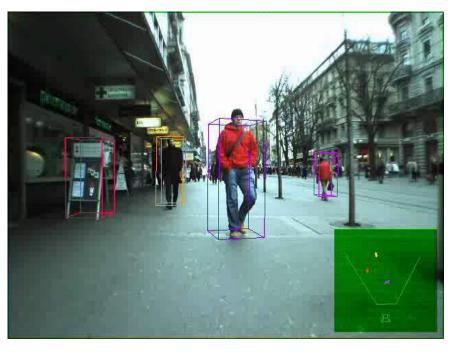


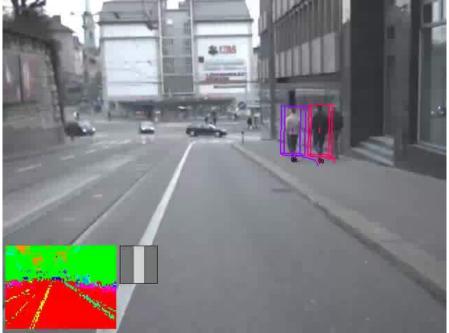
Driving

Input (Object Detections)

"Tracking" Result

[Ess et al. CVPR'08]





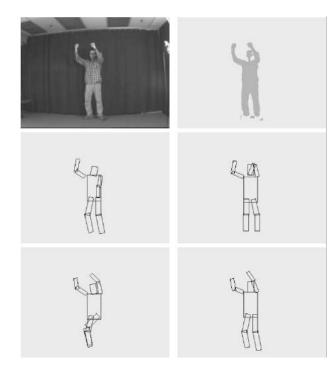
Outline

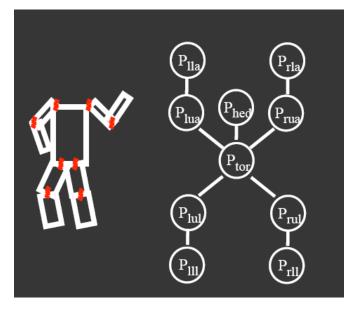
- Region Tracking (and Mean Shift Algorithm)
- Point Tracking (and Aperture Problem)
 Template Tracking (Lucas-Kanade)
 - - Tracking-by-Detection
 - a specific target (e.g., keypoints + Ransac)
 - object class (multiple object tracking)
- a r
 object class (multiple - ,
 Model-based Body Articulation

 - Misc (preventing drift, context, issues)

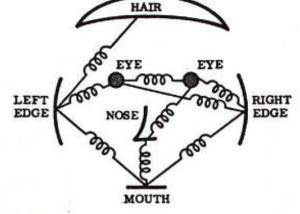
Model based Tracking

Articulated Tracking: Part-Based Models



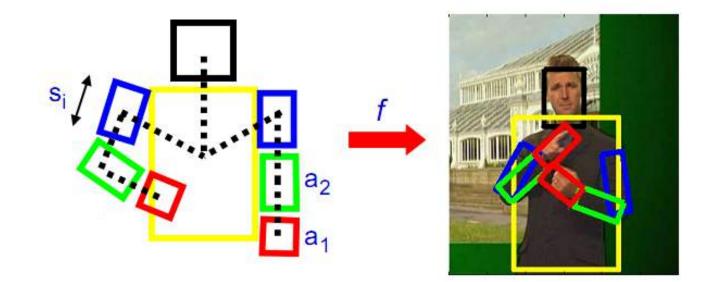


- Intuitive model of an object
- Model has two components
 - 1. parts (2D image fragments)
 - 2. structure (configuration of parts)
- Dates back to Fischler & Elschlager 1973



Parts-based analysis

Objective: detect human and determine upper body pose (layout)

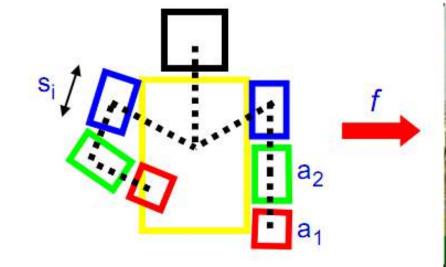


Model as a graph labelling problem

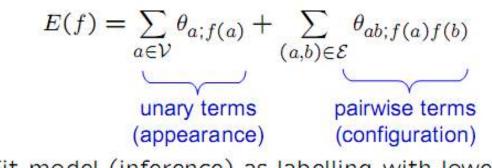
- Vertices \mathcal{V} are parts, $a_i, i = 1, \cdots, n$
- Edges \mathcal{E} are pairwise linkages between parts
- For each part there are h possible poses $\mathbf{p}_j = (x_j, y_j, \phi_j, s_j)$
- Label each part by its pose: $f: \mathcal{V} \longrightarrow \{1, \dots, h\}$, i.e. part a takes pose $p_{f(a)}$.

Parts-based analysis

Pictorial structure model – CRF



• Each labelling has an energy (cost):



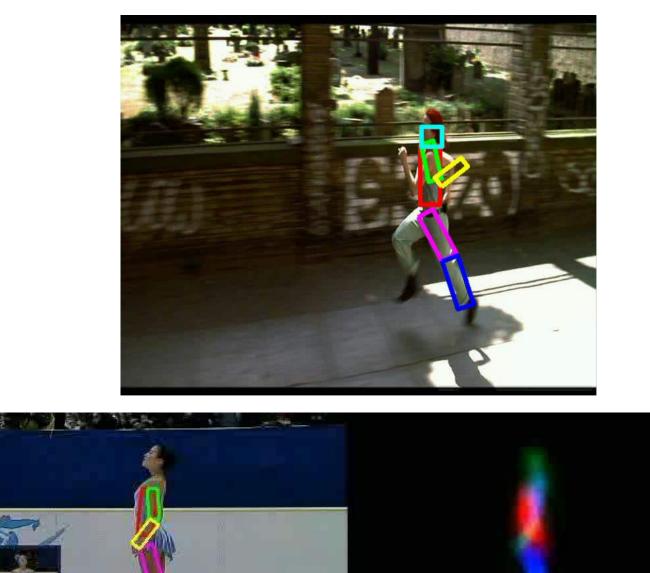
Features for unary:

- colour
- HOG

for limbs/torso

• Fit model (inference) as labelling with lowest energy

Orcun Goksel, ETH Zurich



[Ramanan et al. CVPR'05]

Orcun Goksel, ETH Zurich

COLO.

Q

Walking

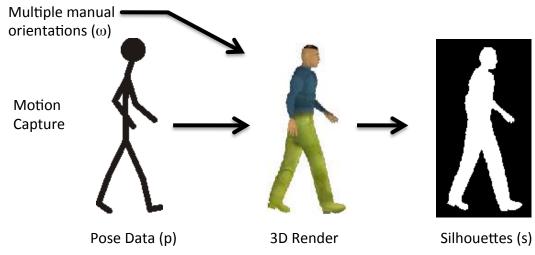
• What temporal info can we use for tracking?

• What variation would we expect in population?

Articulation Space

Tracking Articulated Motion as High-Dimensional Inference

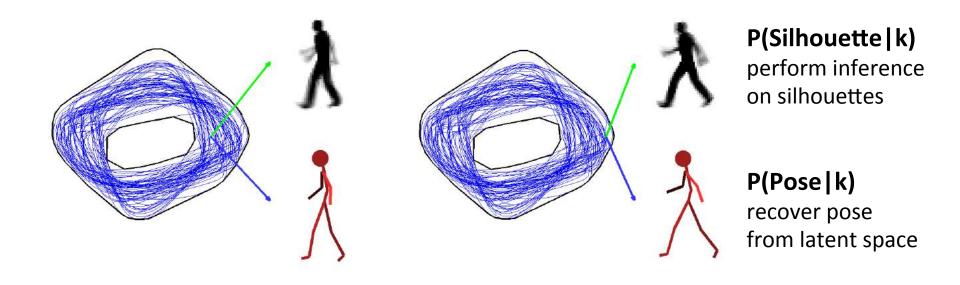
- Walking cycles have one main (periodic) DOF
- Regressors to learn this (latent) space, and its variation (Gaussian Process regression, PCA, etc)
- (Pose,Silhouette) training data can be obtained by 3D rendering



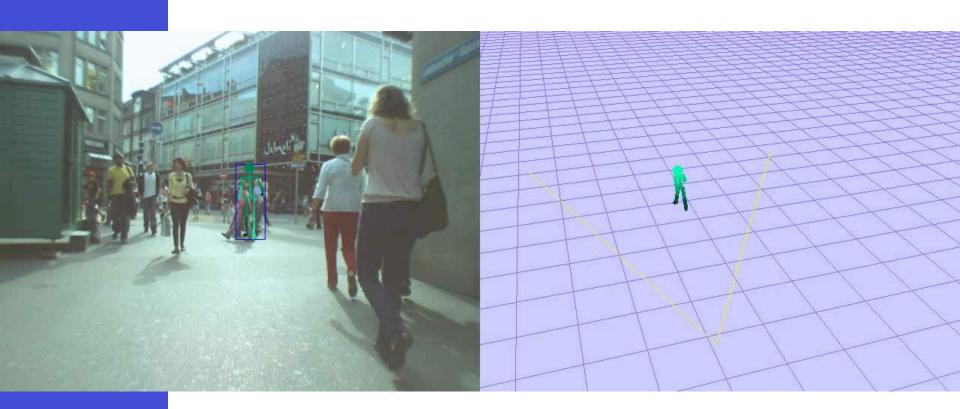
Articulation Space

Tracking Articulated Motion as High-Dimensional Inference

- Walking cycles have one main (periodic) DOF
- Regressors to learn this (latent) space, and its variation (Gaussian Process regression, PCA, etc)
- (Pose,Silhouette) training data can be obtained by 3D rendering



Articulation Space Tracking



Outline

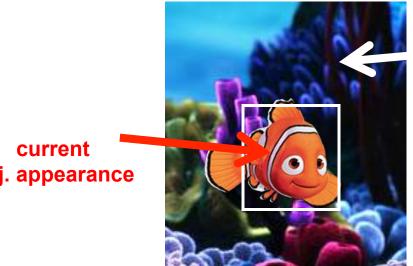
- Region Tracking (and Mean Shift Algorithm)
- Point Tracking (and Aperture Problem)
 Template Tracking (Lucas-Kanade)
 - - Tracking-by-Detection
 - a specific target (e.g., keypoints + Ransac)
 - object class (multiple object tracking)
- a r
 object class (multiple - ,
 Model-based Body Articulation

 - Misc (preventing drift, context, issues)

Tracking as On-line learning (updating tracking models)

Tracking as Classification

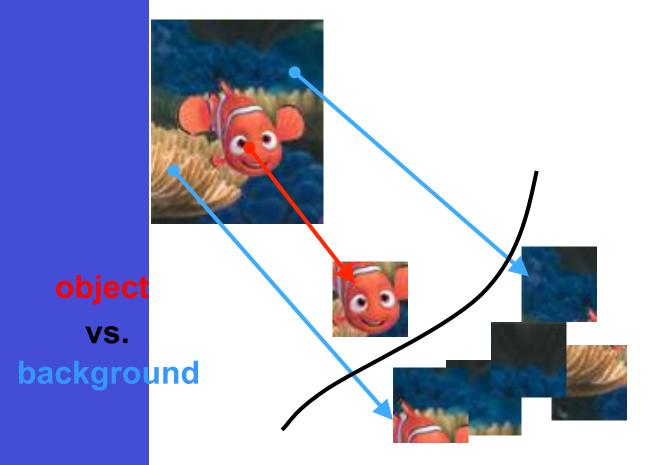
Learning current object appearance vs. local • background.



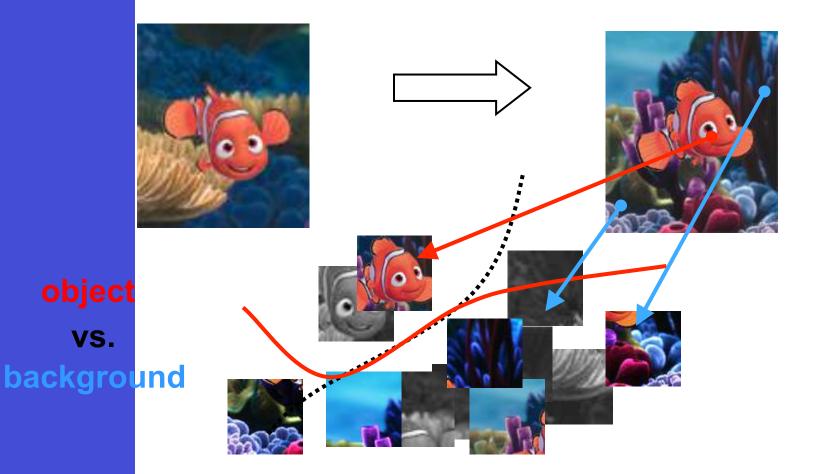
current background

obj. appearance

Tracking as Classification

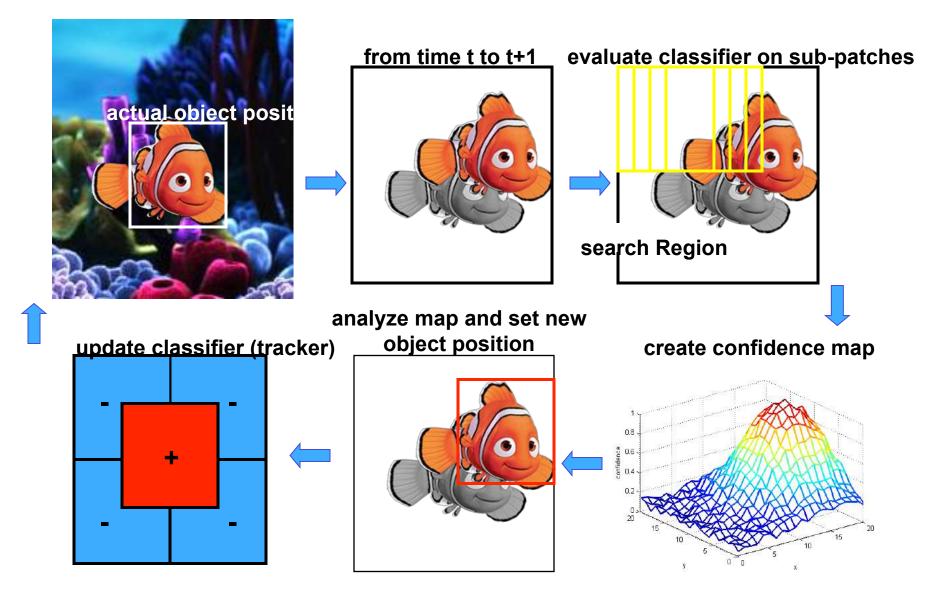


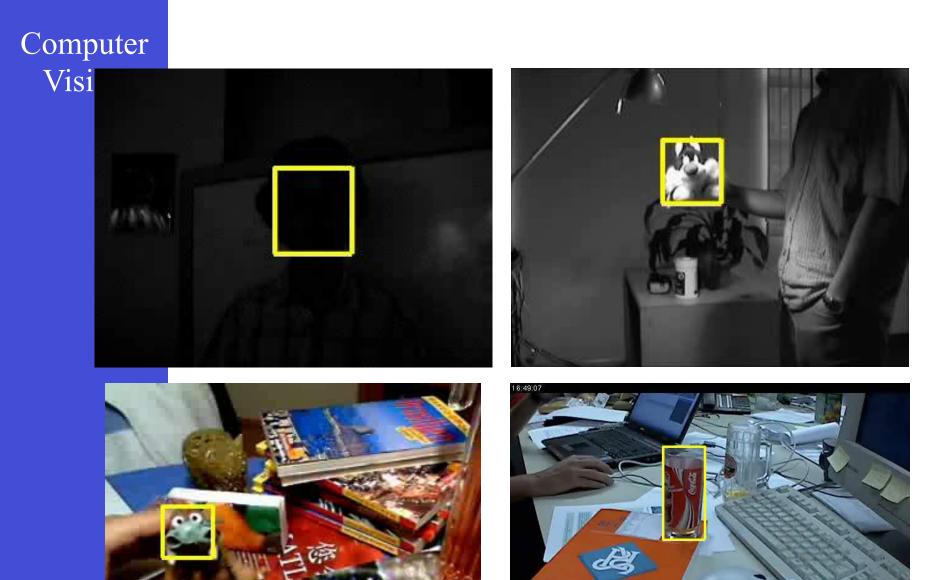
Tracking as Classification



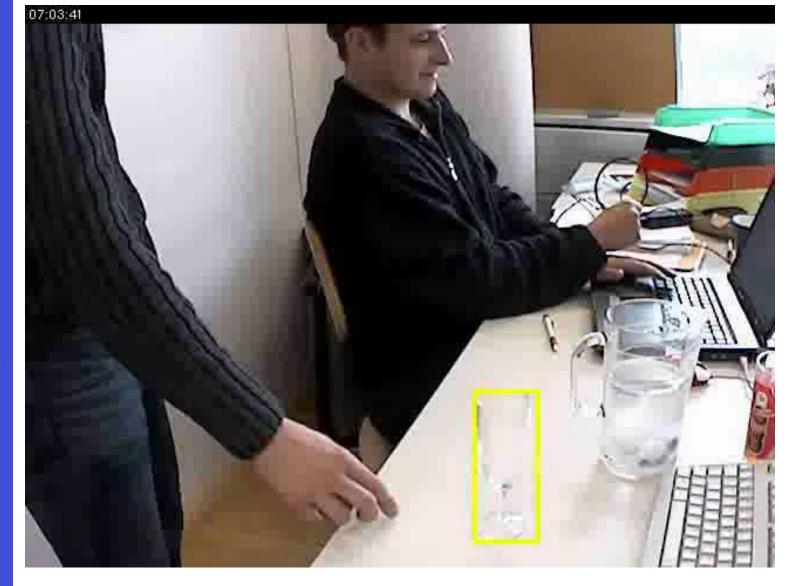
Computer

Tracking Loop

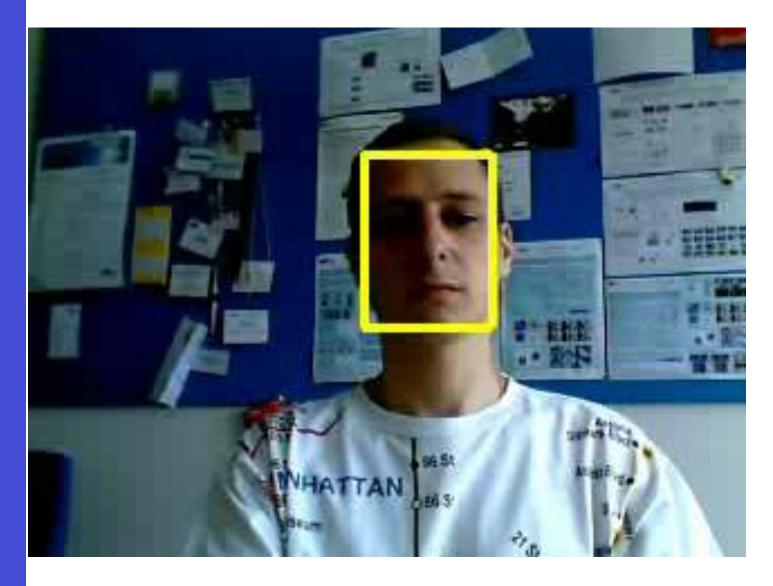




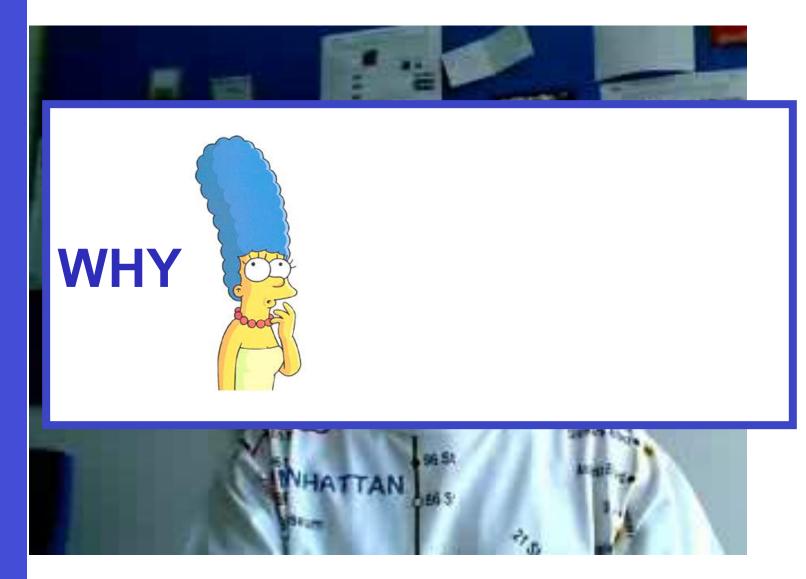
"Tracking the Invisible"



When does it fail...



When does it fail...



actual object pos

update

elassifier

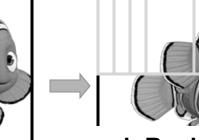
(tracker)

from time t to t+1

analyze map and

set new object

position.



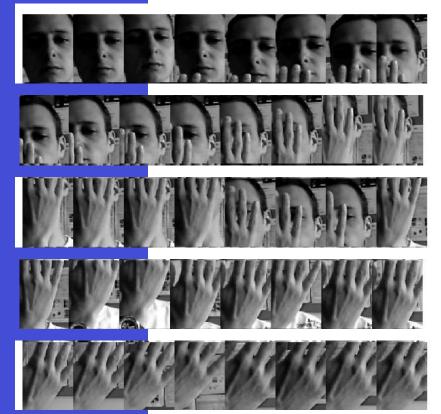
search Region

create confidence map

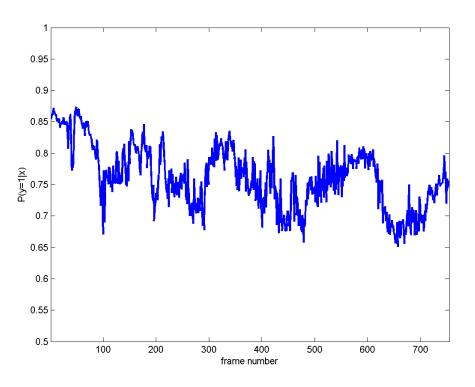
Self-learning!

Drift

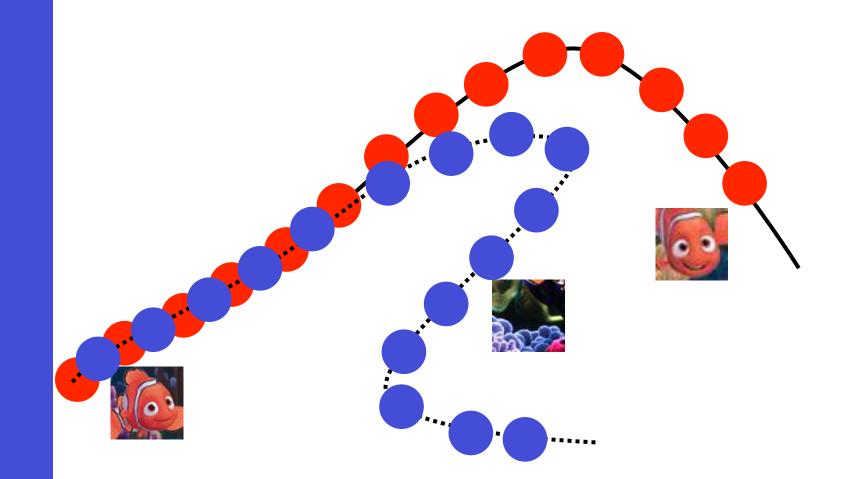
Tracked Patches



Confidence



Drift



Outline

- Region Tracking (and Mean Shift Algorithm)
- Point Tracking (and Aperture Problem)
 Template Tracking (Lucas-Kanade)
 - - Tracking-by-Detection
 - a specific target (e.g., keypoints + Ransac)
 - object class (multiple object tracking)
- a r
 object class (multiple - ,
 Model-based Body Articulation

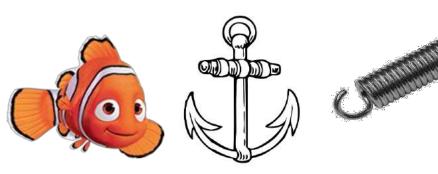
 - Misc (preventing drift, context, issues)

> Combining Tracking and Detection (to avoid drift)

Refining an object model

- Only thing we are sure about the object is its initial model (e.g. appearance in first frame)
- We can "anchor" / correct our model with that
- This can limit drift

Current Model



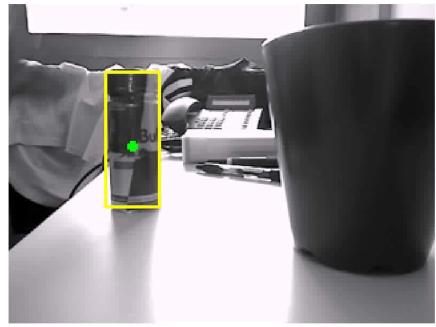
Fix (initial) Model

Recover from Drift using a fixed/anchor model (e.g. first frame)

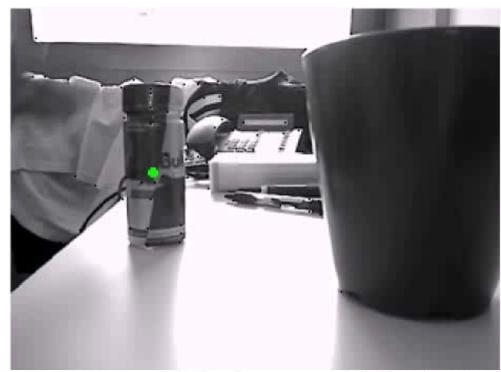
Context in Tracking

Humans use context to track

- ... objects which change there appearance very quickly.
- ... occluded objects or object outside the image.
- ... small and/or low textured objects or even "virtual points".



Using Supporters



Assumptions should hold

With Supporters

Problems in Tracking

Tracking Issues

• Initialization

Time t = 0

Tracking Issues

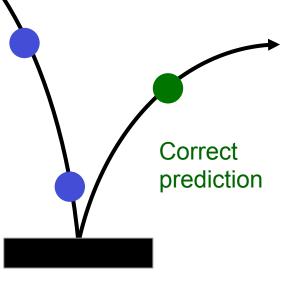
- Obtaining observation...
 - <u>Generative</u>: "render" the state on top of the image and compare
 - <u>Discriminative</u>: classifier or detector score
- ...and dynamics model
 - specify using domain knowledge
 - learn (very difficult)

Tracking Issues

• Model- vs. Model-free-Tracking

Tracking Issues

- Nonlinear dynamics
 - Sometimes needed to keep multiple trackers in parallel
 - E.g., for abrupt
 direction changes
 (,,Persons")



Wrong prediction

Tracking Issues

- Prediction vs. Correction (cf. Kalman Filtering)
 - If the <u>dynamics</u> model is <u>too strong</u>, tracking will end up <u>ignoring the data</u>.
 - If the <u>observation</u> model is <u>too strong</u>, tracking is <u>reduced to repeated detection</u>.

08.10.2009

<< Rudolf Kalman, ETH-Zurich emeritus professor of mathematics, is awarded the National Medal of Science by Barack Obama – one of the highest accolades for researchers in the USA.

In January 2008, Hungarian-born Kalman received the Charles Draper Prize, which is regarded as the "Nobel Prize" of the engineering world. >>

http://www.ethlife.ethz.ch/archive_articles/091008_kalman_per/index

Tracking Issues

- Data Association Multiple Object Tracking
 - What if we don't know which measurements to associate with which tracks?

Tracking Issues

 Data Association – Occlusions / Self Occlusions

Tracking Issues

• Data Association – Fast Motion

Tracking Issues

- Data Association Background / Appearance Change – Cluttered Background
 - Changes in shape, orientation, color,...

Tracking Issues

- Drift
 - Errors caused by dynamical model, observation model, and data association tend to accumulate over time

Summary

- Region Tracking (and Mean Shift Algorithm)
- Point Tracking (and Aperture Problem)
 Template Tracking (Lucas-Kanade)
 - Tracking-by-Detection
 - a specific target (e.g., keypoints + Ransac)
 - object class (multiple object tracking)
- Model Model-based Body Articulation
 - On-line Learning
 - Misc (preventing drift, context, issues)

Let's apply

Q. What tracking method would you use in each following application scenario?What limitations you may expect?Task: "Discuss one (or more) in groups"

<u>App1. Safety:</u> In a lumbar mill, you wish to use CV to stop the blade if a hand reaches nearby. <u>App2. Medical:</u> You wish to track the motion of an ultrasound probe, to relate images in space. <u>App3. Autonomous driving:</u> Tracking other nearby vehicles to adjust speed and course <u>AppX.</u> Your favorite tracking app