3D
 acquisition

Computer Vision

3D acquisition taxonomy

Computer Vision

3D acquisition taxonomy

Computer Vision

Stereo

The underlying principle is "triangulation" :

(Passive) stereo

Simple configuration :

Computer Vision

A simple stereo setup

\square identical cameras
coplanar image planes
\square aligned x-axes

Computer Vision

A simple stereo setup

Reminder :

the camera projection can be formulated as
$\rho p=K R^{t}(P-C)$
for some non-zero $\rho \in \mathbb{R}$
Here R is the identity...

Computer Vision

A simple stereo setup

$$
\rho\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=K\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)\left|\rho^{\prime}\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right)=K\left(\begin{array}{l}
X-b \\
Y \\
Z
\end{array}\right)\right| K=\left(\begin{array}{ccc}
f k_{x} 0 & 0 \\
0 & f k_{y} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Computer Vision

A simple stereo setup

$$
\left\{\begin{array} { l }
{ x = \frac { f k _ { x } X } { Z } , } \\
{ y = \frac { f k _ { y } Y } { Z } , }
\end{array} \text { and } \left\{\begin{array}{l}
x^{\prime}=\frac{f k_{x}(X-b)}{Z}, \\
y^{\prime}=\frac{f k_{y} Y}{Z},
\end{array}\right.\right.
$$

Note that $y=y^{\prime}$

Computer Vision

A simple stereo setup

The 3D coordinates of the point are

$$
\begin{aligned}
X & =b \frac{x}{\left(x-x^{\prime}\right)} \\
Y & =b \frac{k_{x}}{k_{y}} \frac{y}{\left(x-x^{\prime}\right)} \\
Z & =b k_{x} \frac{f}{\left(x-x^{\prime}\right)}
\end{aligned}
$$

$\left(x-x^{\prime}\right)$ is the so-called disparity
Stereo is imprecise for far away objects, but increasing b and/or f can increase depth resolution

Computer Vision

A simple stereo setup

Notice: for this simple setup, same disparity means same depth

Computer Vision
same disparity means same depth

Computer Vision

A simple stereo setup

Increasing b increases depth resolution

one has to strike a balance with visibility...

Computer Vision

A simple stereo setup

Increasing f increases depth resolution

one has to strike a balance with visibility...

Computer Vision
 Remarks

\square 1. increasing b and/or f increases depth resolution but reduces simultaneous visibility
\square 2. iso-disparity loci are depth planes, not so for other configurations
\square 3. human stereo vision only works up to $\pm 10 \mathrm{~m}$
$\square 4$. the real problem is finding correspondences

Computer Vision

A simple stereo setup

The HARD problem is finding the correspondences

Notice : no reconstruction for the untextured back wall...

Computer Vision

The HARD problem is finding the correspondences

Notice : no reconstruction for the untextured back wall...

Computer Vision

Computer Vision

Computer Vision

Stereo, the general setup

we start by the relation between the two projections of a point
in the second image the point must be along the projection of the viewing ray for the first camera :

Computer Vision

Stereo, the general setup

We cast this constraint in mathematical expressions :
p and p ' are the two images of P

$$
\begin{aligned}
& \mu p=K R^{t}(P-C) \\
& \rho^{\prime} p^{\prime}=K^{\prime} R^{\prime t}\left(P-C^{\prime}\right)
\end{aligned}
$$

w.r.t. world frame P is on the ray with equation

$$
P=C+\mu R K^{-1} p \quad \text { for some } \mu \in \mathbb{R}
$$

Computer Vision

Stereo, the general setup

so, the ray is given by

$$
P=C+\mu R K^{-1} p \text { for some } \mu \in \mathbb{R}
$$

now we project it onto the second image in general, points project as follows :

$$
\rho_{p}^{\prime} p^{\prime}=K^{\prime} R^{\prime \prime}\left(P-C^{\prime}\right)
$$

and thus, filling in the ray's equation
$\rho^{\prime} p^{\prime}=\mu K^{\prime} R^{\prime t} R K^{-1} p+K^{\prime} R^{\prime t}\left(C-C^{\prime}\right)$

Computer Vision

Stereo, the general setup
the projected ray was found to be
$\rho^{\prime} p^{\prime}=\mu K^{\prime} R^{t} R K^{-1} p+K^{\prime} R^{\prime t}\left(C-C^{\prime}\right)$
the second term is the projection of the 1st camera's center, the so-called epipole

$$
\rho_{e}^{\prime} e^{\prime}=K^{\prime} R^{\prime t}\left(C-C^{\prime}\right)
$$

the first term is the projection of the ray's point at infinity, the so-called vanishing point
finally, adopting the simplifying notation

$$
\begin{aligned}
& A=\frac{1}{\rho_{e}^{\prime}} K^{\prime} R^{\prime t} R K^{-1} \\
& \rho^{\prime} p^{\prime}=\rho_{e}^{\prime}\left(\mu A p+e^{\prime}\right)
\end{aligned}
$$

A is the infinity homography

Computer Vision

Stereo, the general setup

 note that the epipole lies on all the epipolar lines

Computer
Vision

Stereo, the general setup

$$
\rho^{\prime} p^{\prime}=\rho_{e}^{\prime}\left(\mu A p+e^{\prime}\right)
$$

Computer Vision

Stereo, the general setup

$$
\rho^{\prime} p^{\prime}=\rho_{e}^{\prime}\left(\mu A p+e^{\prime}\right)
$$

expresses that p 'lies on the line l 'through the epipole e^{\prime} and the vanishing point $A p$ of the ray of sight of p (in the $2^{n d}$ image)

Computer Vision

Stereo, the general setup

$$
\rho^{\prime} p^{\prime}=\rho_{e}^{\prime}\left(\mu A p+e^{\prime}\right)
$$

the epipolar constraint (epipolar line)
we can rewrite this constraint as

$$
\left|p^{\prime} e^{\prime} A p\right|=p^{\prime \prime}\left(e^{\prime} \times A p\right)=0
$$

Computer Vision

Stereo, the general setup

$$
\left|p^{\prime} e^{\prime} A p\right|=p^{\prime \prime}\left(e^{\prime} \times A p\right)=0
$$

can be written, given

$$
\begin{aligned}
& {\left[e^{\prime}\right]_{\times}=\left(\begin{array}{rrr}
0 & -e_{3}^{\prime} & e_{2}^{\prime} \\
e_{3}^{\prime} & 0 & -e_{1}^{\prime} \\
-e_{2}^{\prime} & e_{1}^{\prime} & 0
\end{array}\right)} \\
& \text { as } \\
& \left|p^{\prime} e^{\prime} A p\right|=p^{\prime t}\left[e^{\prime}\right]_{\times} A p \\
& F=\left[e^{\prime}\right]_{\times} A \text { is the fundamental matrix }
\end{aligned}
$$

F is a 3×3 matrix, but has rank 2

Stereo, the general setup

$$
p^{\prime t}\left[e^{\prime}\right]_{\times} A p=0 \rightarrow p^{\prime t} F p=0
$$

The 3-vector $p^{\prime} t F$ contains the line coordinates of the epipolar line of p^{\prime} (i.e. a line in the 1 st image)

The 3-vector $F p$ contains the line coordinates of the epipolar line of p (i.e. a line in the 2 nd image)

Hence, the epipolar matrix works in both directions

Computer
Vision

Stereo, the general setup

Andrea Fusiello, CVonline

Computer Vision

Epipolar geometry cont'd

Computer
 Epipolar geometry cont'd

 Vision- Epipolar lines are in mutual correspondence

- allows to separate matching problem: matching pts on an epipolar line to pts on the corresponding epipolar line

Computer Vision

Exploiting epipolar geometry

Separate 2D correspondence search problem to 1D search problem by using two view geometry

Computer
Vision

Epipolar geometry cont'd

Stereo, the general setup

\square one point yields one equation $p^{\prime t} F p=0$ that is linear in the entries of the fundamental matrix F
so, we can actually obtain F without any prior knowledge about camera settings if we have sufficient pairs of corresponding points !!
b F can be computed linearly from 8 pairs of corresponding points, i.e. already from 8 'correspondences’ (not 9 , as this is a homogeneous system and one coefficient can be fixed to value 1 to fix the scale !)

- F being rank 2 yields an additional, but non-linear constraint. Thus, 7 correspondences suffice to non-linearly solve for F

Stereo, the general setup

Remarks :

- Of course, in practice one wants to use as many Correspondences as available, e.g. for obtaining a least-squares solution, based on the linear system, followed by a step to impose rank 2.
- Often, F is found through a procedure called RANSAC (RANdom Sample Consensus). It starts from a randomly drawn subset of correspondences of minimal size (e.g. 8), and then keeps on drawing until a subset is found that yields an F so that many correspondences are seen to obey the epipolar constraint. RANSAC is good to fend off against correspondences that are wrong ('outliers')

Relations between 3 views

one could use more than 2 images, e.g. 3 suppose P projects to p, p, and p "
p " is found at the intersection of epipolar lines :
image 1

fails when the epipolar lines coincide

$$
\Rightarrow \quad \text { trifocal constraints }
$$

Computer Vision

Correspondence problem : constraints

Reducing the search space :

- 1. Points on the epipolar line
- 2. Min. and max. depth \Rightarrow line segment
- 3. Preservation of order
- 4. Smoothness of the disparity field

Correspondence problem : methods

1. correlation
deformations...
small window \Rightarrow noise!
\square large window \Rightarrow bad localisation
2. feature-based
\square mainly edges and corners
\square sparse depth image
3. regularisation methods

Computer Vision

Stereo, the general setup

3D reconstruction

$$
\begin{aligned}
& P=C+\mu R K^{-1} p \\
& P=C^{\prime}+\mu^{\prime} R^{\prime} K^{\prime-1} p^{\prime}
\end{aligned}
$$

Yields 6 equations in 5 unknowns $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and μ, μ^{\prime}

However, due to noise and errors, the rays may not intersect!
\Rightarrow e.g. use the middle where the rays come closest

Computer
Vision

Computer Vision

3D city models - ground level

Mobile mapping example - for measuring

Computer
 3D city models - ground level

 VisionCan also be turned into 3D for visualisation, but one needs to stay close to the camera viewpoints.

The example shown is of Quebec

Computer Vision

3D city models - ground level

Computer Vision

Uncalibrated reconstruction

From 2 views...

If the camera translates...
An affine reconstruction can be made A projective reconstruction is always possible (if no pure rot.)

Computer Vision

Uncalibrated reconstruction

From 3 general views taken with the same camera parameters...

Computer Vision

Uncalibrated reconstruction

Computer Vision

Uncalibrated reconstruction

Computer Vision

Uncalibrated reconstruction - example

Univ. of Leuven

Computer
Vision

Shape-from-stills

Input Images

 shots taken with Canon EOS D60(Resolution: 6,3 Megapixel)

Computer Shape-from-stills

www.arc3d.be

Webservice,
free for non-commercial use

Computer Vision

3D acquisition taxonomy

Active triangulation

INTERSECTION LASER RAY AND VIEWING RAY

CAMERA'S CENTER OF PROJECTION

Computer Vision

Active triangulation

CAMERA'S CENTER OF PROJECTION

Computer Vision

Active triangulation

LASER

Two lines do normally not intersect... Noise disrupts triangulation

LASER SPOT SEEN BY THE
CAMERA

NO INTERSECTION YF SOME ERRORS IMTHE LINE EQS!

Active triangulation

INTERSECTION LASER PLANE \& OBJECT SURFACE
LASER WITH CYLINDRICAL LENSE IN FRONT

POINT ON THE LASER LINE SEEN BY THE CAMERA

Active triangulation
 INTERSECTION

 LASER PLANE \& OBJECT SURFACELASER WITH CYLINDRICAL LENSE IN FRONT

A plane and a line do normally intersect...
Noise has little Influence on the triangulation

POINT ON THE LASER LINE SEEN BY THE CAMERA

CAMERA'S CENTER OF PROJECTION

Computer Vision

Active triangulation

Computer Vision

Active triangulation

Triangulation \rightarrow 3D measurements

Computer Vision

Active triangulation

Camera image

Computer Vision

Active triangulation

Computer Vision

Active triangulation

Example 1 Cyberware laser scanners

Desktop model for small objects

Head scanner

Computer Vision

Active triangulation

Example 2 Minolta

Portable desktop model

3D acquisition taxonomy

Structured light

patterns of a special shape are projected onto the scene
deformations of the patterns yield information on the shape

Focus is on combining a good resolution with a minimum number of pattern projections

Computer Vision

Serial binary patterns

A sequence of patterns with increasingly fine subdivisions

Yields 2^{n} identifiable lines for only n patterns

Reducing the nmb of projections: colour

Binary patterns
Yields 2^{n} identifiable lines for only n patterns
Using colours, e.g. 3,
Yields $3^{\text {n }}$ identifiable lines for only n patterns

Interference from object colours...

Computer Vision

One-shot implementation

3D from a single frame - KULeuven '96:

Computer
Vision

One-shot implementation
KULeuven '81: checkerboard pattern with column code example :

Computer Vision

3D reconstruction for the example

Computer
Vision

An application in agriculture

Computer
Vision

One-shot 3D acquisition

Leuven ShapeCam

Computer Vision

Shape + texture often needed

Higher resolution
Texture is also extracted

Computer
Vision

James Bond

Die another day

Computer Vision

Active triangulation

Recent, commercial example

KINECT

for Brecoryea
Kinect 3D camera, affordable and compact solution by Microsoft.

Projects a 2D point pattern in the NIR, to make it invisible to the human eye

Computer
Kinect: $9 x 9$ patches with locally unique code Vision

Computer Vision

Kinect as one-shot, low-cost scanner

Excerpt from the dense NIR dot pattern:

http://research.microsoft.com/apps/video/default.aspx?i 15

Computer Vision

Face animation - input

Computer Vision

Face animation - replay + effects

Computer Vision

Facial motion capture

motion capture for League of Extraordinary Gentlemen

Computer Vision

Facial motion capture

(2) COMPUTERCAFE

LC015 Eyetronics 1/291

Computer Vision

Phase shift

color wheel

Computer Vision

Phase shift

$$
\begin{aligned}
& I_{r}=A+R \cos (\phi-\theta) \\
& I_{g}=A+R \cos (\phi) \\
& I_{b}=A+R \cos (\phi+\theta)
\end{aligned}
$$

1. detect phase from 3 subsequently projected cosine patterns, shifted over 120 degrees
2. unwrap the phases / additional stereo
3. texture is obtained by summing the 3 images / color camera w. slower integration

Computer

Phase shift

 Vision$A=\frac{I_{r}+I_{g}+I_{b}}{3}$
$\phi=\arctan \left(\tan \left(\frac{\theta}{2}\right) \frac{I_{r}-I_{b}}{2 I_{g}-I_{r}-I_{b}}\right)$

Vision

4D acquisition

Motion retargetting, from 3D phase shift scans

Face/Off: Live Facial Puppetry
 PaperID 102

Computer Vision

3D acquisition taxonomy

Time-of-flight

measurement of the time a modulated light signal needs to travel before returning to the sensor
this time is proportional to the distance
waves:

1. radar
2. sonar
3. optical radar
low freq. electromagnetic acoustic waves
optical waves
working principles :
4. pulsed
5. phase shifts

Computer Vision

Time-of-flight
Example 1: Cyrax

Example 2: Riegl

Computer
Vision

Time-of-flight: example

Cyrax ""
3D Laser Mapping

System

Computer Vision

Cyrax

Accurate, detailed, fast measuring

Integrated modeling

Cyrax

Computer Vision

Pulsed laser (time-of-flight)

No reflectors

 needed
2mm-6mm accuracy

Distance $=\mathrm{C} \times \Delta \mathrm{T} \div 2$

Computer Vision

Laser sweeps over surface

800 pts/sec

$40^{\circ} \times 40^{\circ}$

Field-of-view (max)

Computer Vision

Up to
 100m range (50m rec)

Eye-safe Class 2

Computer Vision

Cyrax is also a visualization tool

Cyrax detects the intensity of each reflected laser pulse and colors it

Computer Vision

Step 1:

Target the structure

Computer
Vision

Step 2:
Scan the structure

Computer
Vision

Step 3:

Color the points

Computer
Vision

Step 4:
Model fitting in-the-field

Computer
Vision

Result

Computer Vision

Project: As-built of

Chevron hydrocarbon plant

- 400 ’x500' area
- 10 vessels; 5 pumps
- 6,000 objects
- 81 scans from 30 tripod locations
- Cyrax field time $=50 \mathrm{hrs}$

Computer Vision

Cost Benefits

Measuring \& modeling

Added Value Benefits

- Higher accuracy
- Fewer construction errors
- 6 week schedule savings

Computer
Vision

Application Modeling movie sets

Computer
Vision

Lidar data with Riegl LMS-Z390i

courtesy of RWTH Aachen, L. Kobbelt et al.

Computer
Vision

Comparison Lidar - passive

3-D Reconstruction based on

Multi-View Stereo

LIDAR Measurements

Computer Vision

3D acquisition taxonomy

Computer
 Vision
 Shape-from-texture

assumes a slanted and tilted surface to have a homogeneous texture
inhomogeneity is regarded as the result of projection
e.g. anisotropy in the statistics of edge orientations
orientations deprojecting to maximally isotropic texture

Computer
Vision

Computer Vision

3D acquisition taxonomy

Shape-from-contour

makes assumptions about contour shape
E.g. the maximization of area over perimeter squared (compactness)

$$
\text { ellipse } \stackrel{\Downarrow}{\rightarrow} \text { circle }
$$

E.g. assumption of symmetry

Symmetric contours $\stackrel{\downarrow}{\rightarrow}$ surface of revolution

Computer
Vision

Shape-from-contour

3D acquisition taxonomy

Computer Vision

Shape-from-silhouettes

Computer Vision

Shape from silhouettes - uncalibrated

tracking of turntable rotation

- volumetric modeling from silhouettes
- triangular textured surface mesh

VRML model

Computer
Vision \square

Computer Vision

Outdoor visual hulls

Computer
Vision

Outdoor visual hulls

 Δ e
\Rightarrow

3D acquisition taxonomy

Computer Vision

REAL-TIME FOCUS RANGE SENSOR

SHREE X. NAYAR

Masahigo Watamaze
Minori Mocuchi
COLUMAIA UNIVERSITY

3D acquisition taxonomy

Shape-from-shading

Uses directional lighting, often with known direction
local intensity is brought into correspondence with orientation via reflectance maps
orientation of an isolated patch cannot be derived uniquely
extra assumptions on surface smoothness and known normals at the rim

Computer Vision

3D acquisition taxonomy

Photometric stereo

constraint propagation eliminated by using light from different directions
simultaneously when the light sources are given different colours

$\underset{\substack{\text { Computer } \\ \text { Vision }}}{\substack{\text { Mini-dome for photometric stereo } \\ \hline}}$

Instead of working with multi-directional light applied simultaneously with the colour trick, one can also project from many directions in sequence...

Computer
Vision

Mini-dome for photometric stereo

KATHOLIEKE UNIVERSITEIT LEUVEN

Computer
Mini-dome
Vision

Computer

Mini-dome

Computer Vision
 Mini-dome for photometric stereo

Example for tablet with first world map known,

 an exhibit at the British Museum:http://homes.esat.kuleuven.be/~mproesma/mptmp/cuneiform

Computer Vision

Mini-dome for photometric stereo

(1) (3)

Computer Vision
 3 D and recognition integrated

 3D City Modeling using Cognitive Loops

Computer
Multi-walker tracker
Vision

$\underset{\substack{\text { Computer } \\ \text { Vision }}}{ }$ Strongest 3D cues for us are 2D...

