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Overview: 
•  Scale-space 
•  Unitary transform definition 
•  Generic transforms (methods) 
•  PCA: Domain-specific transforms 
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Vision Scale space: goal 

Scenes contain information at different levels of 
detail 

1. Develop hierarchical descriptions 
2. Increase efficiency by working on lower 

resolutions 

Psychophysical and neurophysiological relevance 
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Gaussian-Laplacian pyramid: 

Remark spatial coincidence at all scales of 
important edges 
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Vision Scale space : pyramids  

For image Ii 
1. Smooth Ii (with Gaussian)  =>  Si 

2. Take difference image:  (DoG ~ Laplacian) 
   Li = Ii - Si 

3. Reduce size of smoothed image 
  Ii+1 = down-sample(Si) 

The 3rd step is allowed following the Nyquist 
theorem (i.e., given sufficient smoothing) 

Zero-crossings of the Laplacian yield edges, 
thus interesting information in the Laplacian pyramid  
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Discrete approximations of the Gaussian filters 

Spurious structures might emerge! 

e.g. small smoothing filter with positive 
coefficients  c-1 , c0 , c1 

make sure that  c0
2 ≥ 4c−1c1

Thus, [1,2,1] is a valid scale space filter,  
whereas [1,1,1] is not. 
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Unitary image transforms 
Image decomposition into a family of   

   orthonormal basis images 

2 examples so far: 
1.  Pixelwise decomposition: 1 Dirac impulse at the 
      corresponding pixel in each basis image 

(perfect localization in image space, none in frequency) 

2. Fourier decomposition: 1 oriented cosine/sine  
     pattern in each basis image 
      (perfect localization in frequency domain, none in space) 

Decomposition as linear combination of basis vectors/images 

Example: For 2x2 images 
0 
1 
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Unitary transforms  

Unitary operators: 
“preserving the inner product”, i.e. U*U=UU*=I 
For real funcs, only possible (iff) columns of U are orthonormal 
(orthonormal: inner-product of all components with self =1, others =0 ) 
 
 
 

- Fourier transform  (follows from Parseval’s theorem) 

- Rotations are unitary (does not change vector lengths) 

- Pixelwise/Fourier have orthonormal basis images 
 



Computer 
Vision Unitary transforms  

Properties: 
•   Concentrate energy in a few components, i.e. 
only few basis images that can faithfully represent 
  
•   Compromise localization in space/frequency 
(other examples of decompositions given later for more 
balanced localizations in different spaces) 

Image independent rotations 

(rotations, because new axes also orthonormal 
         + Euclidean distance preserved) 

(image independent transforms are generic 
  but suboptimal, as opposed to PCA that we will see later) 

E.g.: decomposition as Dirac impulses or Fourier domain 
is decided without knowing type/content of images 
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Orthonormal basis images B conform:  
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• We do want basis images linearly independent of 
each other è orthogonal:  Bi Bj=0 

• We do not want an all zero basis B, which would 
generate zero under any linear combination, thus be 
useless in representing anything 

•  In fact, better to have a unit length B è thus Bi Bi=1 

with * indicating the complex conjugate 

Let’s check if these for the basis images: 
•  Dirac impulses in pixelwise 
•  cos/sin in Fourier 

necessary  
and  

sufficient 
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See it holds for Dirac impulses in pixelwise: 

0 
1 

Can these be unitary decompositions? 

(A) (B) 

Basis images: Orthonormal 

-0.5 

+0.5 
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2
        cos   cos

0

Pdxxnxm mn

p
δωω =∫

For all positive values of m=1,2,…  a countable set 
of orthogonal functions is generated 

0        sin   cos
0

=∫
p

dxxnxm ωω

2
        sin   sin
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,...2,1=mxm  cos ω

Generalization of vector calculus  
towards infinite dimensional space (Hilbert spaces) 

Example: period               of                 for 
ω
π2

=P
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Example: period               of                 for 

2
        cos   cos

0

Pdxxnxm mn

p
δωω =∫
0        sin   cos

0
=∫

p
dxxnxm ωω
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        sin   sin
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p
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ω
π2

=P ,...2,1=mxm  cos ω

Problems with infinite dimensions: representation 
need not be unique (e.g. aliased freqs) &  
may not be complete (even funcs) 
 
These problem disappear with discretization 
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Completeness condition 
Arbitrary square-integrable functions characterized by their 
correlations with the basis set of orthonormal functions 

(N x 1) sample vectors    any N orthogonal bases 
will be complete      need for finding them 

ñ 

ñ 
E.g.  ux

16
2cos π x = 0,1,2…15, and = 0,1,2... u = 0,1,…,8 

other u’s identical, but signs reversed; e.g. u=7 & u=9 identical 

u = 1…7 ux
16
2sin π

1
N
e
−2πiux

NHence, 16 Fourier basis funcs of form: 

functions with u=0 and u=8  vanish 

In discrete, problem is how to find sufficient number of orthogonal basis 
functions.   Example with 16 samples: 

•  Cos set is all orthogonal, BUT they repeat (9 & 7 are identical) 
•  To no surprise, odd funcs cannot be represented by cos set 
•  Sine can represent odds, thus Fourier basis funcs is a complete set 
•  This yields 16 orthogonal complex trigonometric basis funcs 
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1-D à higher dimensions  

( ) ( ) ( )yxyxB jiij ψφ=,
Or, equivalently 

t
jiijB ψφ=

Many basis functions are not separable, but  
pixelwise (Dirac) is, i.e. abscissa and ordinate). 
We will consider separable basis images (with 
which image analysis operation can be run faster) 
In case of a transition from an orthonormal set 
to another orthonormal set : 
unitary transform matrices      A-1 = A* t 

(can be decomposed into products of 1D functions) 

preferred 
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Orthonormal 

Pixelwise: 0 
1 

[1 0],  [0 1] ϕi
t :

Is this (unitary) decomposition separable?   
If so, what are       ? ϕi

t

-0.5 

+0.5 
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For a given basis Bu’v’  in order to find the weight 
Multiply and sum both sides, then use orthonormality: 
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Now we decided B, but how to find basis weights wuv  
to represent a given image: 
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cf. projection of vector onto basis vectors or as 
correlation with reference patterns 

Transformed image:     F(u,v) = wuv 

Forward transform: 
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Backward transform: 
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GOAL: Find truncated decomposition 
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that minimizes  

Minimize the approximation error 

Find a smaller number of basis funcs:  
Which weights to use if not all retained 
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THEOREM: 

The weights wuv  that minimize eM’N’ are given by 

Show that these weights are indeed the ones  
from the original decomposition 
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Optimal truncation property  

Proof : Show that other weights cuv à larger eM’N’ 

Last term is positive and is minimized for cuv = wuv 
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Vision Optimal truncation property  

This theorem underlies the use of unitary 
transforms for image compression applications 

Energy in images tends to be concentrated in 
lower frequencies 
taking more terms always improves the result: 
for cuv = wuv: 
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Vision Examples of unitary transforms 

Assuming square images 

n  1. Cosine transform 

n  2. Sine transform 

n  3. Hadamard transform 

n  4. Haar transform 

n  5. Slant transform 

 
Generally, we seek decompositions with strong compaction; 
driven by practical experience and implementation efficiency 

Cosine transform gives best decorrelation 
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Turning Fourier into real transform and 
suppression of spurious high frequencies: 

The extended image is even 



Computer 
Vision The cosine transform  

DFT of the extended image: 
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8 x 8 basis images: 
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Vision The cosine transform  

Remarks on the DCT: 

1. Eliminates the boundary discontinuities 

2. Components are well decorrelated 

3. Has O(n log n) implementations 

4. Requires real computations only 

5. DCT chips are available 

6. Was long time the most popular compression basis 
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The cosine transform  

Left : DFT, right : DCT 
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Zonal truncations: 

When the same number of samples are retained in 
both cases  (i.e., same compression ratio) 
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DFT 
Horizontal top/bottom ripple, 

spurious high frequencies 

DCT 
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on the basis of slant matrices 
e.g. basis images for 8 x 8 : 

discrete sawtooth-like basis vectors which efficiently represent 
linear brightness variations along an image line 
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The Haar transform  

•  Is an example of a wavelet transform 
•  Note how the analysis is localised both in space 

and in terms of frequency 
•  Note also that for higher frequencies, the spatial 

extent gets smaller, a typical feature of wavelets 
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The Hadamard transform  

• Only 1s and -1s, therefore no multiplication needed:  
one of the first for HW implementation 

• Recursive operation of [1 1; 1 -1] 
• Generates minimally correlated binary blocks 
• Binary è efficient è barcode reading 
• All examples had same orthogonal set for rows&cols, BUT 

need not be so, e.g. Haar X Hadamard possible 
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Principal Component 
Analysis 
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Vision Principal component analysis: goals 1 

Decorrelation of data 

E.g. image independent transforms suboptimal 

Karhunen-Loève Transform (KLT) 
extract statistics from images for a customized 
orthogonal basis set with uncorrelated weights 

PCA: technique based on eigenvectors of the 
covariance matrix 
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Central idea: 
Reduce the dimensionality of data consisting of 
many interrelated variables, while retaining as 
much as possible of the variation 

Achieved by transforming to new, uncorrelated 
variables, the principal components, which are 
ordered so that the first few retain most of the 
variation 

Remarks: 
•  For a diverse set, PCA will resemble DCT (optimal decorr) 
• Receiver needs the bases 
• Uses, e.g. feature selection for classification or inspection 
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Highlighting the essence via decorrelation 

• Observations with two highly-correlated variables:  
e.g. grey-value at neighbouring pixels OR 
length&weight of growing children 

• Highly correlated values:  x1 has info on x2 
•  Instead of storing 2 variables, we can store only 1 
 
knowledge about correlation helps in compression, inspection, 
and classification 
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Decorrelation through rotation 

•  Using correlation, rotate frame axes: 
Variation in 1st component max, in 2nd min 

•  (Can potentially drop z2 now) 
 

principle behind unitary transforms :  
rotation in high dimensional spaces 
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Decorrelation through rotation 

We will work around the mean 
 

•  So, we apply a rotation (e.g., from ellipse fitting) 
about the mean of the distribution 

•  Extends to hyperellipsoids in higher dimensions, 
where visual inspection is not possible 
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Sum of variances do not change with rotations: 
 

 
 
With σi

2
  variance in xi  and σj

2 variance in zj 
 
result of invariance of center of gravity and 
distance under rotation 
 
Parseval equation  
 
redistribution of energy / variance 
 
We want as much variance in as few coordinates 
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Vision PCA: introduction 

In high dimensional spaces, an optimal rotation 
no longer clear upon visual inspection 
 
Some statistics needed: covariance matrix 
(note: underlying assumption of Gaussian distr.!) 
 
Intuitive: fit hyperellipsoid to cluster  
subsequent PCs correspond to axes from the 
longest to the shortest 
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Vision PCA: method 

first step: look for a linear combination          which 
has maximum variance  (fitting a line in RN) 

xcT1

 
second step: look for a linear combination, 
uncorrelated (orthogonal) with      and  
with maximum variance (best fit) 

xcT2
xcT1

Suppose x  is a vector of p random variables 

third step: repeat... 

(can extend to points in space & images with pixels) 
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Vision Algorithm : Find PCA basis formally 

but 
3. Normalize to find a finite c1 : 

xcT1
xcT1

11 cCcT  

111 =ccT

C

111111 ) (     )(  cxxccxxcxcxc TTTTTTT ∑∑∑ ==

1.  Calculate the covariance matrix     , suppose          
the data are centered around the mean 

2. Consider           with c1 and maximize its variance 
     var [         ] =               
 
        
                              =         is maximized,  



Computer 
Vision PCA algorithm: c1 

Using Lagrange multipliers we maximize 

( )11111 −− ccCcc TT λ

Thus, λ is an eigenvalue of  C 
c1 is the corresponding eigenvector 

where Ip is the (p x p) identity matrix 

Differentiation w.r.t.     gives 

011 =− cCc λ

( ) 0 1 =− cIC pλ

1c
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Which of the p eigenvectors? 

λλλ === 111111 ccccCcc TTT

So λ must be as large as possible 

Thus, c1 is the eigenvector with the largest 
eigenvalue 

The kth PC is the eigenvector  
with the kth largest eigenvalue 

PCA algorithm: c1 
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Maximize           while uncorrelated with 22CccT xcT1

PCA algorithm: c2 

Proof for k = 2 

Thus uncorrelatedness becomes 

0  ,0  ,0   ,0 12211221 ==== cccccCccCc TTTT

[ ]
2111211121221

21 , cov

ccccccCccCcc
xcxc

TTTTT

TT

λλλ ====

=
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decorrelation vs. orthogonality 

0,0  ,0   ,0 12211221 ==== cccccCccCc TTTT

go hand in hand only for main axes of the  
ellipsoid defined by the covariance matrix ! 

PCA algorithm: c2 
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PCA: Decorralation vs. orthogonality example 
The given axes are orthogonal, 
But this 2D distribution has 
correlated projections on them 

The conjugate axis yields 
decorrelation,  
but is not orthogonal now 

Thus, we should satisfy both decorrelation and orthogonality 
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Then, using λ, ϕ as Lagrange multipliers 

( ) 122222  1 ccccCcc TTT φλ −−−
Differentiation w.r.t. c2 gives 

0122 =−− ccCc φλ
Multiplication on the left by       gives 

0 112121 =−− ccccCcc TTT φλ
Tc1

Thus ϕ = 0 

Again, maximize     , so select 2nd largest λ2 λ=22CccT
Therefore,  ( ) 0  ,  0 222 =−=− cICcCc pλλ  .i.e

PCA algorithm: c2 
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Vision PCA: interpretation 

Similarly, the other PCs can be shown to be 
eigenvectors of C corresponding to the 
subsequently next largest eigenvalues 

Because C is a real, symmetric matrix, we 
know all its eigenvectors will be orthogonal 

We therefore can interpret PCA as a coordinate 
rotation/reflection in a higher dimensional space 
(orthogonal transformation) 
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Principal Component Analysis (PCA): 
collects maximum variance in subsequent 
uncorrelated components. 

In that sense, it is the optimal rotation. 

PCs can be interpreted as linear combinations of 
original variables. 

Strongly correlated data ⇒ first PCs contain most 
of the variance 
information loss is minimal if only retaining these 
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Classification example with PCA:  
satellite images 

Example: classification of 5 crop types 
Input: 3 spectral bands from SPOT satellite  
Near-infrared (N), Red (R), and Green (G) 
each pixel = 20 m x 20 m 

Comparison of 2 PCs vs. 3 original bands 
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Classification example : satellite images  
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Evident: correlation between R and G 
N seems uncorrelated 

Corroborated by covariance matrix: 
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PCs: 
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Eigenvalues 129.1135, 84.8359, and 2.4022 
1st PC ≈ near-infrared input N 
notice low variance of 3rd PC 

Classification example : satellite images  

Classification results in this toy example: 

3 original bands: 76.3 % accuracy 

2 first PCs: 73.5 % accuracy 

(comp. : R-G: 60 %) 
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Example applications: textile inspection  

Filters with size of one period [8,6] 
(period found as peak in autocorrelation) 
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Further details will be given when we discuss 
texture analysis.   
 
As we will see, PCA allows for the design of 
dedicated convolution filters, ordered by the 
variance in their output when applied across 
the image.  
 
Flaws which won’t follow the typical pattern 
may then express itself in the low-variance 
components (as outlier values)  

Inspection ex.: eigenfilters for textile 



Computer 
Vision Mahalanobis distance of filter energies: 

Flaw region found by thresholding: 

Inspection ex.: eigenfilters for textile 
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“Mean” face Averaging of input faces 

Image compression ex.: eigenfaces 
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Vision Image compression ex.: eigenfaces 

Neighbouring pixel intensities are highly correlated 

Consider image as large intensity vector 

Eigenvectors: “eigenimages” 

Computational problems :  
N2 x N2 covariance matrices! 

Specifying image statistics: which exemplary set? 

Image dependence: eigenimages needed! 
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Karhunen-Loève transform = PCA on images 

Redistributes variance over a few components most 
efficiently 

Best approximation: Minimal least-square error for 
truncated approximations 

Dimensionality problem can be remedied: 
formulation as eigenvalue problem in space of 
dimension equal to number of sample images 

Image compression ex.: eigenfaces 
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(p x p) covariance matrix 
Much smaller (n x n) matrix 
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-2σ +2σ 

…
 

-2σ +2σ 

…
 

Image compression ex.: eigenfaces 


