Acquisition of Images

Acquisition of images

We focus on :

cameras
 illumination

Acquisition of images

We focus on :

cameras
 illumination

Acquisition of images

We focus on :

cameras
 illumination

cameras

Optics for image formation

the pinhole model :

Optics for image formation

the pinhole model :

hence the name: CAMERA obscura

Optics for image formation

the pinhole model :

(*m* = linear magnification)

→

Camera obscura + lens

The thin-lens equation

→

The depth-of-field

Only reasonable sharpness in Z-interval

decreases with d, increases with Z_0 strike a balance between incoming light (d) and large depth-of-field (usable depth range)

The depth-of-field

Similar expression for Z_O^+ - Z_O

The depth-of-field

Ex 1: microscopes -> small DoF

Ex 2: special effects -> flood miniature scene with light

Deviations from the lens model

3 assumptions :

- 1. all rays from a point are focused onto 1 image point
- 2. all image points in a single plane
- 3. magnification is constant

deviations from this ideal are *aberrations*

Aberrations

2 types :

1. geometrical

2. chromatic

geometrical : small for paraxial rays

chromatic : refractive index function of wavelength (Snell's law !!)

Geometrical aberrations

spherical aberration

astigmatism
 the most important type
 radial distortion

🖵 coma

Spherical aberration

rays parallel to the axis do not converge

outer portions of the lens yield smaller focal lenghts

Radial Distortion

magnification different for different angles of inclination

barrel

none

pincushion

Radial Distortion

magnification different for different angles of inclination

barrel

none

pincushion

The result is pixels moving along lines through the center of the distortion
– typically close to the image center – over a distance *d*, depending on the pixels' distance *r* to the center

$$d = (1 + \kappa_1 r^2 + \kappa_2 r^4 + \ldots)$$

Radial Distortion

magnification different for different angles of inclination

This aberration type can be corrected by software if the parameters (κ_1 , κ_2 , ...) are known

Radial Distortion

magnification different for different angles of inclination

Some methods do this by looking how straight lines curve instead of being straight

Chromatic aberration

rays of different wavelengths focused in different planes

The image is blurred and appears colored at the fringe.

cannot be removed completely but *achromatization* can be achieved at some well chosen wavelength pair, by combining lenses made of different glasses

sometimes *achromatization* Achromatic Lens is achieved for more than 2 wavelengths

additional considerations :

humidity and temperature resistance, weight, price,...

Cameras

we consider 2 types :

1. CCD

2. CMOS

Cameras

CCD = Charge-coupled device CMOS = Complementary Metal Oxide Semiconductor

CCD

separate photo sensor at regular positions no scanning

charge-coupled devices (CCDs)

area CCDs and linear CCDs

2 area architectures :

interline transfer and frame transfer

The CCD inter-line camera

CMOS

Same sensor elements as CCD Each photo sensor has its own amplifier More noise (reduced by subtracting 'black' image) Lower sensitivity (lower fill rate) Uses standard CMOS technology Allows to put other components on chip 'Smart' pixels

CMOS

Resolution trend in mobile phones Volume and revenue opportunity for high resolution sensors

CCD vs. CMOS

- Niche applications
- Specific technology
- High production cost
- High power consumption
- Higher fill rate
- Blooming
- Sequential readout

- Consumer cameras
- Standard IC technology
- Cheap
- Low power
- Less sensitive
- Per pixel amplification
- Random pixel access
- Smart pixels
- On chip integration with other components

2006 was year of sales cross-over

CCD vs. CMOS

- Niche applications
- Specific technology
- High production cost
- High power consumption
- Higher fill rate
- Blooming
- Sequential readout

- Consumer cameras
- Standard IC technology
- Cheap
- Low power
- Less sensitive
- Per pixel amplification
- Random pixel access
- Smart pixels
- On chip integration with other components

In 2015 Sony said to stop CCD chip production

Colour cameras

- We consider 3 concepts:
 - 1. Prism (with 3 sensors)
 - 2. Filter mosaic
 - 3. Filter wheel

Prism colour camera

Separate light in 3 beams using dichroic prism Requires 3 sensors & precise alignment Good color separation

Prism colour camera

Filter mosaic

Coat filter directly on sensor

Demosaicing (obtain full colour & full resolution image)

Filter mosaic

Sensor Architecture

Fuji Corporation

Color filters lower the effective resolution, hence microlenses often added to gain more light on the small pixels
Filter wheel

Rotate multiple filters in front of lens Allows more than 3 colour bands

Only suitable for static scenes

Prism vs. mosaic vs. wheel

<u>approach</u>	Prism	Mosaic	<u>Wheel</u>
# sensors	3	1	1
Resolution	High	Average	Good
Cost	High	Low	Average
Framerate	High	High	Low
Artefacts	Low	Aliasing	Motion
Bands	3	3	3 or more
	High-end	Low-end	Scientific
	cameras	cameras	applications

Odd-man-out X3 technology of Foveon

Exploits the wavelength dependent depth to which a photon penetrates silicon And splits colors without the use of any filters

Computer

Vision

creates a stack of pixels at one place new CMOS technology

Geometric camera model perspective projection

(Man Drawing a Lute, woodcut, 1525, Albrecht Dürer)

Models for camera projection

the pinhole model revisited :

center of the lens = center of projection

notice the virtual image plane

this is called *perspective* projection

Models for camera projection

We had the virtual plane also in the original reference sketch:

Perspective projection

origin lies at the center of projection
the *Le* axis fcoincides with the optical axis
Xc-axis || to in age rows, *Yc*-axis || to columns

Pseudo-orthographic projection

$$u = f \frac{X}{Z} \qquad \qquad v = f \frac{Y}{Z}$$

If Z is constant $\Rightarrow x = kX$ and y = kY, where k = f/Z

i.e. orthographic projection + a scaling

Good approximation if $f/Z \pm$ constant, i.e. if objects are small compared to their distance from the camera

Pictoral comparison

Pseudo orthographic

Perspective

Pictoral comparison

Pseudo orthographic

Perspective

Projection matrices

the perspective projection model is incomplete : what if :

- 1. 3D coordinates are specified in a *world coordinate frame*
- 2. Image coordinates are expressed as *row and column numbers*

We will not consider additional refinements, such as radial distortions,...

Projection matrices

Image coordinates are to be expressed as pixel coordinates

 \rightarrow (x0, y0) the pixel coordinates of the principal point

NB7 : *fully calibrated* means internally and
externally calibrated
s molecules are sized, typically s = 0

→

Homogeneous coordinates

Often used to linearize non-linear relations

Homogeneous coordinates are only defined up to a factor

Projection matrices

$$u = f \frac{r_{11}(X - C_1) + r_{12}(Y - C_2) + r_{13}(Z - C_3)}{r_{31}(X - C_1) + r_{32}(Y - C_2) + r_{33}(Z - C_3)}$$
$$v = f \frac{r_{21}(X - C_1) + r_{22}(Y - C_2) + r_{23}(Z - C_3)}{r_{31}(X - C_1) + r_{32}(Y - C_2) + r_{33}(Z - C_3)}$$

Exploiting homogeneous coordinates :

$$\tau \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = \begin{pmatrix} f r_{11} & f r_{12} & f r_{13} \\ f r_{21} & f r_{22} & f r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix} \begin{pmatrix} X - C_1 \\ Y - C_2 \\ Z - C_3 \end{pmatrix}$$

Projection matrices

$$\begin{cases} x = k_x u + s v + x_0 \\ y = k_y v + y_0 \end{cases}$$

Exploiting homogeneous coordinates :

$$\tau \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} k_x & s & x_0 \\ 0 & k_y & y_0 \\ 0 & 0 & 1 \end{pmatrix} \tau \begin{pmatrix} u \\ v \\ 1 \end{pmatrix}$$

Projection matrices

Thus, we have :

$$\tau \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = \begin{pmatrix} f r_{11} & f r_{12} & f r_{13} \\ f r_{21} & f r_{22} & f r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix} \begin{pmatrix} X - C_1 \\ Y - C_2 \\ Z - C_3 \end{pmatrix}$$

$$\tau \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} k_x & s & x_0 \\ 0 & k_y & y_0 \\ 0 & 0 & 1 \end{pmatrix} \tau \begin{pmatrix} u \\ v \\ 1 \end{pmatrix}$$

Projection matrices

Concatenating the results :

$$\tau \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} k_x & s & x_0 \\ 0 & k_y & y_0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} f & r_{11} & f & r_{12} & f & r_{13} \\ f & r_{21} & f & r_{22} & f & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix} \begin{pmatrix} X - C_1 \\ Y - C_2 \\ Z - C_3 \end{pmatrix}$$

Or, equivalently :

$$\tau \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} k_x & s & x_0 \\ 0 & k_y & y_0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix} \begin{pmatrix} X - C_1 \\ Y - C_2 \\ Z - C_3 \end{pmatrix}$$

Projection matrices

Re-combining matrices in the concatenation :

$$\tau \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} k_x & s & x_0 \\ 0 & k_y & y_0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix} \begin{pmatrix} X - C_1 \\ Y - C_2 \\ Z - C_3 \end{pmatrix}$$

yields the calibration matrix *K*:

$$K = \begin{pmatrix} k_x & s & x_0 \\ 0 & k_y & y_0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} f & k_x & f & s & x_0 \\ 0 & f & k_y & y_0 \\ 0 & 0 & 1 \end{pmatrix}$$

Projection matrices

We define
$$p = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}; P = \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}, \widetilde{P} = \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

yielding

$$\rho p = KR^t(P-C)$$
 for some non-zero $\rho \in \mathbb{R}$

or,
$$\rho p = K(R^t \mid -R^t C)\widetilde{P}$$

or, $\rho p = (M \mid t)\widetilde{P}$ with rank $M = 3$

From object radiance to pixel grey levels

After the geometric camera model... ... a photometric camera model

2 steps:

1. from object radiance to image irradiance

2. from image irradiance to pixel grey level

Image irradiance and object radiance

we look at the irradiance that an object patch will cause in the image

assumptions : radiance *R* assumed known and object at large distance compared to the focal length

Is image irradiance directly related to the radiance of the image patch?

The viewing conditions

$$I = R \frac{A_l}{f^2} \cos^4 \alpha$$

the cos⁴ law

The cos⁴ law cont' d

Especially strong effects for wide-angle and fisheye lenses

From irradiance to gray levels

illumination

Illumination

Well-designed illumination often is key in visual inspection

The light was good, but the hot wax was a problem...

Illumination techniques

Simplify the image processing by controlling the environment

An overview of illumination techniques:

- 1. back-lighting
- 2. directional-lighting
- 3. diffuse-lighting
- 4. polarized-lighting
- 5. coloured-lighting
- 6. structured-lighting
- 7. stroboscopic lighting

Back-lighting

lamps placed behind a transmitting diffuser plate, light source behind the object

generates high-contrast silhouette images, easy to handle with *binary vision*

often used in inspection

Example backlighting

Directional and diffuse lighting

Directional-lighting

generate sharp shadows generation of specular reflection (e.g. crack detection)

shadows and shading yield information about shape

Diffuse-lighting

illuminates uniformly from all directions prevents sharp shadows and large intensity variations over glossy surfaces

Crack detection

Example directional lighting

Example diffuse lighting

Polarized lighting

2 uses:

1. to improve contrast between Lambertian and specular reflections

2. to improve contrasts between dielectrics and metals
Polarised lighting

polarizer/analyzer configurations

law of Malus :

 $I(\theta) = I(0)\cos^2\theta$

Polarized lighting

2 uses:

1. to improve contrast between Lambertian and specular reflections

2. to improve contrasts between dielectrics and metals

Polarized lighting

specular reflection keeps polarisation : diffuse reflection depolarises

suppression of specular reflection :

polarizer/analyzer crossed prevents the large dynamic range caused by glare

Example pol. lighting (pol./an.crossed)

Polarized lighting

2 uses:

1. to improve contrast between Lambertian and specular reflections

to improve contrasts between dielectrics and metals

Reflection : dielectric

Polarizer at Brewster angle

Reflection : conductor

strong reflectors more or less preserve polarization

Polarised lighting

distinction between specular reflection from dielectrics and metals; works under the Brewster angle for the dielectric

dielectric has no parallel comp. ; metal does

suppression of specular reflection from dielectrics :

polarizer/analyzer aligned distinguished metals and dielectrics

Example pol. lighting (pol./an. aligned)

Coloured lighting

highlight regions of a similar colour

with band-pass filter: only light from projected pattern (e.g. monochromatic light from a laser)

differentiation between specular and diffuse reflection

comparing colours ⇒ same spectral composition of sources!

spectral sensitivity function of the sensors!

Example coloured lighting

Coloured lighting

Example videos: weed-selective herbicide spraying

Coloured lighting

Structured and stroboscopic lighting

spatially or temporally modulated light pattern

Structured lighting

e.g. : 3D shape : objects distort the projected pattern (more on this later)

Stroboscopic lighting

high intensity light flash

to eliminate motion blur

Stroboscopic lighting

Example videos: vegetable inspection

Application

