Acquisition of Images

Computer Vision

Acquisition of images

We focus on :

1. cameras

2. illumination

Image Plane

Sensor Array

Lens System

Light Source

Surface Reflection

Computer Vision

Acquisition of images

We focus on :

1. cameras

2. illumination

Image Plane

Sensor Array

Lens System

Light Source

Surface Reflection

Computer Vision

Acquisition of images

We focus on :

1. cameras

2. illumination

Image Plane

Sensor Array

Lens System

Light Source

Surface Reflection

Computer
Vision
cameras

Computer
Vision

Optics for image formation

the pinhole model :

Computer Vision

Optics for image formation

the pinhole model :

Computer Vision

Optics for image formation

the pinhole model :

$$
\frac{X_{i}}{X_{o}}=\frac{Y_{i}}{Y_{o}}=\frac{f}{-Z_{o}}=-m
$$

(m = linear magnification)

Computer
Vision

Camera obscura + lens

Computer Vision

The thin-lens equation

lens to capture enough light :

assuming
\square spherical lens surfaces
\square incoming light \pm parallel to axis
\square thickness << radii
\square same refractive index on both sides

Computer Vision

The depth-of-field

Only reasonable sharpness in Z-interval

$$
\Delta Z_{0}^{-}=Z_{0}-Z_{0}^{-}=\frac{Z_{0}\left(Z_{0}-f\right)}{Z_{0}+f d / b-f}
$$

decreases with d, increases with Z_{0}
strike a balance between incoming light (d) and large depth-of-field (usable depth range)

Computer Vision

The depth-of-field

$$
\Delta Z_{0}^{-}=Z_{0}-Z_{0}^{-}=\frac{Z_{0}\left(Z_{0}-f\right)}{Z_{0}+f d / b-f}
$$

Similar expression for $Z_{O}^{+}-Z_{O}$

Computer Vision

The depth-of-field

$$
\Delta Z_{0}^{-}=Z_{0}-Z_{0}^{-}=\frac{Z_{0}\left(Z_{0}-f\right)}{Z_{0}+f d / b-f}
$$

Ex 1: microscopes -> small DoF
Ex 2: special effects -> flood miniature scene with light

Deviations from the lens model

3 assumptions :

1. all rays from a point are focused onto 1 image point
2. all image points in a single plane
3. magnification is constant
deviations from this ideal are aberrations

Aberrations

2 types :

1. geometrical
2. chromatic
geometrical : small for paraxial rays
chromatic : refractive index function of wavelength (Snell's law !!)

Geometrical aberrations

\square spherical aberration
\square astigmatism

the most important type

\square radial distortion
\square coma

Spherical aberration

rays parallel to the axis do not converge
outer portions of the lens yield smaller focal lenghts

Computer Vision

Radial Distortion

magnification different
for different angles of inclination

barrel

none

pincushion

Radial Distortion

magnification different
for different angles of inclination

barrel

none

pincushion

The result is pixels moving along lines through the center of the distortion

- typically close to the image center - over a distance d, depending on the pixels' distance r to the center

$$
d=\left(1+\kappa_{1} r^{2}+\kappa_{2} r^{4}+\ldots\right)
$$

Computer Vision

Radial Distortion

magnification different

for different angles of inclination

This aberration type can be corrected by software if the parameters $\left(\kappa_{1}, \kappa_{2}, \ldots\right)$ are known

Computer Vision

Radial Distortion

magnification different

for different angles of inclination

Some methods do this by looking how straight lines curve instead of being straight

Computer Vision

Chromatic aberration

rays of different wavelengths focused in different planes

cannot be removed completely
but achromatization can be achieved at some well chosen wavelength pair, by combining lenses made of different glasses
sometimes achromatization
 is achieved for more than 2 wavelengths

Computer Vision

Lens materials

additional considerations :
humidity and temperature resistance, weight, price,...

Computer
Vision

Cameras
we consider 2 types:

1. $C C D$

2. CMOS

Computer Vision

Cameras

CCD photon to electron CMOS

CCD = Charge-coupled device CMOS = Complementary Metal Oxide Semiconductor

CCD

separate photo sensor at regular positions no scanning
charge-coupled devices (CCDs) area CCDs and linear CCDs
2 area architectures :
interline transfer and frame transfer
\square photosensitive
\square storage

Computer
Vision

The CCD inter-line camera

CMOS

Same sensor elements as CCD

Each photo sensor has its own amplifier
More noise (reduced by subtracting ‘black’ image)
Lower sensitivity (lower fill rate)
Uses standard CMOS technology
Allows to put other components on chip ‘Smart' pixels

CMOS

Resolution trend in mobile phones
Volume and revenue opportunity for high resolution sensors

CCD vs. CMOS

- Niche applications
- Specific technology
- High production cost
- High power consumption
- Higher fill rate
- Blooming
- Sequential readout
- Consumer cameras
- Standard IC technology
- Cheap
- Low power
- Less sensitive
- Per pixel amplification
- Random pixel access
- Smart pixels
- On chip integration with other components

2006 was year of sales cross-over

CCD vs. CMOS

- Niche applications
- Specific technology
- High production cost
- High power consumption
- Higher fill rate
- Blooming
- Sequential readout

- Consumer cameras
- Standard IC technology
- Cheap
- Low power
- Less sensitive
- Per pixel amplification
- Random pixel access
- Smart pixels
- On chip integration with other components

In 2015 Sony said to stop CCD chip production

Colour cameras

- We consider 3 concepts:

1. Prism (with 3 sensors)
2. Filter mosaic
3. Filter wheel

Prism colour camera

Separate light in 3 beams using dichroic prism Requires 3 sensors \& precise alignment Good color separation

Computer Vision

Prism colour camera

Filter mosaic

Coat filter directly on sensor

Bayer filter
Demosaicing (obtain full colour \& full resolution image)

Computer Vision

Filter mosaic

Sensor Architecture

Color filters lower the effective resolution,
Fuji Corporation hence microlenses often added to gain more light on the small pixels

Filter wheel

Rotate multiple filters in front of lens Allows more than 3 colour bands

Only suitable for static scenes

Prism vs. mosaic vs. wheel

approach	Prism
\# sensors	3
Resolution	High
Cost	High
Framerate	High
Artefacts	Low
Bands	3

High-end
 cameras

Mosaic
1
Average
Low
High
Aliasing
3

Low-end
cameras

Wheel 1

Good
Average
Low
Motion
3 or more

Scientific applications

Computer Vision

Odd-man-out X3 technology of Foveon

Exploits the wavelength dependent depth to which a photon penetrates silicon
And splits colors without the use of any filters

creates a stack of pixels at one place new CMOS technology

Computer Vision

Geometric camera model perspective projection

(Man Drawing a Lute, woodcut, 1525, Albrecht Dürer)

Computer
Vision

Models for camera projection

 the pinhole model revisited :
center of the lens $=$ center of projection
notice the virtual image plane
this is called perspective projection

Computer Vision

Models for camera projection

We had the virtual plane also in the original reference sketch:

Computer Vision

Perspective projection

\square origin lies at the center of projection Y
\square the \mathscr{P}^{2} axisfoincides with theoptfalaxis
$\square X_{c}$-axis || to irgage rows, Y_{c}-axis || toZolumns

Computer Vision

Pseudo-orthographic projection

$$
u=f \frac{X}{Z} \quad v=f \frac{Y}{Z}
$$

If Z is constant $\Rightarrow x=k X$ and $y=k Y$, where $k=f / Z$
i.e. orthographic projection + a scaling

Good approximation if $f / Z \pm$ constant, i.e. if objects are small compared to their distance from the camera

Computer Vision

Pictoral comparison

Pseudo orthographic

Perspective

Computer Vision

Pictoral comparison

Pseudo orthographic

Perspective

Projection matrices

the perspective projection model is incomplete : what if :

1. 3 D coordinates are specified in a world coordinate frame
2. Image coordinates are expressed as row and column numbers

We will not consider additional refinements, such as radial distortions,...

Computer Vision

$$
\begin{aligned}
& \text { Projection } \\
& \text { matrices }
\end{aligned}
$$

Projection matrices

Image coordinates are to be expressed as pixel coordinates

$\rightarrow(x 0, y 0)$ the pixel coordinates of the principal point
NB7 : fully calibrated means internally and externally calibrated

Computer Vision

Homogeneous coordinates

Often used to linearize non-linear relations

$$
\begin{array}{ll}
\text { 2D } \quad\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & \rightarrow\binom{x / z}{y / z} \\
3 \mathrm{D} \quad\left(\begin{array}{l}
X \\
Y \\
Z \\
W
\end{array}\right) & \rightarrow\left(\begin{array}{l}
X / W \\
Y / W \\
Z / W
\end{array}\right)
\end{array}
$$

Homogeneous coordinates are only defined up to a factor

Projection matrices

$$
\begin{aligned}
& u=f \frac{r_{11}\left(X-C_{1}\right)+r_{12}\left(Y-C_{2}\right)+r_{13}\left(Z-C_{3}\right)}{r_{31}\left(X-C_{1}\right)+r_{32}\left(Y-C_{2}\right)+r_{33}\left(Z-C_{3}\right)} \\
& v=f \frac{r_{21}\left(X-C_{1}\right)+r_{22}\left(Y-C_{2}\right)+r_{23}\left(Z-C_{3}\right)}{r_{31}\left(X-C_{1}\right)+r_{32}\left(Y-C_{2}\right)+r_{33}\left(Z-C_{3}\right)}
\end{aligned}
$$

Exploiting homogeneous coordinates:
$\tau\left(\begin{array}{l}u \\ v \\ 1\end{array}\right)=\left(\begin{array}{ccc}f r_{11} & f r_{12} & f r_{13} \\ f r_{21} & f r_{22} & f r_{23} \\ r_{31} & r_{32} & r_{33}\end{array}\right)\left(\begin{array}{c}X-C_{1} \\ Y-C_{2} \\ Z-C_{3}\end{array}\right)$

Projection matrices

$$
\left\{\begin{array}{l}
x=k_{x} u+s v+x_{0} \\
y=k_{y} v+y_{0}
\end{array}\right.
$$

Exploiting homogeneous coordinates:

$$
\tau\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=\left(\begin{array}{ccc}
k_{x} & s & x_{0} \\
0 & k_{y} & y_{0} \\
0 & 0 & 1
\end{array}\right) \tau\left(\begin{array}{l}
u \\
v \\
1
\end{array}\right)
$$

Projection matrices

Thus, we have :

$$
\begin{gathered}
\tau\left(\begin{array}{l}
u \\
v \\
1
\end{array}\right)=\left(\begin{array}{cccc}
f r_{11} & f r_{12} & f r_{13} \\
f r_{21} & f r_{22} & f & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right)\left(\begin{array}{c}
X-C_{1} \\
Y-C_{2} \\
Z-C_{3}
\end{array}\right) \\
\tau\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=\left(\begin{array}{ccc}
k_{x} & s & x_{0} \\
0 & k_{y} & y_{0} \\
0 & 0 & 1
\end{array}\right) \tau\left(\begin{array}{l}
u \\
v \\
1
\end{array}\right)
\end{gathered}
$$

Projection matrices

Concatenating the results :
$\tau\left(\begin{array}{l}x \\ y \\ 1\end{array}\right)=\left(\begin{array}{ccc}k_{x} & s & x_{0} \\ 0 & k_{y} & y_{0} \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{cccc}f r_{11} & f & r_{12} & f r_{13} \\ f r_{21} & f & r_{22} & f \\ r_{23} \\ r_{31} & & r_{32} & \\ r_{33}\end{array}\right)\left(\begin{array}{l}X-C_{1} \\ Y-C_{2} \\ Z-C_{3}\end{array}\right)$
Or, equivalently :

$$
\tau\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=\left(\begin{array}{ccc}
k_{x} & s & x_{0} \\
0 & k_{y} & y_{0} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right)\left(\begin{array}{l}
X-C_{1} \\
Y-C_{2} \\
Z-C_{3}
\end{array}\right)
$$

Projection matrices

Re-combining matrices in the concatenation :

$$
\tau\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=\left(\begin{array}{ccc}
k_{x} & s & x_{0} \\
0 & k_{y} & y_{0} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right)\left(\begin{array}{c}
X-C_{1} \\
Y-C_{2} \\
Z-C_{3}
\end{array}\right)
$$

yields the calibration matrix K :

$$
K=\left(\begin{array}{lll}
k_{x} & s & x_{0} \\
0 & k_{y} & y_{0} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
f k_{x} f s & x_{0} \\
0 & f k_{y} & y_{0} \\
0 & 0 & 1
\end{array}\right)
$$

Computer Vision

Projection matrices

We define

$$
p=\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right) ; \quad P=\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right), \quad \widetilde{P}=\left(\begin{array}{l}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

yielding
$\rho p=K R^{t}(P-C)$ for some non-zero $\rho \in \mathbb{R}$
or, $\quad \rho p=K\left(R^{t} \mid-R^{t} C\right) \widetilde{P}$
or, $\quad \rho p=(M \mid t) \widetilde{P}$ with rank $M=3$

Computer Vision

From object radiance to pixel grey levels

After the geometric camera model...
... a p1010m91fle camera model

2 steps:

1. from object radiance to image irradiance
2. from image irradiance to pixel grey level

Image irradiance and object radiance

we look at the irradiance that an object patch will cause in the image
assumptions:
radiance R assumed known and
object at large distance compared to the focal length

Is image irradiance directly related to the radiance of the image patch?

Computer Vision

The viewing conditions

$$
I=R \frac{A_{l}}{f^{2}} \cos ^{4} \alpha
$$

the $\cos ^{4}$ law

Computer Vision

The $\cos ^{4}$ law cont' d

Especially strong effects for wide-angle and fisheye lenses

From irradiance to gray levels

$$
f=\mathcal{E}^{\gamma}=1
$$

Computer Vision
 From irradiance to gray levels

$$
f=g I^{\gamma}+d
$$

signal w. cam cap on

Computer
Vision
illumination

Computer Vision

Illumination

Well-designed illumination often is key in visual inspection

The light was good, but
the hot wax was a problem...

Computer Vision

Illumination techniques

Simplify the image processing by controlling the environment

An overview of illumination techniques:

1. back-lighting
2. directional-lighting
3. diffuse-lighting
4. polarized-lighting
5. coloured-lighting
6. structured-lighting
7. stroboscopic lighting

Back-lighting

lamps placed behind a transmitting diffuser plate, light source behind the object
generates high-contrast silhouette images, easy to handle with binary vision
often used in inspection

Computer Vision

Example backlighting

Directional and diffuse lighting

Directional-lighting

generate sharp shadows generation of specular reflection (e.g. crack detection)
shadows and shading yield information about shape

Diffuse-lighting

illuminates uniformly from all directions prevents sharp shadows and large intensity variations over glossy surfaces

Computer
Vision

Crack detection

Computer
Example directional lighting Vision

Computer
Vision

Example diffuse lighting

Polarized lighting

2 uses:

1. to improve contrast between Lambertian and specular reflections
2. to improve contrasts between dielectrics and metals

Computer Vision

Polarised lighting

polarizer/analyzer configurations

law of Malus:
$I(\theta)=I(0) \cos ^{2} \theta$

Polarized lighting

2 uses:

1. to improve contrast between Lambertian and specular reflections
2. to improve contrasts between dielectrics and metals

Computer Vision

Polarized lighting

specular reflection keeps polarisation : diffuse reflection depolarises
suppression of specular reflection :

polarizer/analyzer crossed
prevents the large dynamic range caused by glare

Computer Vision

Example pol. lighting (pol./an.crossed)

Polarized lighting

2 uses:

1. to improve contrast between Lambertian and specular reflections
2. to improve contrasts between dielectrics and metals

Reflection : dielectric

Polarizer at Brewster angle

Computer Vision

Reflection: conductor

strong reflectors more or less preserve polarization

Computer Vision

Polarised lighting

distinction between specular reflection from dielectrics and metals; works under the Brewster angle for the dielectric dielectric has no parallel comp. ; metal does suppression of specular reflection from dielectrics :

polarizer/analyzer aligned distinguished metals and dielectrics

Computer Vision

Example pol. lighting (pol./an. aligned)

Coloured lighting

highlight regions of a similar colour
with band-pass filter: only light from projected pattern (e.g. monochromatic light from a laser)
differentiation between specular and diffuse reflection
comparing colours \Rightarrow same spectral composition of sources!
spectral sensitivity function of the sensors!

Computer
Vision

Example coloured lighting

Coloured lighting

Example videos: weed-selective herbicide spraying

Computer Vision

Coloured lighting

Computer Vision

Structured and stroboscopic lighting

spatially or temporally modulated light pattern

Structured lighting

e.g. : 3D shape : objects distort the projected pattern
(more on this later)

Stroboscopic lighting
high intensity light flash
to eliminate motion blur

Computer
Vision

Stroboscopic lighting

Computer
Vision

Application

Example videos: vegetable inspection

Computer
Vision
Application

MAT 2000

