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Taught by 

- prof. Luc Van Gool
- Prof. Ender Konukoglu

- Guest starring by prof 
- Orcun Goksel

The course comes with a course text that covers
most – but not all ! – material. 
Slide decks for all lectures will be made available
on eDoz or similar
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We got questions about which course to take

Computer Vision (D-INFK), or
Image Analysis and Computer vision (this course)

IN ANY CASE, DO NOT TAKE BOTH ! 

If you took the introductory course on CV at D-INFK,
then best take Computer Vision

If you did not take that course, 
then best take Image Analysis and Computer Vision
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The central take-home message:

For people vision is their most 
crucial sense, for good reason
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Computer
Vision

q half our brain is devoted to it

q developed many times during  evolution

q it is non-contact

q it can be implemented with high resolution

q works with ambient E-M waves

q yields colour, texture, depth, motion, shape 

Vision is important

è
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… it is hot ...



Computer
Vision

The central take-home message:

It is feasible now to let most
things see their environment

è



Computer
Vision

CV at the forefront of technology
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These days:

The 90’s:

The 80’s:

Cheap, small sensors

Cheap, small lasers

Cheap, small processors PCs

The Web

???
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Watch out for the

SENSORS

PROCESSORS

ACTUATORS
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… it is intriguing ...
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The central take-home message:

Effective vision needs more than 
sheer filtering and measuring
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The horizontal lines are equally long…
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Vision The perception of curvatures

Illusions : interference of differently oriented 
patterns via adaptation

è



Computer
Vision The perception of color

The red squares have equal color…
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The dogs are identical…
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The perception of color

Focus on the cross and you see a virtual green dot circling…
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Vision The perception of motion

The ̀ barber pole’ rotates about the vertical, 
it does not translate vertically…
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… it is useful ...
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MEDICINE
INSPECTION

REMOTE SENSING
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some areas do not allow for much control:   
medical IP, remote sensing, surveillance, etc.

currently CV is conquering the less controllable 
areas by storm

The development of computer vision apps

è

Most early applications where found in 
production environments, as these allow for 
controlled conditions and have little uncertainty
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Rationales

q increase productivity
q increase reliability
q increase flexibility
q decrease costs
q assist with quantitative aspects of a job
q guarantee constant vigilance/assistance
q realise intelligent man/machine interfaces
q automate complex processes
q generate more complete 3D models
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Computer
Vision Rationales behind computer vision 

for traditional visual inspection

a well engineered vision system can:

q increase productivity

q increase reliability

q increase flexibility

q decrease costs

è
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Vision, does it make sense?
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Rationales
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Ex App: autonomous vehicles



Computer
Vision

36

• 3 forward normal (1 stereo pair + 1 wide angle) + 4 fish eyes for 360 vision
• Images below show the result of calibration
• We also take into account if cams are behind glass

Ex App: autonomous vehicles
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AUTOSENS 2017

car detection:

Ex App: autonomous vehicles
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AUTOSENS 2017

Ex App: autonomous vehicles

pedestrian detection:
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AUTOSENS 2017

Ex App: autonomous vehicles

putting vision modalities together:



Computer
Vision

Annotations	based	on	new	benchmark	 :	http://benchmark.tusimple.ai/#/t/1
Markings	are	annotated	as	series	of	connected	points	on	equidistant	rows	(see	
example	picture	below)																																																																																	
Note:	lanes	are	also	annotated	when	markings	are	not	present,	not	visible,	or	
even	occluded	by	cars

Ex App: autonomous vehicles

Latest addition: lane marking detection
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Original image                             segmentation output

Instance segmentation                       line resampling/fitting

Latest addition: lane detection

Ex App: autonomous vehicles
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Latest addition: lane detection

Ex App: autonomous vehicles
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Ex App: image retrieval, captioning, …
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Ex App: visual surveillance
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Ex App: Augm. Reality, eg sports
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Ex App: motion capture for movies/games
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Ex App: facial performance capture
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Ex App: advert replacement
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Ex app: Avatar guidance via 3D facial capture

Developed by our spin-off FaceShift, acquired by Apple.
The basis for their user-animated emoji’s in new iPhone
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… it needs light ...
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q no vision without light…
q … because it is influenced by objects

è
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q the nature of light

q interactions with matter
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1. Geometrical optics

2. Physical optics, or

3. Quantum-mechanical optics

➔ wave character

è
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E

H

Light as electromagnetic waves
Self-sustaining exchange of electric and magnetic 
fields

wavelength

1.  wavelength

5.  direction of polarisation

amplitude

3.  amplitude E

phase

4.  phase

direction of propagation

2.  direction

è

wavelength

direction of propagation

amplitude

phase
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The spectrum
Normal ambient light is a mixture of wavelengths, 
polarisation directions, and phases
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Vision The visible range

Wavelength (in nm)

380 - 450
450 - 490
490 - 560
560 - 590
590 - 630
630 - 760

Colour

violet
blue
green
yellow
orange
red

NOTE : Cameras may have different spectral sensitivities 
(i.e. also different from human vision)

è
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The solar spectrum

Peaks around 500nm, hence human sensitivity for that 
part of the spectrum

è

Spectral composition of
light above atmosphere

Spectral composition of
light below atmosphere
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Overheating of transformer coils, with far IR

Near infra-red
(NIR) space image

NRG -> RGB for 
visualization (notice
the strong reflection in 
the NIR for vegetation)

è

Also cams for non-visible `light’, e.g. infrared
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four types :

examplephenomenon

absorption blue water
scattering blue sky, red sunset
reflection coloured ink
refraction dispersion by a prism

+ diffraction
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Vision Scattering

3 types depending on relative sizes of particles and 
wavelengths: 

1. small particles: Rayleigh (strongly wavelength dependent)

2. comparable sizes: Mie (weakly wavelength dependent)

3. Large particles: non-selective (wavelength independent)

è
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Mie scattering Rayleigh scatteringScattered
energy

S

λ (wavelength)

Wavelength dependence

Less haze in the infrared (long wavelengths -> little scatter)
Looking through clouds by radar (even longer wavelengths)
NOTE: without scatter we would wander mainly in the dark

è
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Atmospheric showcase
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Tyndall effect (blue sky)
Red, setting sun
Grey clouds

Coloured cloud 
from volcanic
eruption
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four types :

examplephenomenon

absorption blue water
scattering blue sky, red sunset
reflection coloured ink
refraction dispersion by a prism

+ diffraction
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(Mirror) reflection
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n1

n2

Reflection

n

⊥rE

//rE
kr

⊥iE //iE

ki

∆r

∆i

è

Angle of reflection  =  angle of incidence 
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Polarizer at Brewster angle

Full reflection at grazing angles
è
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Vision Reflection : conductor

strong reflectors (under all angles)
more or less preserve polarization
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2.3. PHOTOMETRIC MODEL 21

(a) (b)

Figure 2.9: Examples of surface reflection: (a) Reflection for smooth surfaces,
where light rays are reflected in a direction that is rotated by 180� around the
surface normal n. (b) Reflection for surfaces with complex micro-geometry,
where lights rays are scattered in all directions.

One of the most general forms to characterize the reflective behavior of sur-
faces is the bidirectional reflectance distribution function (BRDF). This function
basically expresses the probability that light arriving from a given direction will
be reflected in another direction. For a given surface point x and wavelength
�, the BRDF is defined as the ratio of the di↵erential radiance reflected in
the excitant direction (!e), and the di↵erential irradiance3 incident through a
di↵erential solid angle (!i). It is denoted as,

f(!i,!e) = f(✓i,�i, ✓e,�e) =
dLe(!e)

Li(!i)cos✓id!i
(2.42)

The directions4 !i and !e are relative to some local coordinate frame on the
surface. Most surfaces are isotropic, i.e., they have no preferred direction as far
as light transport is concerned, with exceptions such as woven cloth or brushed
aluminum. In that case, we can simplify the BRDF to f(✓i, ✓e,�i � �e).

A variety of physically-based BRDF models of increasing sophistication have
been proposed to represent BRDFs [37, 185]. They start with specific assump-
tions about the surface micro-geometry, and result in a model with a small num-
ber of parameters. An example of a simplified Torrance-Sparrow model is shown
in Figure 2.10(b). Compared to the di↵use model shown in Figure 2.10(a), the
directional-di↵use character is clear and also responsible for highlights moving
when changing viewing direction.

Once we have that information, we can compute the reflection in a direction
!e through integration over any incident distribution. The excitant radiance at
a surface point is obtained as follows,

Le(!e) =

Z

⌦+
i

f(!i,!e)Li(!i)cos✓id!i (2.43)

3Irradiance is the radiated power or flux per unit area.
4The direction ! can also be written as a function ✓ and � as follows, ! =

[sin✓cos� sin✓sin� cos✓]>. Here ✓ is the angle the direction of interest makes with the
surface normal, and � is the azimuthal angle.

(a) Mirror or `specular’ reflection,  (b) diffuse reflection
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three types of reflection :

diffuse specular mixed

è

… and to mixed reflection for most real surfaces

Note : Lambertian example of diffuse reflection
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In case of Lambertian reflection the observed brightness only 
depends on the direction of the incoming light. If that’s fixed
the source radiates a flux that goes down with the viewing 
angle (with         ). 
On the other hand, the same area on the camera corresponds 
to a larger surface area as one looks more obliquely (1/         )
And therefore receives light from a larger surface area. 
These two factors cancel out, which lets the surface look 
equally bright from all viewing directions.     

cosθ

cosθ
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A Lambertian surface does not look equally bright
independent of the lighting direction. Keeping the light
intensity fixed but shining more obliquely lowers the
amount of light hitting the surface per unit area. Thus
there is less light to be reflected and, hence, the surface
looks now equally darker from wherever we look.

Lambertian reflection  
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A BRDF is a 4D function, specifying how much light is
being reflected in a direction (red lines) for light coming 
in from a direction (green lines)

BRDFs are still hard to measure in practice

22 CHAPTER 2. IMAGE FORMATION

(a) (b)

Figure 2.10: Visual representation of an example BRDF. For a specific incident
direction (✓i = 45� and �i = 0�, green line), the function is plotted for the
excitant hemisphere. (a) Di↵use BRDF: Uniform in all directions, (b) Simpli-
fied Torrance-Sparrow BRDF: Strong directional component (lobe) around the
specular direction (red line).

where ⌦+
i denotes the (local) hemisphere of incident directions over which inte-

gration takes place.

2.3.3 Camera Sensor

Light rays reflected by surface patches arriving at the camera, pass through the
optics and are directed towards the sensor array(s), as shown in Figure 2.7. The
sensor array is a 2-dimensional array of photosensitive elements, one for each
pixel, and, in most modern cameras, implemented as a charge-coupled device
(CCD). The incident radiance is measured (sampled) by holding it as a small
electrical charge. The geometry of image formation determines which part of
the CCD a light ray hits.

Typically, a camera is implemented using either one or three CCDs. In a
three-CCD camera, each CCD takes a separate measurement of the primary col-
ors, red, green or blue light. Incoming light is split by a trichroic prism assembly,
which directs the appropriate wavelength ranges of light to their corresponding
CCD. In a one-CCD camera, color images are created by placing color filters
before the CCD. Each element of the filter acts as bandpass filter on the wave-
lengths of light. A particular arrangement of color filters (red, green and blue)
is the Bayer-pattern, see Figure 2.11, where twice as many green elements than
red or blue are used to mimic the physiology of the human eye.

Compared to three-CCD cameras, one-CCD cameras only provide one-third
of the color information for each pixel. Various demosaicing algorithms can be
used to interpolate the remaining two-third, i.e., filling in the gaps, however, this
yields a lower e↵ective resolution. Bilinear interpolation is a simple demosaicing
algorithm, whereby the red value of a non-red pixel is computed as the average

Diffuse example                                Mixed example
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Upper 
leaf side

Lower 
leaf side
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Spectral reflectance
e.g. vegetation
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Spectral reflectance: ex. app weed detection for 
Reduced (selective) herbicide spraying

Gaussian probabilities for different classes

Filter values (1349nm) Filter values (1931 nm)è

sugar beet
annual mercury
Canada thistle
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Ideally: spectral BRDF at all points known
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four types :

examplephenomenon

absorption blue water
scattering blue sky, red sunset
reflection coloured ink

refraction dispersion by a prism

+ diffraction
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Refraction
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n1

n2

Refraction

n

⊥tE

//tE

kt

∆t

⊥iE //iE

ki

∆i

è

n1 sinΔ i    =    n2 sinΔ t

Snell’s law
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Dispersion

è

Refraction is more complicated than
mirror reflection: the path orientation
of light rays is changed depending on
material AND wavelength  !!!
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four types :

examplephenomenon

absorption blue water
scattering blue sky, red sunset
reflection coloured ink
refraction dispersion by a prism

+ diffraction

è
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n

è

Absorption
Dissipation of wavelengths specific for the medium

Based on resonance frequencies of molecules -> peaks
Holes in sky light spectrum observed by Fraunhofer

(index of
refraction)
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… it needs brains ...
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Knowledge about HVS is important :

q Image quality in interactive systems
q HVS limitations suggest applications
q Might suggest ways to go about

human vision is much more than a bottom-up
process of subsequent signal processing steps

è
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q Image quality in interactive systems
q HVS limitations suggest applications
q Might suggest ways to go about

human vision is much more than a bottom-up
process of subsequent signal processing steps
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current AI or deep learning techniques bring 
us closer both methodologically and in terms 
of performance   (but still lacks feedback)
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❑ Luminous efficiency function : 
relates radiometry & photometry

❑ C.I.E.(Commission Internationale de 
l’Eclairage) → standardsè
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Photometry: subjective impressions
Radiometry: objective, physical measurements

at 555 nm : 1lm = 1/683 W = 1.46 mW

for light with spectral radiant flux )(λc

λλλ
λ

dvckl )()(
0∫

∞

=
=

with k is 683 lumens/watt
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The perception of colour

1. brightness

Brightness

è

Hue

2. hue

Saturation

3. saturation
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è

The perception of colour
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The history of colour science

Newton → spectrum

Young → tristimulus model

later : physiological underpinning :

3 cone types
è
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Vision The retinal cones

3 types : blue, green, yellow-green
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relative luminance (context) is the key

è



Computer
Vision The perception of contrast

relative luminance (context) is the key

è



Computer
Vision The perception of contrast

relative luminance (context) is the key

Weber’s law : W
back
l

cl ≈Δ

Relevant for just noticeable differences (jnds) and beyond
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explained by MTF
Intensity

Position
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bandpass along both axes
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there is literally more than meets the eye, 
i.c. a lot of massively parallel processing
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Fill-in : averaging of perceived contrast 
at edges over regions possibly obtained 
via extrapolation of the edges
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The brain factors out illumination
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Human vision: 
Biederman, Bar & 
Ullman, Palmer, 
…

The role of context
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All encircled
patterns 

are identical:

The role of context
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Person?

The role of context
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Car?

The role of context

human vision is much more than a bottom-up
process of subsequent signal processing steps.
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A bird, or a giant rabbit flying on a surf board ?

The role of context
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Vision Want to know more?

Foundations and Trends in 

Computer Graphics and Vision

Publishes tutorials / reviews

Freely available for ETH students

http://www.nowpublishers.com

è


