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Theoretical Analysis of Active Contours on Graphs∗

Christos Sakaridis† , Kimon Drakopoulos‡ , and Petros Maragos§

Abstract. Active contour models based on partial differential equations have proved successful in image segmen-
tation, yet the study of their formulation on arbitrary geometric graphs, which place no restrictions
in the spatial configuration of samples, is still at an early stage. In this paper, we introduce geometric
approximations of gradient and curvature on arbitrary graphs, which enable a straightforward exten-
sion of active contour models that are formulated through level sets to such general inputs. We prove
convergence in probability of our gradient approximation to the true gradient value and derive an
asymptotic upper bound for the error of this approximation for the class of random geometric graphs.
Two different approaches for the approximation of curvature are presented, and both are also proved
to converge in probability in the case of random geometric graphs. We propose neighborhood-based
filtering on graphs to improve the accuracy of the aforementioned approximations and define two
variants of Gaussian smoothing on graphs which include normalization in order to adapt to graph
nonuniformities. The performance of our active contour framework on graphs is demonstrated in the
segmentation of regular images and geographical data defined on arbitrary graphs, using geodesic
active contours and active contours without edges as representative models in our experiments.
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1. Introduction. Evolution of curves via active contour models has been applied exten-
sively in computer vision for image segmentation and object detection. In the standard image
setting which involves a regular grid of pixels, the discretization of PDEs governing the motion
of active contours is well-established and ensures proper convergence of the contour to object
boundaries. Recently, active contours have been extended to handle more general inputs in
the form of graphs whose vertices are arbitrarily distributed in a two-dimensional Euclidean
space. In particular, the input in this case consists of

1. an undirected graph G = (V, E), where V =
{
vi ∈ R2 : i = 1, . . . , n

}
and E ⊆ V × V,

and
2. a real-valued function I : V → R defined on the vertices of the graph, which resembles

∗Received by the editors October 24, 2016; accepted for publication (in revised form) June 26, 2017; published
electronically September 7, 2017. This work was primarily performed while the first author was at National Technical
University of Athens.

http://www.siam.org/journals/siims/10-3/M110010.html
Funding: The research of the third author was partially supported by the European Union under the projects

I-SUPPORT with grant H2020-643666 and BabyRobot with grant H2020-687831.
†Department of Information Technology and Electrical Engineering, ETH Zürich, 8092 Zürich, Switzerland
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the image function in the standard grid setting. For the rest of the paper, we will use
the term image function to refer to I.

This arbitrary spatial configuration poses a significant challenge to the approximation of
continuous operators that are essential for active contour models using level sets. Applications
of segmentation of such graphs span not only image processing, but also geographical infor-
mation systems and generally any field where data can assume the form of a set of pointwise
samples of a real-valued function.

Our work focuses mainly on the theoretical study of fundamental geometric terms in active
contours, primarily gradient and curvature, and the introduction of novel, neighborhood-based
approximations of them on arbitrary graphs, which improve upon previous approaches. We
prove the consistency of our approximations in the limit of infinite vertices for the class of
random geometric graphs [38]. Additionally, we derive an asymptotic bound for the error of
our gradient approximation with respect to the number of vertices of the graph. Another
important contribution is the usage of neighborhood-based smoothing filtering on graphs as
an empirical method to reduce the error of our approximations. Last, we propose normalized
versions of Gaussian filtering—which is essential for initialization of several active contour
schemes—on graphs, suited to handle nonuniform vertex spacing.

The paper is structured as follows. Section 2 reviews previous work on active contours,
graph-based morphology and segmentation, and PDE-based methods on graphs and provides
the necessary background on active contour models. In section 3 we introduce the basic quan-
tities of our framework and present our geometric approximation of gradient on arbitrary
graphs. We provide conditions for convergence in probability of our approximation in the
case of random geometric graphs and analyze the asymptotic behavior of the approximation
error, which enables an advised selection of parameters for graph construction. In section 4
we give two methods to approximate curvature on graphs and state theorems about their
convergence in probability for random geometric graphs. Section 5 is dedicated to defining
neighborhood-based smoothing filters on graphs, introducing normalized Gaussian filtering
and Gaussian derivative filtering on graphs, and demonstrating their use in smoothing syn-
thetic gradient, curvature, or image functions. In section 6 we equip two exemplar active
contour models, namely geodesic active contours [7] and active contours without edges [9],
with our approximations of gradient and curvature and apply these models to segment arbi-
trary graphs defined from regular images or containing geographical data. We assess different
methods to create the set of vertices and/or edges of these graphs and compare our approach
with a concurrent work on active contours on graphs based on finite elements [29]. It should
be noted that due to space limitations, a lengthy proof of convergence in probability for our
first method for curvature approximation is deferred to the accompanying supplemental mate-
rial file M110010 01.pdf [local/web 254KB]. For the same reason, some additional results for
smoothing filtering and segmentation of synthetic data are also included in M110010 01.pdf
[local/web 254KB].

2. Background and related work. Active contour models for curve evolution toward im-
age edges originate from “snakes” [28]. These early approaches could not, in general, handle
topological changes of the contour, for instance, splitting into two disjoint parts to detect the
boundaries of two distinct objects. PDE-based methods using level sets were proposed as an

http://epubs.siam.org/doi/suppl/10.1137/16M1100101/suppl_file/M110010_01.pdf
http://epubs.siam.org/doi/suppl/10.1137/16M1100101/suppl_file/M110010_01.pdf
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alternative in [6, 7], where the geometric active contour model was initially introduced and
subsequently complemented to establish the geodesic active contour (GAC) framework. The
former model involves two forces that govern curve motion: a balloon force that expands or
shrinks it, and a curvature-dependent force that maintains its smoothness. The latter model
adds an extra spring force that attracts the contour toward salient image edges. Both methods
embed the active contour as a level set of function u, which is termed the embedding function
and is the unknown in the PDE that models curve evolution, allowing the use of numerical
schemes of the type proposed in [37]. The curvature-dependent force is also used for regu-
larization in active contours without edges (ACWE) [9], which abandon the aforementioned
edge-driven paradigm and leverage the Mumford–Shah functional [36] to formulate a piece-
wise constant segmentation model, with automatic detection of interior contours and reduced
sensitivity to initialization. This model is further studied in [8], where the authors prove that
the global minimizers of the original nonconvex problem can be recovered via solving a convex
reformulation of it.

Graphs have long been connected to image processing, in part through their study in terms
of mathematical morphology. The application of morphological transforms on neighborhood
graphs was established in [44], while a wide variety of graph structures, algorithms for their
construction, and early applications in computer vision were surveyed in [27]. The notion of
structuring element in classical morphology was extended to graphs in [25], where the proposed
structuring graph enables a generalization of neighborhood functions on a graph beyond the
one induced by its set of edges. Morphological operators on graphs have been studied further
in [15], where the lattice of the subgraphs of a graph is considered in order to define filters
that treat the graph as a whole.

Recently, several works, including [42, 32, 31, 17, 16, 20, 18], have focused on the con-
struction of PDE-based rather than algebraically defined morphological operators on graphs,
which are then used to define active contour models on graphs. All these works are based
on the definition of a gradient operator on graphs. However, [42, 32, 31, 16, 20, 18] work
on weighted graphs, and all define a discrete gradient at a vertex as a vector whose dimen-
sionality is the same as the cardinality of the vertex’s neighborhood. This type of gradient
is a difference operator, which replaces the original continuous gradient operator and enables
the adaptation of continuous PDE schemes on graphs by defining analogous partial difference
equations. This approach sacrifices consistency of the resulting scheme with the original, con-
tinuous PDE formulation, as it removes the link between the discrete graph domain and the
underlying continuum. Its foundation lies in the theory of discrete calculus [24, 26], which
provides a framework for reformulating continuous energies on graphs such that the corre-
sponding solutions share similar properties [10, 12, 33, 23, 3, 19]. On the other hand, the
authors of [17] consider unweighted graphs and approximate the original, continuous gradi-
ent at each vertex. Their approach effectively constitutes a generalized numerical scheme for
solving the original, continuous active contour PDE on graphs that have arbitrary spatial
vertex configuration and hence greater complexity than the standard 2D image grid, as was
described in section 1. We follow the line of [17] and carefully treat the geometric quantities
involved in active contour models, such as gradient and curvature. Our aim is to establish
approximations of these operators on graphs which are asymptotically consistent in the limit
of large, dense geometric graphs in order to ensure a stable discretization of level set–based
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active contour models on arbitrary 2D graphs, as has been previously achieved for the 2D
image grid. In particular, to the best of our knowledge, the asymptotic upper bound for the
error of our gradient approximation for random geometric graphs is the first of its kind.

A different class of approaches to graph segmentation which has gained a lot of interest
in the image processing community is based on graph cuts. These approaches, in contrast to
ours, usually operate on a regular image grid and define weighted edges between image pixels
based on certain cues, such as spatial or appearance proximity, in order to find a cut of minimal
cost for the resulting weighted graph. The cost of a cut is normalized in [40] so that balanced
partitions are preferred. Approximate solutions to multilabel problems are proposed in [5],
guaranteeing constant-factor optimality. A link between geodesic active contours and graph
cuts is established in [4], where the graph is constructed so that the cost of the cut corresponds
to the contour’s length under the induced anisotropic metric, and this link is extended to the
arbitrary graph setting in [17]. The random walk algorithm of [22] assigns unlabeled pixels to
user-defined seeds interactively. Efficient algorithms for watershed-like segmentation that are
formulated as graph cuts are introduced in [13, 14]. The power watershed framework of [11]
unites and generalizes several graph-based optimization methods for image segmentation by
expressing their energies in a common, parametric form.

The analysis of consistency of algorithms operating on point clouds, or graphs which are
constructed from point clouds, has received a lot of attention, especially for machine learning
tasks such as clustering. The focus of this line of research is on proving that optimizers of
functionals which are defined on the discrete input converge to optimizers of the limiting
functional which is defined on the underlying continuum as the number of points or graph
vertices goes to infinity. The consistency of k-means is studied in [39]. More recently, [45, 2, 43]
examined spectral clustering and graph Laplacians in terms of consistency by analyzing the
convergence of the respective eigenvalues and eigenvectors. The works of [1, 34, 21] on the
consistency of various graph-cut methods are more closely related to our analysis: they define a
spatial scale parameter, which controls the connectivity of the graph through the edge weights
and depends on the number of vertices, and derive certain conditions on this parameter in
order for the respective graph-cut algorithm to be consistent. This analysis is performed in
the setting of pointwise convergence in [1, 34], whereas [21] obtains results on Γ-convergence.
In comparison, the analysis of consistency of our approximations also involves a spatial scale
parameter, the radius of the graph, which is presented in Definition 2, with a function similar
to that in the above works. An important distinction between these works and ours is that we
prove consistency at the level of operators that are used in active contour models on graphs,
not at the level of active contour algorithms themselves. Given that the aforementioned
approaches do not cover the case of input which is presented in section 1 and includes an image
function I defined on the vertices of the graph, we believe that studying the consistency of
level set–based active contour algorithms on graphs constitutes an interesting topic for future
research; our results are a promising first step in this direction.

Finally, our work bears some resemblance to unsupervised clustering of data that are
represented as graphs embedded in Euclidean domains, where techniques based on nonnegative
matrix factorization [30, 47, 46] have been applied successfully. Nonetheless, our method is not
applicable to this setting, since the input is limited to the set of vertex locations V and does
not include an image function I defined on the vertices (cf. section 1), which is essential for
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formulating active contour models. In the same sense, our framework cannot be extended to
stochastic block models [41] for graph segmentation, given that these models do not associate
each vertex with a scalar value (which would model the image function) either.

3. Gradient approximation on graphs. The first term of the active contour evolution
model that needs to be approximated is the gradient of the bivariate embedding function. We
thus develop a general method for calculating the gradient of a real-valued, bivariate function
that is implicitly defined on a continuous domain, although its values are known only at a
finite set of points, which constitute the vertices of the graph.

3.1. Main idea, notation, and definitions. Compared to the proposals of Drakopoulos
and Maragos [17] for gradient approximation, we attempt to incorporate our knowledge about
the local spatial configuration of vertices in the approximation. More specifically, we introduce
the concept of the angle around a vertex which is “occupied” by each of its neighbors and use
this concept directly in our novel geometric gradient approximation. Our motivation for this
approach comes from the following lemma in bivariate calculus.

Lemma 1. The gradient of a differentiable function u : R2 → R at point x is

(1) ∇u(x) =

∫ 2π

0
Dφu(x) eφ dφ

π
,

where eφ is the unit vector in direction φ and Dφu(x) is the directional derivative of u at x
in this direction, defined by

Dφu(x) = lim
h→0

u(x + heφ)− u(x)
h

.

Based on Lemma 1, the goal of this section is to approximate the gradient at a vertex of
the graph by substituting the integral

(2) I =
∫ 2π

0
Dφu(x) eφ dφ

with a sum over all the neighbors of the vertex. To this end, we start by introducing several
key concepts.

The Euclidean distance between vertices v and w of a graph G is denoted by d(v, w), and
the unit vector in the direction of the edge vw starting at v is denoted by evw. We define
φ(w) ∈ [0, 2π) as the angle between the vector evw and the horizontal axis, as in Figure 1.
A vertex v will be alternatively denoted by v to declare its position vector. Moreover, we
denote by N (v) the set of neighbors of v in G, with cardinality N(v). For the sake of brevity
in notation, this cardinality will be written simply as N . We write N (v) = {w1, w2, . . . , wN}
so that the angles φ(wi) are in ascending order. Based on this ordering, we define the angle
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wi−1

wi

wi+1

v

∆φ(wi)

ω(wi)

φ(wi)

Figure 1. Angles φ(wi), ∆φ(wi), and ω(wi).

around v “occupied” by wi, which we call neighbor angle, as

(3) ∆φ(wi) =



φ (wi+1)− (φ (wN )− 2π)
2

if i = 1,

φ (w1) + 2π − φ (wi−1)
2

if i = N,

φ (wi+1)− φ (wi−1)
2

otherwise.

In a similar fashion, we define the angle corresponding to the bisector between two consecutive
neighbors as

(4) ω(wi) =


φ (wi) + φ (wN )− 2π

2
if i = 1,

φ (wi) + φ (wi−1)
2

otherwise.

A visual representation of the neighbor angle is provided in Figure 1. Using the above
notation, we propose the following formula as the geometric gradient approximation at v:

(5) ∇u(v) ≈

N∑
i=1

u(wi)− u(v)
d(v, wi)

evwi ∆φ(wi)

π
.

The directional derivative term in (1) is approximated by the difference quotient of the function
along each edge. On the other hand, the angle differential is handled through the neighbor
angles, which effectively constitute a Voronoi tessellation of the circle around v, created from
its neighbors. The reasoning behind this approach is to use information about the change of u
along each particular direction that comes from the neighbor which is closest to this direction.

If we chose not to take the neighbor angles into account, we would place equal importance
on all the neighbors of the vertex, and we would return to an approximation similar to the
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Figure 2. An RGG embedded in D = [0, 1]2, with n = 80 vertices and radius ρ = 0.25.

weighted sum that was introduced in [17]:

(6) ∇u(v) ≈

N∑
i=1

u(wi)− u(v)
d(v, wi)

evwi

N
.

3.2. Convergence for random geometric graphs. In the following, we will mainly focus
on a certain type of graphs, namely random geometric graphs [38], to study the proposed
gradient approximation theoretically.

Definition 2. A random geometric graph (RGG) G(n, ρ(n)) is comprised of a set V of ver-
tices and a set E of edges. The set V consists of n points distributed uniformly at random and
independently in a bounded region D ⊂ R2. The set E of edges is defined through the radius
ρ(n) of the graph: an edge connects two vertices v and w if and only if their distance is at
most ρ(n), i.e., d(v, w) ≤ ρ(n).

An instance of an RGG is given in Figure 2. We show that for this type of graphs, the
approximation of (5) converges in probability to the true value of the gradient as the number
of vertices increases, under some conditions on the radius, which constrain the density of the
graph. Before stating the related theorem, we remind the reader of some definitions for the
asymptotic notation which is used in the following analysis.
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Figure 3. Sector S(v, ρ, θ0, θ).

Definition 3. Let f and g be two nonnegative functions. Then

f(n) ∈ O(g(n))⇔ ∃k > 0 ∃n0 ∀n ≥ n0 : f(n) ≤ kg(n),
f(n) ∈ Θ(g(n))⇔ f(n) ∈ O(g(n)) ∧ g(n) ∈ O(f(n)),
f(n) ∈ o(g(n))⇔ ∀k > 0 ∃n0 ∀n ≥ n0 : f(n) < kg(n),
f(n) ∈ ω(g(n))⇔ ∀k > 0 ∃n0 ∀n ≥ n0 : f(n) > kg(n).

Theorem 4. Let u : R2 → R be a differentiable function, and let G(n, ρ(n)) be an RGG
embedded in D = [0, 1]2, with ρ(n) ∈ ω

(
n−1/2

)
∩ o (1). For every vertex v of G, the approxi-

mation of (5) converges in probability to ∇u(v).

Proof. It suffices to prove that the sum

(7) S =
N∑
i=1

u(wi)− u(v)
d(v, wi)

evwi ∆φ(wi)

in (5) converges in probability to the integral (2). First, we show that the norm Λn =
supw∈N (v){∆φ(w)} of the partition of [0, 2π] induced by the neighbor angles converges in
probability to 0 in the limit of large graphs.

Let S(v, ρ, θ0, θ) be a circular sector centered at v, with radius ρ, occupying an angle
θ > 0 and whose rightmost radius is in the direction θ0 (see Figure 3). For every vertex
zi, i = 1, . . . , n, other than v, we can define a Bernoulli random variable indicating whether
this vertex is inside S: Zi ∼ Bern

(
ρ2 θ/2

)
. The sum of these variables follows a binomial

distribution:

Z =
n∑
i=1
zi 6=v

Zi ∼ Bin
(
n− 1,

ρ2(n) θ
2

)
.

Therefore, the probability that S is empty of vertices other than v is P(Z = 0) =(
1− ρ2(n) θ/2

)n−1, which converges to 0, because ρ(n) ∈ ω
(
n−1/2

)
. Let us consider a neigh-

bor w of v and the event

A = ∃ y, z ∈ V \ {v, w} : y 6= z ∧ y ∈ S
(
v, ρ, φ(w),

θ

2

)
∧ z ∈ S

(
v, ρ, φ(w)− θ

2
,
θ

2

)
;

i.e., there is another neighbor of v “closer” than θ/2 on each side of w. According to the above
analysis, it is straightforward that limn→+∞ P(A) = 1. Moreover, A implies ∆φ(w) ≤ θ. Thus,
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it holds that limn→+∞ P(∆φ(w) ≤ θ) = 1, and consequently

(8) lim
n→+∞

P(Λn ≤ θ) = 1 ∀θ > 0,

which concludes the first part of the proof.
Second, we show that the sum

S1 =
N∑
i=1

Dφ(wi)u(v) evwi ∆φ(wi)

converges in probability to I. S1 constitutes a Riemann sum of f(φ) = Dφu(v) eφ over [0, 2π]
with respect to the partition induced by the neighbor angles. Therefore, (8) directly implies
that S1 converges in probability to I.

The third step of the proof is to show that the difference S − S1 converges in probability
to 0. Using the triangle inequality, we obtain

‖S − S1‖ ≤
N∑
i=1

∣∣∣∣u(wi)− u(v)
d(v, wi)

−Dφ(wi)u(v)
∣∣∣∣∆φ(wi).

For every w ∈ N (v), the first order Taylor approximation of u at v in the direction φ(w) yields∣∣u(w)− u(v)− d(v, w)Dφ(w)u(v)
∣∣ ∈ O (d2(v, w)

)
.

We divide both sides by d(v, w) and use the fact that 0 ≤ d(v, w) ≤ ρ(n) to arrive at∣∣∣∣u(w)− u(v)
d(v, w)

−Dφ(w)u(v)
∣∣∣∣ ∈ O(ρ(n)).

The last result holds for every neighbor of v, so we can substitute each term of the sum to get

‖S − S1‖ ∈
N∑
i=1

O(ρ(n))∆φ(wi) = O(ρ(n))
N∑
i=1

∆φ(wi).

The sum of neighbor angles over all neighbors is constant and equals 2π, which in turn implies
that

(9) ‖S − S1‖ ∈ 2πO(ρ(n)) = O(ρ(n)).

If we further make use of the fact that ρ(n) ∈ o(1), we get that ‖S − S1‖ ∈ o(1). Consequently,
S − S1 converges to 0 almost surely and hence in probability as well.

Finally, we combine the results from the second and third steps to conclude the proof. For
arbitrary ε > 0, we use the triangle inequality to get

P(‖S − I‖ > ε) ≤ P(‖S − S1‖+ ‖S1 − I‖ > ε) ≤ P (‖S − S1‖ > ε) + P (‖S1 − I‖ > ε) .

The above inequalities hold in the limit as well:

lim
n→+∞

P(‖S − I‖ > ε) ≤ lim
n→+∞

P (‖S − S1‖ > ε) + P (‖S1 − I‖ > ε) = 0,

where the last equality is due to convergence in probability of S − S1 to 0 and of S1 to I.
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3.3. Asymptotic analysis of approximation error. Going one step further, we decompose
the error introduced by the geometric gradient approximation in order to obtain a bound on
the rate of convergence to the true gradient as the size of the RGG grows large. Since the
framework in RGGs is stochastic, our results involve expectations for the various quantities.

Let us denote the error in approximating I with S by E = S − I. Comparing the two
expressions, we deduce that the approximation in S is threefold:

1. Directional derivatives along edges are approximated with difference quotients.
2. The approximate value for the directional derivative along each edge is used as a

constant estimate for all the directions “falling into” the respective neighbor angle.
3. The unit vector in the direction of each edge is also used for all the directions corre-

sponding to the respective neighbor angle.
To isolate the above sources of error, we construct intermediate expressions between S

and I and bound the magnitude of the resulting differences.

Theorem 5. Let u : R2 → R be a differentiable function, and let G(n, ρ(n)) be an RGG
embedded in D = [0, 1]2, with ρ(n) ∈ ω

(
n−1/2

)
∩ o (1). For every vertex v of G, it holds that

(10) E[‖E‖] ∈ O
(
ρ(n) +

1
nρ2(n)

)
.

Proof. The first intermediate expression is S1, corresponding to the first part of the error,
which can be expressed as

(11) E1 = S − S1 =
N∑
i=1

(
u(wi)− u(v)
d(v, wi)

−Dφ(wi)u(v)
)

evwi ∆φ(wi).

We have shown in the proof of Theorem 4 that ‖E1‖ is bounded asymptotically by the ra-
dius of the graph (cf. (9)), as the difference quotients which are used in S are first order
approximations of the corresponding directional derivatives:

(12) ‖E1‖ ∈ O(ρ(n)).

We define the second intermediate expression as

S2 =
N∑
i=1

∫ ω(wi)+∆φ(wi)

ω(wi)
Dφu(v) evwi dφ.

If we denote the direction of ∇u(v) by θ, we can write Dφu(v) = ‖∇u(v)‖ cos(θ− φ), and the
second part of the error can be expressed as

E2 = S1 − S2 = ‖∇u(v)‖
N∑
i=1

evwi

∫ ω(wi)+∆φ(wi)

ω(wi)
(cos(θ − φ(wi))− cos(θ − φ)) dφ.

After performing some calculations, we obtain∫ ω(wi)+∆φ(wi)

ω(wi)
cos(θ − φ) dφ = 2 cos

(
θ − ω(wi)−

∆φ(wi)
2

)
sin
(

∆φ(wi)
2

)
.
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The first factor on the right-hand side can be expanded as follows using the identity cos(a−b) =
cos(a) cos(b) + sin(a) sin(b):

cos
(
θ − ω(wi)−

∆φ(wi)
2

)
= cos(θ − φ(wi)) cos

(
ω(wi) +

∆φ(wi)
2

− φ(wi)
)

+ sin(θ − φ(wi)) sin
(
ω(wi) +

∆φ(wi)
2

− φ(wi)
)
.

Furthermore, if we apply the definitions of angles ω(wi) and ∆φ(wi), we get the following
bound:∣∣∣∣ω(wi) +

∆φ(wi)
2

− φ(wi)
∣∣∣∣ ≤ ∆φ(wi)

2
⇒ ω(wi) +

∆φ(wi)
2

− φ(wi) ∈ O(∆φ(wi)).

We combine the Taylor expansions of the sine and cosine functions around 0,

cos(a) = 1 +O
(
a2) and sin(a) = a+O

(
a3) = O(a),

with the above bound to obtain

2 cos
(
θ − ω(wi)−

∆φ(wi)
2

)
sin
(

∆φ(wi)
2

)
= 2

(
cos(θ − φ(wi))

(
1 +O

(
∆φ(wi)

2
))

+ sin(θ − φ(wi))O(∆φ(wi))
)(∆φ(wi)

2
+O

(
∆φ(wi)

3
))

= cos(θ − φ(wi))∆φ(wi) + cos(θ − φ(wi))O
(

∆φ(wi)
3
)

+ sin(θ − φ(wi))O
(

∆φ(wi)
2
)
.

We substitute the above expression into E2 and use the triangle inequality and the fact that
‖evwi‖ = 1 ∀i ∈ {1, . . . , N} to obtain

‖E2‖ ∈ ‖∇u(v)‖
N∑
i=1

∣∣∣cos(θ − φ(wi))O
(

∆φ(wi)
3
)

+ sin(θ − φ(wi))O
(

∆φ(wi)
2
)∣∣∣ .

Additionally, the absolute values of the sine and the cosine in the last result are bounded from
above by 1. Thus, the second part of the error is bounded by

(13) ‖E2‖ ∈ ‖∇u(v)‖
N∑
i=1

O
(

∆φ(wi)
2
)

= ‖∇u(v)‖O

(
N∑
i=1

∆φ(wi)
2

)
.

The next step is to take the expectation for both sides of (13). Expectation preserves
inequalities, and it is straightforward that f ∈ O(g) implies E[f ] ∈ O (E[g]) for two sequences
of random variables f and g. As a result, it holds that

E [‖E2‖] ∈ ‖∇u(v)‖O

(
E

[
N∑
i=1

∆φ(wi)
2

])
.
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Since N is itself a random variable, we employ the law of total expectation and take advantage
of the fact that all ∆φ(wi) are identically distributed to write

E

[
N∑
i=1

∆φ(wi)
2

]
= E

[
E

[
N∑
i=1

∆φ(wi)
2

∣∣∣∣∣N
]]

= E

[
N∑
i=1

E
[
∆φ(wi)

2
∣∣∣N]]

= E
[
N E

[
∆φ(w)2

∣∣∣N]]
for some w ∈ N (v). Let us focus on the term E

[
∆φ(w)2

∣∣∣N]. In order to calculate this
conditional expectation, we examine the distribution of the random variable ∆φ(w). The
probability that ∆φ(w) ≤ x is equal to the probability that at least two neighbors of v other
than w fall inside the 2x radial interval. Taking into account all possible combinations, it
follows that for N ≥ 3,

P(∆φ(w) ≤ πx) =
N−1∑
k=2

(
N − 1
k

)
xk(1− x)N−1−k = 1− (N − 1)x(1− x)N−2 − (1− x)N−1

for x ∈ [0, 1]. The corresponding PDF of the random variable ∆φ(w)/π is

(N − 1)(N − 2)x(1− x)N−3, x ∈ [0, 1] ,

and therefore ∆φ(w)/π follows a Beta distribution with parameters α = 2 and β = N − 2.
We use the formulas for the mean and variance of a Beta distribution with known parameters
to write

E

[(
∆φ(w)
π

)2
∣∣∣∣∣N
]

= Var
[

∆φ(w)
π

]
+
(

E
[

∆φ(w)
π

])2

=
2(N − 2)
N2(N + 1)

+
4
N2 =

6
N(N + 1)

.

Due to linearity of expectation, the conditional expectation we are after is

(14) E
[
∆φ(w)2

∣∣∣N] =
6π2

N(N + 1)
.

Using (14), we obtain

E [‖E2‖] ∈ ‖∇u(v)‖O
(

E
[
N

6π2

N(N + 1)

])
= ‖∇u(v)‖O

(
E
[

1
N + 1

])
.

We compute the expectation E [1/(N + 1)] using the binomial distribution of the number of
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neighbors of v, N ∼ Bin
(
n− 1, πρ2

)
. The definition of this expectation is

E
[

1
N + 1

]
=

n−1∑
k=0

1
k + 1

(
n− 1
k

)(
πρ2)k (1− πρ2)n−1−k

=
1

nπρ2

n−1∑
k=0

(
n

k + 1

)(
πρ2)k+1 (1− πρ2)n−(k+1)

=
1

nπρ2

n∑
k=1

(
n

k

)(
πρ2)k (1− πρ2)n−k

=
1

nπρ2

(
1−

(
n

0

)(
πρ2)0 (1− πρ2)n) =

1
nπρ2

(
1−

(
1− πρ2)n) .

Since ρ(n) ∈ ω
(
n−1/2

)
∩ o (1), it follows that(

1−
(
1− πρ2(n)

)n) ∈ Θ(1).

Consequently, the expectation of the second part of the error is bounded through

(15) E[‖E2‖] ∈ ‖∇u(v)‖ O
(

1
nρ2(n)

)
.

Finally, the third part of the approximation error is

E3 = S2 − I = ‖∇u(v)‖
N∑
i=1

∫ ω(wi)+∆φ(wi)

ω(wi)
cos(θ − φ) (evwi − eφ) dφ.

For the ith term of the above sum, it holds that |φ− φ(wi)| ≤ ∆φ(wi), which further implies
that

‖evwi − eφ‖ ≤
∥∥evwi − eφ(wi)+∆φ(wi)

∥∥ = 2 sin
(

∆φ(wi)
2

)
.

Thus, the magnitude of E3 can be bounded using the triangle inequality as follows:

‖E3‖ ≤ ‖∇u(v)‖
N∑
i=1

∫ ω(wi)+∆φ(wi)

ω(wi)
‖evwi − eφ‖ dφ

≤ ‖∇u(v)‖
N∑
i=1

∫ ω(wi)+∆φ(wi)

ω(wi)
2 sin

(
∆φ(wi)

2

)
dφ

= ‖∇u(v)‖
N∑
i=1

2∆φ(wi) sin
(

∆φ(wi)
2

)
∈ ‖∇u(v)‖

N∑
i=1

O
(

∆φ(wi)
2
)
.

The last bound is the same as that derived in (13) for ‖E2‖, which yields

(16) E[‖E3‖] ∈ ‖∇u(v)‖ O
(

1
nρ2(n)

)
.
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The total error is E = E1 + E2 + E3, and due to the triangle inequality and the fact that
expectation preserves inequalities, it follows that

E[‖E‖] ≤ E[‖E1‖] + E[‖E2‖] + E[‖E3‖].

Based on the asymptotic bounds in (12), (15), and (16) and the sum property of the O symbol,
we derive the bound of the total error

E[‖E‖] ∈ O
(
ρ(n) +

1
nρ2(n)

)
.

The radius of the graph is effectively the factor that determines the strictness of this
bound. To provide better intuition, we study the case when ρ(n) ∈ Θ (n−a) , a ∈ (0, 1/2).
Substituting in (10), we obtain

(17) E[‖E‖] ∈ O
(
nb
)
, b =

{
−a if a ∈

(
0, 1

3

]
,

−1 + 2a if a ∈
(1

3 ,
1
2

)
.

We visualize this expression for the error bound in Figure 4. The strictest upper bound is
O
(
n−1/3

)
, which is achieved for a = 1/3 and constitutes a trade-off between minimizing the

first error term, which calls for small radii, and the other two terms, which require more
neighbors and consequently larger radii. On the other hand, when a /∈ (0, 1/2), the conditions
of Theorems 4 and 5 for ρ(n) are not met, and convergence to the true value of the gradient is
not guaranteed in general. For instance, for a = 0, we get ρ(n) ∈ Θ(1), which means that the
radius does not approach 0 in the limit. In turn, this implies that in the first part of the error
E1 in (11), the difference quotients are not guaranteed to converge to the respective directional
derivatives, since the distance d(v, w) ≤ ρ(n) does not go to 0 in the limit. In addition, for
a = 1/2, it holds that ρ(n) ∈ Θ(n−1/2) and hence ρ2(n) ∈ Θ(1/n). Using the same notation
as in the proof of Theorem 4, this implies that for every θ > 0, the probability that sector
S(v, ρ(n), θ0, θ) is empty of vertices other than v

P(Z = 0) =
(
1− ρ2(n) θ/2

)n−1 n→+∞−−−−−→ p, 0 < p < 1.

As a result, the norm Λn of the partition induced by the neighbor angles does not converge
in probability to 0, and thus the sum S1 does not converge in probability to I. A related
observation which provides further intuition for the case where a = 1/2 is that the expected
number of neighbors E[N ] = (n − 1)πρ2(n) ∈ Θ(1). In other words, the expected number of
terms of the Riemann sum S1 is finite in the limit, which forbids convergence of S1 to the
respective integral I.

From a practical point of view, (15) and (16) indicate that the error in the approximation
of (5) increases as the magnitude of the true gradient grows large, i.e., when the function
exhibits abrupt variations. This does not pose a problem for the calculation of gradient
direction, since the latter does not depend on the range of the function’s variation around
the examined vertex. Utilizing all incident edges in the weighted sum of (5) ensures that all
available information in the neighborhood of the vertex is used to estimate which direction
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Figure 4. Variation of exponent b of the asymptotic bound for gradient approximation error with respect
to exponent a of the radius. Smaller values of b mean stricter error bounds. The exponents of the individual
parts of the error are also presented.

the gradient points to, as emphasized in [17]. However, the estimated gradient magnitude
with our approximation is prone to greater error, as it depends on the range of the function’s
variation. The use of difference quotients in (5) accentuates this effect for dense graphs,
where distances between neighboring vertices that appear in the denominator of the quotients
approach zero. To circumvent this issue in practice, we adopt the approximation of [17] for
gradient magnitude, namely the maximum absolute difference of values of the function along
edges that are incident on v:

(18) ‖∇u(v)‖ ≈ max
w∈N (v)

{|u(w)− u(v)|}.

4. Curvature approximation on graphs. After having devised an approximation scheme
for the gradient of an embedding function, the next step is to build upon this scheme in order
to estimate the curvature of the level sets of this function. This differs from the gradient
case in that the input gradient values for curvature approximation are already approximate
themselves, i.e., a cascaded approximation is attempted. Therefore, the error in curvature
approximation on a graph is expected to accumulate compared to the gradient approximation
error on the same graph, since the estimated curvature at a vertex inherits the error of the
estimated gradients at its neighboring vertices.

4.1. Geometric approximation. In this type of curvature approximation, we follow an
approach similar to [17]. More specifically, we exploit the expression of curvature as the
divergence of the unit gradient field F = ∇u/ ‖∇u‖ of the embedding function u:

(19) κ(v) = div F(v), ∇u(v) 6= 0.

An integral definition of divergence as

(20) div F(v) = lim
S→{v}

∮
Γ(S) F · n d`
|S|
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(a)

w1
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v

L(w1)
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L(w5)

S(v)

(b)

w1

w2

w3

v

S(v)∆φ(w1)

∆φ(w2)

∆φ(w3)

(c)

Figure 5. Deficiencies of original curvature approximation of [17] are shown in (a) and (b) and solution
through the new geometric approximation is shown in (c). In (a) the defined region has infinite area, while in
(b) neighbor w3 causes an unintuitive shape for S(v). These ill cases are handled properly by defining region
S(v) through the neighbor angles, as done in (c).

can then be used as a basis for geometric approximations of curvature, where S is a region
with area |S| and boundary Γ(S) and n is the outward unit normal to this boundary. In
[17], the integral in (20) is approximated using a polygonal region to form a finite sum over
the neighbors of the vertex (as shown in [17, p. 8]). However, certain arrangements of the
neighbors of the examined vertex, which are shown in Figure 5, can lead to regions with
ill-defined area, boundary, and normals.

To tackle these problems, we employ again the neighbor angles that were introduced in
section 3, in order to define the region S in (20) in a more compact and principled fashion.
For vertex v, S(v) is formed as a union of circular sectors, each corresponding to a neighbor of
v, as we show in Figure 5(c). More formally, for each neighbor w of v, the respective circular
sector is S(v, d(v, w), ω(w),∆φ(w)). The area of S(v) can then be expressed as

(21) |S(v)| =
N∑
i=1

∆φ(wi)
2

d2(v, wi).

The challenge imposed by our construction of S(v) is the choice of suitable values for F
along the boundary of this region, given only its values at the locations of neighbors of v.
The resulting boundary consists of arcs, each of which contains a neighbor of v, and line
segments which connect these arcs. We fix the value of F along each arc at the geometric
approximation computed for the corresponding neighbor w using (5), Fg(w). Moreover, for
every line segment, we use the normalized mean of the approximate values of F along the two
neighboring arcs. The idea is again to use information from the closest vertex, which should
be more reliable. We visualize the described configuration in Figure 6.

Using the above approximations, we substitute the line integral in (20) with a sum of
simple line integrals over single arcs and line segments, which have closed analytical forms. If
we denote the integral over the arc Ca(wi) containing neighbor wi by Ia(wi) and the integral
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Figure 6. The picture of values of Fg at a part of the boundary of S(v) which corresponds to neighbor wi
of v.

over the line segment Cl(wi) that connects the arcs Ca(wi) and Ca(wi+1) by Il(wi), we obtain

Ia(wi) =
∫
Ca(wi)

Fg(wi) · n d`

= d(v, wi) Fg(wi) · (sin(ω(wi+1))− sin(ω(wi)), cos(ω(wi))− cos(ω(wi+1)))(22)

and

Il(wi) =
∫
Cl(wi)

Fg(wi) + Fg(wi+1)
‖Fg(wi) + Fg(wi+1)‖

· n d`

= (d(v, wi+1)− d(v, wi))
Fg(wi) + Fg(wi+1)
‖Fg(wi) + Fg(wi+1)‖

· (sin(ω(wi+1)), − cos(ω(wi+1))).(23)

The proposed geometric approximation of curvature is given by

(24) κ(v) ≈

N∑
i=1

Ia(wi) + Il(wi)

|S(v)|
.

For RGGs, this approximation is exact in the limit of large graphs like in the gradient ap-
proximation case, although the conditions are now stronger.

Theorem 6. Let G(n, ρ(n)) be an RGG embedded in D = [0, 1]2, with ρ(n) ∈ ω
(
n−1/2

)
∩

o (1) and v a vertex of G. If u : R2 → R is continuously differentiable and ∇u(v) 6= 0, then
the approximation of (24) converges in probability to κ(v).

The full proof of Theorem 6 is given in M110010 01.pdf [local/web 254KB]. A brief outline

http://epubs.siam.org/doi/suppl/10.1137/16M1100101/suppl_file/M110010_01.pdf
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of the proof with its key ideas follows. The main task in the proof is to show that

(25)
N∑
i=1

Ia(wi) + Il(wi)−
∮

Γ(S(v))
F · n d` P−→ 0.

We treat each component of Γ(S(v)), i.e., each arc and line segment, separately and prove the
following convergence in probability results:

Ia(wi)−
∫
Ca(wi)

F · n d` P−→ 0 and Il(wi)−
∫
Cl(wi)

F · n d` P−→ 0.

Afterward, these convergence results are combined through the sum property of convergence
in probability to obtain (25). To prove the above results, we make use of the continuity of
both F and ∇u at v, which is ensured by the conditions on u in Theorem 6. In addition,
we use the law of total probability to prove that certain probabilities vanish in the limit, by
expanding the examined probability with respect to the mutually exclusive events of F being
continuous or discontinuous at a point (or on a curve), and exploiting the continuity of F at
v to show that the probability of discontinuity vanishes. The last step relies on the fact that
ρ(n) ∈ o(1), which implies that the distance between the aforementioned point (or curve) and
v converges in probability to 0.

4.2. Gradient-based approximation. We have seen that the divergence of a vector field
can be used to compute the curvature. An alternative way to approximate this divergence is
through its differential definition, which avoids handling the geometric quantities of subsec-
tion 4.1. More specifically, the unit gradient field can be expressed through its components as
F = (F1, F2), so that its divergence is

(26) div F =
∂F1

∂x
+
∂F2

∂y
.

As a result, a second application of the gradient approximation of (5), this time on the
components of the approximate unit gradient field Fg = (F1,g, F2,g), is adequate for calculating
the curvature. The full expression for this approximation is
(27)

κ(v) ≈

N∑
i=1

F1,g(wi)− F1,g(v)
d(v, wi)

cos(φ(wi))∆φ(wi) +
N∑
i=1

F2,g(wi)− F2,g(v)
d(v, wi)

sin(φ(wi))∆φ(wi)

π
.

This gradient-based curvature approximation also converges in probability for RGGs, under
slightly stricter conditions than the geometric curvature approximation.

Theorem 7. Let G(n, ρ(n)) be an RGG embedded in D = [0, 1]2, with ρ(n) ∈ ω
(
n−1/2

)
∩

o (1) and v a vertex of G. Let u : R2 → R be twice differentiable and ∇u(v) 6= 0. Then, the
approximation of (27) converges in probability to κ(v).

Proof. With the same argument as in the proof of Theorem 6, it can be shown that

Fg(v)− F(v) P−→ 0 and Fg(wi)− F(wi)
P−→ 0 ∀i ∈ {1, . . . , N}.
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These results can be combined into

Fg(wi)− Fg(v)− (F(wi)− F(v)) P−→ 0 ∀i ∈ {1, . . . , N}.

Using the above convergence and the product and sum properties of convergence in probability,
it follows that

N∑
i=1

F1,g(wi)− F1,g(v)
d(v, wi)

evwi ∆φ(wi)−
N∑
i=1

F1(wi)− F1(v)
d(v, wi)

evwi ∆φ(wi)
P−→ 0.

Furthermore, since u is twice differentiable and ∇u(v) 6= 0, F is differentiable at v, as
the quotient of differentiable functions with nonzero denominator. As a result, F1 is also
differentiable at v, and Theorem 4 applies:

N∑
i=1

F1(wi)− F1(v)
d(v, wi)

evwi ∆φ(wi)

π

P−→ ∇F1(v).

This result can be combined with the previous one through the sum property of convergence
in probability to obtain

N∑
i=1

F1,g(wi)− F1,g(v)
d(v, wi)

evwi ∆φ(wi)

π

P−→ ∇F1(v).

Analysis identical to that above leads to the same result for F2.
The last step of the proof is to isolate from the last convergence results the x-component

of ∇F1(v) and the y-component of ∇F2(v), which appear in (26), and use the sum property of
convergence in probability to show that the expression on the right-hand side of (27) converges
in probability to ∂F1(v)/∂x+ ∂F2(v)/∂y.

5. Smoothing filtering on graphs. In the previous two sections, we developed certain
approximations on arbitrary graphs to compute quantities that are essential for active contour
models. Despite convergence of these approximations to the true values of the respective
quantities in the case of RGGs, in practice there is a nonnegligible error for graphs with finite
number of vertices. This error is propagated to the embedding function of the active contour
after each update, and therefore it may be accumulated after several iterations. Consequently,
it is intuitive to apply smoothing filtering on the approximate values at a local, neighborhood
level as an empirical means to eliminate potential outliers by taking into account the values
at neighboring vertices. Of course, this type of filtering induces an additional computational
burden, especially when performed at every iteration, but we are willing to trade some speed
for accuracy. We analyze this neighborhood-based filtering in subsection 5.1.

Moreover, a different type of smoothing is involved in the GAC model [7] as a form of reg-
ularization of the image to distinguish predominant “edges” from small-scale variations. This
regularization typically uses an isotropic Gaussian filter, for which we propose two modified
versions that are tailored for the arbitrary graph setting in subsection 5.2.
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5.1. Neighborhood-based average/median filtering. To compute a smoothed version
of a function defined on a graph, one option is to operate in the same neighborhood-based
framework that we presented in the previous sections and apply a simple filter on the original
version of the function. This filter can be either an average or a median filter, receiving as input
the set of function values at the vertex itself and all its neighbors. In the case of curvature this
is straightforward, while for gradient, we filter each of the two vector components separately.

In the following analysis, we provide theoretical intuition on the benefit of smoothing at
a neighborhood level by considering the case of smoothing the gradient approximation with
an average filter on an RGG. Our analysis is focused on the x-component of gradient for the
sake of simplicity, but the conclusions hold for the complete gradient vector as well. From a
statistical point of view, we show that using the neighbors of a vertex to form an ensemble of
estimators of the gradient at that vertex reduces the variance of the estimation compared to
the basic geometric approximation, while not changing the bias.

More formally, consider the sum S in (7) which is involved in the geometric gradi-
ent approximation at vertex v. For the purposes of this analysis, we denote this sum by
S(v) = (Sx(v), Sy(v)) and the integral I in (2) (which is approximated by S(v)) by I(v) =
(Ix(v), Iy(v)). The term Sx(v) can be interpreted statistically as an estimator of Ix(v), with
mean squared error

(28) MSE (Sx(v)) = E
[
(Sx(v)− Ix(v))2

]
= E

[
(Sx(v)− E [Sx(v)])2

]
+ (E [Sx(v)]− Ix(v))2,

where k = E
[
(Sx(v)− E [Sx(v)])2

]
is the variance of Sx(v) and l = E [Sx(v)] − Ix(v) is its

bias.
For a neighbor w of v, the same notation as above can be used to denote the respective

sum S(w) = (Sx(w), Sy(w)) and integral I(w) = (Ix(w), Iy(w)). Let us also denote N (v) =
N (v)∪ {v}, which is the set of neighbors of vertex v, augmented with v. Then, our proposed
neighborhood-based average filtering replaces Sx(v) with

(29) Sax(v) =
1

N + 1

∑
w∈N (v)

Sx(w).

At this point, we assume that function u, whose gradient is approximated, is differentiable,
as required in Theorem 4. This assumption implies that u is locally linear at v, i.e., its
gradient is approximately constant in the “continuous,” R2-neighborhood of v. Since this
analysis concerns RGGs, every w ∈ N (v) belongs to the aforementioned R2-neighborhood
of v, as the distance d(v, w) is bounded by the radius ρ. We can therefore write Ix(w) ≈
Ix(v). In addition, the isotropy of the generating point process of the vertices of an RGG
(cf. Definition 2) and the locally linear profile of u at v imply that the statistical quantities
of geometric gradient approximation at w are approximately equal to those at v:

(30) l ≈ E [Sx(w)]− Ix(w) ≈ E [Sx(w)]− Ix(v) and k ≈ E
[
(Sx(w)− E [Sx(w)])2

]
.

Based on (30), we compute the bias and variance of the average filter estimator in (29). The
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bias is

(31) E [Sax(v)]− Ix(v) =
1

N + 1

∑
w∈N (v)

(E [Sx(w)]− Ix(v)) ≈ (N + 1)l
N + 1

= l,

where the first equality follows from linearity of expectation. Before computing the variance,
we elaborate on the covariance Cov (Sx(w),Sx(z)) for w, z ∈ N (v) with w 6= z. Even though w
and z may share some neighbors, implying that the values of u that are input to the respective
terms of (7) are identical for the two vertices, the rest of the factors in these terms, in particular
the neighbor angles, still differ significantly as they depend on the spatial configuration of the
complete set of neighbors of w and z. Consequently, Cov (Sx(w),Sx(z)) ≈ 0, and we obtain

E
[
(Sax(v)− E [Sax(v)])2

]
=

1
(N + 1)2

∑
w∈N (v)

E
[
(Sx(w)− E [Sx(w)])2

]
(32)

+
1

(N + 1)2

∑
w∈N (v)

∑
z∈N (v)
z 6=w

Cov (Sx(w),Sx(z))

≈ k

N + 1
.

The mean squared error of the average filter estimator is thus MSE (Sax(v)) ≈ k/(N +1)+
l2, indicating that the proposed average filtering reduces the variance by a factor of N + 1
compared to the original geometric gradient approximation and leaves the bias unchanged,
i.e., the overall mean squared error of the estimation is reduced.

To validate the benign effects of smoothing filtering on both gradient and curvature, we
experiment with certain closed-form functions defined on RGGs. For each graph, we compute
the function’s gradient and the curvature of its level sets at each vertex using the proposed
approximations, and afterward we filter the results with an average or median filter. Deriving
the analytical expressions of the function’s gradient and curvature, we are able to compare
them with our estimates. To enable a quantitative assessment of our approximations and
smoothing filters, we define a suitable error metric which we call relative error and denote by
er. If the error in approximating, e.g., the gradient at each vertex is defined as the difference
between the computed approximate value and the true value, then the relative error is simply
the ratio of the energy of the error signal on the entire graph to the energy of the true gradient
signal on the graph:

(33) er =
Eerror

Eanalytical
.

In the experiments that follow in the rest of the paper and in M110010 01.pdf [local/web
254KB], the radius of an RGG is chosen as ρ(n) = 0.6n−1/3 unless otherwise mentioned, so as
to achieve the strictest asymptotic bound for gradient approximation error according to the
results of section 3. In the rest of this section, all RGGs are embedded in [0, 1]2. To verify the
enhancement of gradient approximation with smoothing filtering quantitatively, we evaluate

http://epubs.siam.org/doi/suppl/10.1137/16M1100101/suppl_file/M110010_01.pdf
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Figure 7. Relative error of gradient approximations for a Gaussian function defined on RGGs of increasing
size. The geometric approximation with no filtering is compared to its filtered versions with an average or median
filter.

the relative error for an isotropic Gaussian on RGGs whose size ranges from 1000 to 10,000
vertices. The analytical form of the Gaussian is

(34) exp
{
−
[
(x− x0)2 + (y − y0)2] / 2σ2} ,

with σ = 0.25 and x0 = y0 = 0.5. Figure 7 shows average values of er over 10 different graphs
for each size, which leads to a reduced variance in the estimation. Using either an average or a
median filter substantially reduces the relative error irrespective of size. This leads us to apply
smoothing on the gradient and feed the smoothed version to curvature computation. Detailed
illustrations of approximate gradient vector fields which are computed in this experiment are
given in M110010 01.pdf [local/web 254KB].

In Figure 8(a), we present the results of an experiment similar to that in Figure 7, this
time focusing on the curvature of a function that corresponds to an elliptical cone, which we
will call conic function for short. The form of this conic function is

(35)

√
(x− x0)2

α2 +
(y − y0)2

β2 ,

where α = 0.4, β = 0.3, x0 = −0.25, and y0 = 0.5. Median filtering appears superior: the
median-filtered approximations exhibit lower error than the corresponding average-filtered
ones over almost the entire range of graph sizes (except for the smallest sizes). Even more
important, the relative error of median-filtered curvature is steadily decreasing for increas-
ing graph size with both the geometric and the gradient-based approximation, in contrast
to the average-filtered cases, where the error stops decreasing around 4000 vertices. Due
to these facts, we use median filtering for smoothing gradient and curvature for the GAC
model in the rest of the paper. We also observe that the geometric approximation induces
a relatively smaller error than the gradient-based approximation for both types of filters.

http://epubs.siam.org/doi/suppl/10.1137/16M1100101/suppl_file/M110010_01.pdf
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Figure 8. Relative error of curvature approximations for a conic function defined on RGGs of increasing
size. In (a), the conic function does not assume a local extremum in the interior of the graph’s region, whereas
in (b) it does. All four combinations of approximation type (geometric or gradient-based) and smoothing filter
(average or median) are compared in both cases.

Illustrations of approximate curvature profiles from this experiment are provided in
M110010 01.pdf [local/web 254KB].

To emphasize the importance of the assumptions made for convergence of the curvature
approximations in section 4, we repeat the last experiment, setting x0 = 0.5. This way, the
conic function is not differentiable at (0.5, 0.5), which lies in the interior of the graph’s region,
and therefore the assumptions of Theorems 6 and 7 do not hold necessarily for every vertex
of the graph. In fact, near this point, the true curvature of the level sets approaches infinity.
Indeed, the evolution of relative error depicted in Figure 8(b) confirms that all approximations
are less accurate, and they do not converge in this case.

5.2. Gaussian smoothing. At the initialization stage of the GAC algorithm, one of the
tasks is to process the original image function I so as to obtain a smoother version of it. In
this way, the stopping function g which drives the active contour to object boundaries is aided
to capture only salient edges in the image and ignore small local variations.

Following [17], we employ Gaussian smoothing defined on graphs for this task. The filter
is an isotropic 2D Gaussian with standard deviation σ:

(36) Gσ(x) =
1

2πσ2 exp

(
−‖x‖

2

2σ2

)
.

We will denote by Iσ the smoothed image function which is obtained by using such a filter.
The authors of [17] use a simple graph-based convolution of (36) with the image function to
perform smoothing:

(37) Iσ(v) =
∑
w∈V

I(w)Gσ(v −w).

http://epubs.siam.org/doi/suppl/10.1137/16M1100101/suppl_file/M110010_01.pdf
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A simple formula is then used to calculate the stopping function g:

(38) g(‖∇Iσ‖) =
1

1 + ‖∇Iσ‖2
λ2

.

However, the arbitrary graph setting introduces nonuniformities: in some parts of the
graph, the vertices might be distributed more densely than in other parts. This implies that
(37) will operate counter-intuitively, introducing variations to the smoothed image in regions
of the graph where the original image function is constant. To demonstrate this behavior,
we use a simple binary image of a disk, shown in Figure 9(a). The result of applying (37)
on this image is shown in Figure 9(b). Not only has the range of image values changed,
but the interior of the original disk also exhibits significant variations in image values. This
shortcoming is propagated to ‖∇Iσ‖ and g, as we present in Figure 9(e) and Figure 9(h),
respectively. There is a deviation of g from the ideal value of 1 inside the area corresponding
to the disk, and a variation in its values as well, which means that the gradient of the stopping
function is not 0 as it should be.

We tackle this issue by adding a normalization term to (37) to address nonuniformities:

(39) Iσ(v) =

∑
w∈V

I(w)Gσ(v −w)∑
w∈V

Gσ(v −w)
.

We term this method normalized Gaussian filtering and show its result for the examined
disk image in Figure 9(c). The smoothed image is now very similar to the output of simple
Gaussian filtering in the usual image processing setting with regularly spaced pixels. As a
result, the corresponding magnitude of the gradient of Iσ and g functions (shown in Figure 9(f)
and Figure 9(i), respectively) matches our expectations.

An important observation at this point is that in the stopping function computation
pipeline, we are interested in the smoothed image’s gradient rather than the smoothed image
itself. Since the derivatives of the Gaussian filter have closed analytical forms, it is appealing
to exchange the convolution with the gradient operator and convolve the image directly with
Gaussian derivatives in order to obtain the gradient of Iσ. In this case, normalization is
not straightforward as in normalized Gaussian filtering: Gaussian derivatives assume both
positive and negative values. We circumvent this difficulty by splitting the vertices into two
sets, according to the sign of the Gaussian derivative with respect to the processed vertex, and
perform separate normalization for each of these sets. This separation can be easily expressed
in terms of the vertices’ coordinates. If we denote v = (v1, v2), then Gaussian derivative
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filtering with separate normalization is defined as

∇Iσ(v) =



∑
w∈V:
w1≥v1

I(w)
∂Gσ(v −w)

∂x

∑
w∈V:
w1≥v1

∂Gσ(v −w)
∂x

+

∑
w∈V:
w1<v1

I(w)
∂Gσ(v −w)

∂x

−
∑
w∈V:
w1<v1

∂Gσ(v −w)
∂x

,(40)

∑
w∈V:
w2≥v2

I(w)
∂Gσ(v −w)

∂y

∑
w∈V:
w2≥v2

∂Gσ(v −w)
∂y

+

∑
w∈V:
w2<v2

I(w)
∂Gσ(v −w)

∂y

−
∑
w∈V:
w2<v2

∂Gσ(v −w)
∂y

 .

The application of Gaussian derivative filtering with separate normalization on the ex-
amined image produces the results shown in Figure 9(d) for ‖∇Iσ‖ and Figure 9(g) for g.
The quality of the stopping function is at least as satisfactory as in the normalized Gaussian
filtering case of Figure 9(i). Consequently, both our novel methods for Gaussian smoothing
on graphs outperform the simple Gaussian filtering approach of [17] and can be readily used
in the GAC framework.

6. Results. Having approximated the main terms of active contour models with level sets
in the arbitrary graph setting, we are ready to apply iterative algorithms for segmentation on
graphs that stem from the PDEs which are used in these models. The input comprises a graph
G = (V, E) and an image function I, as specified in section 1. In the following experiments,
we select two representative active contour models, the GAC model [7] and the ACWE model
[9], to demonstrate the effectiveness of our approximations.

An important practical aspect of applying active contour models on graphs is the method
used to create the graph. The original input often consists only of V and I, without any
information about the edges of the graph. This setting leaves us free to choose the underlying
model for the edge structure of the graph. In our experiments, we used random geometric
graphs and Delaunay triangulations (DTs). In other cases, one may have at her disposal a
regular image defined on a grid; however, the graph framework is still relevant. In particular,
subsampling the original image by placing a number of vertices which is much smaller than
the total number of pixels uniformly at random in the original image domain brings us to the
previous setting and at the same time reduces the size of the input compared to the standard
grid-based active contour framework. An attractive alternative to random sampling is to
extract vertex locations via watershed transformation. More specifically, we apply watershed
transformation directly to the gradient of the image and place the vertices at the centroids
(ultimate erosions) of the resulting superpixels. We show that this approach leads to far better
graph segmentation results than does randomly sampling the image, as it captures image
particularities into the spatial structure of the graph and “compresses” the image function
into its part that is crucial for segmentation.
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Figure 9. Comparison of methods for Gaussian smoothing and computation of stopping function. The
original image on the graph (a disk) is shown in (a). The rest of the figure is organized as follows: the two
rightmost plots of the top row contain smoothed versions Iσ of the original image, the middle row contains
gradient magnitudes of Iσ, and the bottom row contains g values based on these gradient magnitudes. The
results in the left column pertain to our Gaussian derivative filtering with separate normalization using σ = 0.02
and λ = 0.05, those in the middle column pertain to the simple Gaussian filtering of [17] using σ = 0.05 and
λ = 1000, and those in the right column correspond to our normalized Gaussian filtering with σ = 0.02 and
λ = 0.05. We use the approximation of (18) to compute the gradient magnitude in (e) and (f). For all three
methods, we filter ‖∇Iσ‖ with a median filter before feeding it to (38) for computing g.

6.1. Geodesic active contours. The algorithm for GACs on graphs with our approxima-
tions includes the following steps:

1. Compute g(‖∇Iσ‖), using either (39) and (18) or (40) to compute ‖∇Iσ‖. In both
cases, median filtering is applied to ‖∇Iσ‖ before plugging it into the formula for g.
Then, compute the magnitude of g’s gradient using (18) and its direction using (5).
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2. Choose a subset X of V which contains the objects to be detected and initialize the
embedding function with the signed distance function from the boundary ofX, denoted
by u0. By convention, u0 is positive inside X.

3. Iterate for r ∈ N,

(41) ur = ur−1 + ∆t((κ− c) ‖∇ur−1‖ g +∇g · ∇ur−1),

until convergence. In the difference equation (41), ∆t and c are positive constants and
κ is the curvature of the level sets of ur−1.

In practice, after each iteration of step 3 of the algorithm, we smooth ur with a median
filter before proceeding to the next iteration. The parameters involved in the algorithm are
the time step ∆t of the difference equation, the balloon force constant c, the scale σ of the
Gaussian smoothing filter, and parameter λ in g’s formula. Tuning their values depending on
the particular input is pivotal in obtaining satisfactory segmentation results. In the following
experiments of this subsection, unless otherwise specified, we set ∆t = 0.005 and c = 2.

A brief analysis of the computational complexity of each iteration (41) of our algorithm
follows. We examine each term on the right-hand side of (41) and aggregate the individual
contributions of all terms to obtain the total complexity. More precisely, g and∇g are constant
across iterations, so they are computed only once at initialization. The same applies to the
geometric quantities, such as angles or distances, which are involved in our approximations of
gradient and curvature. Therefore, computing the gradient ∇ur−1 at a single vertex v with (5)
has linear complexity in the number of neighbors of v: Θ (N(v)). Summing over all vertices
results in a linear number of operations in the number of edges m = |E|: Θ(m). The same,
linear complexity in the number of edges holds for computing the curvature κ with (24) or
(27), and the gradient magnitude ‖∇ur−1‖ with (18). The evaluation of (41) itself at every
vertex requires Θ(n) operations. We also need to take into account the median filtering that
is applied to ∇ur−1, κ, and ur. The calculation of the median of a set of L values requires
Θ(L) operations. Since our neighborhood-based median filter operates on the values from the
current vertex v plus all its neighbors, it requires Θ(N(v) + 1) operations to compute the
filtered version of each of the three above quantities at v. Summing over all vertices and over
the three applications of the filter yields a total number of Θ(n + m) operations for median
filtering. The same analysis holds for average filtering. Overall, the total complexity for each
iteration is

(42) Θ(n+m),

which is linear in the number of vertices and in the number of edges.
Our first experiment involves a full grayscale image with four distinct coins (Figure 10(a)).

We make a twofold comparison, on the one hand between placing the graph’s vertices at
random or via watershed transformation, and on the other hand between using random ge-
ometric or DT structure for the edges. Results from the four experiments corresponding to
all possible combinations are shown in Figures 10(c)–(e) and Figure 10(i). To ensure a fair
comparison, the number of randomly placed vertices is approximately the same as in the
watershed case. The most accurate segmentation is achieved with DT and watershed-placed
vertices (Figure 10(i)), as the boundaries of the objects are captured very well. Using ran-
domly placed vertices and DT structure, or watershed and random geometric structure, also



1502 C. SAKARIDIS, K. DRAKOPOULOS, AND P. MARAGOS

(a)
0

50
100

150
200

250
300

0

50

100

150

200

0

0.5

1

x

y

I

(b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10. Detection of grayscale objects on graphs with our GAC algorithm. (a) Full grayscale image with
four coins; (b) image function on watershed-based DT; (c)–(e) and (i) final detection results overlaid on original
image, with detected objects shown in red and background in blue. We use (c) randomly placed vertices with
random geometric structure, σ = 0.02 and λ = 0.03; (d) randomly placed vertices with DT structure, σ = 0.02
and λ = 0.03; (e) watershed-placed vertices with random geometric structure, σ = 0.008 and λ = 0.07; and (i)
watershed-placed vertices with DT structure, σ = 0.01 and λ = 0.07. The total number of iterations to obtain
the final segmentation result is (c) 2200, (d) 4000, (e) 3000, and (i) 4000. (f)–(h) Instances of active contour
evolution for watershed-placed vertices with DT structure corresponding to the final detection result in (i) after
(f) initialization of the contour, (g) 1200 iterations, and (h) 2400 iterations.

yields decent results (Figure 10(d) and Figure 10(e)). On the contrary, the combination of
randomly placed vertices and random geometric structure (i.e., a proper RGG) leads to poor
segmentation, in which close objects are not separated and others have holes in their interior
(Figure 10(c)). Consequently, the DT structure is preferable to the random geometric one, and
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(a) (b)

(c) (d) (e)

Figure 11. Segmentation of images from BSDS500 dataset with our GAC algorithm. The detected boundary,
marked white, is defined as the boundary of the union of the watershed superpixels for which the corresponding
graph vertex belongs to the final contour’s interior. We use σ = 0.005 and λ = 0.03 in all cases except (d), for
which we set λ = 0.05, and (e), for which we set σ = 0.01 and λ = 0.02. The total number of iterations to
obtain the final segmentation result is (a) 3400, (b) 2000, (c) 2600, (d) 4400, and (e) 5600.

using watershed transformation to place vertices when a full image is available is better than
using random placement.

We use the combination of watershed-placed vertices and DT structure for the edges to
repeat the above experiment for a collection of natural color images from the Berkeley Seg-
mentation Dataset BSDS500 [35]. The images were converted to grayscale for the application
of our method. Segmentation results on the images are presented in Figure 11. In general,
our algorithm successfully detects the dominant objects in the images, even though back-
ground clutter and thin protrusions or concavities of the objects’ boundaries may cause minor
inaccuracies.

An interesting application of our method is related to geographical data, where the two
spatial coordinates are longitude and latitude and the image function can encode information
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Figure 12. Segmentation of wind speed data on a graph with our GAC algorithm. (a) Normalized data
on the graph. (b) Smoothed wind speed. (c) Final detection result after 1000 iterations, with vertices in the
contour’s interior shown in red and the rest in blue.

about any type of real-valued signal defined at the vertices of the graph. Such a signal is
the average annual wind speed, which is particularly important for locating regions with high
wind power potential. Figure 12 presents the application of our algorithm for GACs on graphs
to average annual wind speed data on a graph constructed as a DT. We use σ = 0.05, λ = 0.8,
and c = 5 and normalize the coordinates and the values of wind speed. The algorithm detects
a cluster that corresponds to a region with relatively uniform and quite high wind speed.
Another example regards the signal strength of a cellular network. Figure 13 demonstrates
the result of our method for such data on a DT. We again normalize the data and use a
very small time step ∆t = 10−4 to guarantee convergence, which requires more iterations
until termination than in the previous experiments. In addition, we set σ = 0.03, λ = 0.02,
and c = 20. The segmented set of vertices comprises two regions, the southern of which is
characterized by an increased signal strength compared to the rest of the graph. Our approach
is tailored for geographical data with arbitrary spatial configuration such as in the above cases,
which grants greater flexibility when collecting measurements.

In the concurrent work of [29], the finite element method (FEM) is used to apply the GAC
model to arbitrary graphs. Even though this approach inherits the advantages of the well-
established framework of finite elements, our method features greater generality and lower
computational complexity.

In particular, our method is applicable for any type of connectivity pattern defined through
the set of edges E of the input graph. For instance, when E is given as part of the input and
models connections of vertices that follow an arbitrary, nonlocal pattern which is known a
priori, our method still applies. On the contrary, the method in [29] only applies to triangu-
lations; notably, it cannot handle the aforementioned case with arbitrary edge structure, or
other commonly used types of graphs such as k nearest neighbor graphs or RGGs.

Furthermore, in case of triangulations, the complexity of each iteration of our algorithm
for geodesic active contours is O(n), i.e., linear in the number of vertices n, whereas the
respective complexity of each iteration of the FEM algorithm in [29] is O

(
n2
)

according to
the analysis therein, i.e., quadratic in n. The O(n) complexity for our iterations follows from
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Figure 13. Segmentation of signal strength data of a cellular network on a graph with our GAC algorithm.
(a) Normalized data on the graph. (b) Smoothed signal strength. (c) Initial contour. (d) Final detection result
after 40,000 iterations, with vertices in the contour’s interior shown in red and the rest in blue.

(42) and planarity of triangulations, which bounds the number of edges through m ≤ 3n− 6.
Consequently, our method is much faster than that in [29] even for moderately sized graphs
with n ∼ 104, and at the same time it achieves the same segmentation quality as in [29], as
shown in the experiments that follow.

In Figure 14 we compare the two approaches on a pair of images from our previous
experiments. The graphs are formed as DTs with watershed-placed vertices. The results of
our method in Figure 14(a) and Figure 14(c) have already been presented in Figure 10(i)
and Figure 11(d), respectively, and we present them again side by side with the respective
results of [29] in Figure 14(b) and Figure 14(d) to facilitate comparison. Wherever possible,
for [29] we use parameter values that are the same as or at least similar to those we use
for our method, so that a fair comparison is ensured. The two methods demonstrate similar
segmentation performance on both images. However, our method is faster: for the bird image,
the constructed graph comprises n = 14797 vertices and the running time is 1001± 4 sec for
our method and 3159± 7 sec for [29].

6.2. Active contours without edges. The algorithm for ACWE [9] on graphs with our
approximations includes the following steps:

1. Choose a subset X of V and initialize the embedding function with the signed distance
function from the boundary of X, denoted by u0. By convention, u0 is positive inside
X.

2. Iterate for r ∈ N:

(43) c1 = average {I(v) : ur−1(v) ≥ 0} , c2 = average {I(v) : ur−1(v) < 0} ,
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(c) (d)

Figure 14. Comparison of our algorithm for geodesic active contours with the FEM algorithm in [29]. For
the coins image, the foreground is shown in red and the background in blue and we use σ = 0.01 and λ = 0.07
for both methods. (a) Our result after 4000 iterations. (b) The result of [29] after 301 iterations, using c = 10
and ∆t = 0.001. For the bird image, the detected boundary is marked white and we use σ = 0.005 for both
methods. (c) Our result after 4400 iterations, using λ = 0.05. (d) The result of [29] after 4001 iterations, using
λ = 0.07, c = 10, and ∆t = 0.001.

(44) ur = ur−1 + ∆t
(
δε (ur−1)

(
µκ− ν − λ1(I − c1)2 + λ2(I − c2)2

))
until convergence. In the difference equation (44), ∆t, ε, µ, ν, λ1, and λ2 are positive
constants and κ is the curvature of the level sets of ur−1. Moreover, δε is the derivative
of a regularized version of the Heaviside function which was introduced in [9] as

(45) δε(x) = H ′ε(x) =
(

1
2

(
1 +

2
π

arctan
(x
ε

)))′
=

ε

π (x2 + ε2)
.

We modify the standard ACWE model for color images, so that it uses all three color
channels, instead of reducing the image to a simpler grayscale version. In order for the
averages and Euclidean distances to be meaningful, the original RGB values of the vector-
valued image function I at graph vertices are transformed to CIELAB values, as the latter
color space is more perceptually uniform. The update equations are modified to operate on
multiple color channels:

(46) c1 = average {I(v) : ur−1(v) ≥ 0} , c2 = average {I(v) : ur−1(v) < 0}
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(a)

(b)

(c)

Figure 15. Segmentation of images with our algorithm for ACWE on graphs. (a), (c) Images from BSDS500
with detected boundaries marked red and white, respectively. (b) Coins image with detected foreground shown in
red and background in blue. We use ∆t = 0.05, ν = 0, λ1 = λ2 = 1, and ε = medianvw∈E{d(v, w)} in all cases,
µ = 0.1 in (a), and µ = 0.5 in (b) and (c). The total number of iterations to obtain the final segmentation
result is (a) 1000, (b) 7000, and (c) 2000.

and

(47) ur = ur−1 + ∆t
(
δε (ur−1)

(
µκ− ν − λ1 ‖I− c1‖2 + λ2 ‖I− c2‖2

))
.

In Figure 15, we perform experiments that are analogous to Figure 10(i) and Figures
11(a),(e) by replacing GAC with ACWE and demonstrate the generality of our approximations
as a base for translating various active contour models to graphs. For the color images from
BSDS500 in Figures 15(a),(c), we use our modification of ACWE in (46) and (47) for exploiting
multiple color channels instead of converting the images to grayscale. The segmentation results
are of high quality, e.g., capturing the thin feathers at the eagle’s wing very precisely.

7. Conclusion. In this paper, we introduce approximations of the gradient and curvature
terms involved in the level set formulation of active contour evolution models for the case of
arbitrary graphs. We provide the conditions under which these approximations are consistent
with the true values and, in the case of gradient, the respective rate of convergence in the limit
of large graphs. At an algorithmic level, we propose neighborhood-based smoothing filters as
an empirical means to improve the accuracy of our approximations, and provide improved
implementations of Gaussian smoothing on graphs which account for potential nonuniformi-
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ties. We also demonstrate the applicability of active contours on graphs, equipped with our
approximations, for segmentation of regular images as well as raw geographical data, using
GAC and ACWE as representative models in our experiments.

A remaining challenge in our work is related to the curvature term of active contour models.
Both the geometric and the gradient-based approximation which are proposed are proved to
converge in probability to the true value of curvature at points with nonzero gradient, which
is the first result of this kind to the best of our knowledge. However, due to the cascaded
approximation that we perform, a larger amount of noise is injected in the approximate values,
which is also reflected in the slower convergence observed in our empirical tests compared to
gradient approximation. This forces us to take a very small step in time in some cases
when updating the embedding function, which leads to much slower convergence of the active
contour algorithm. To overcome this difficulty, a deeper analysis of the curvature term needs
to be accomplished, ideally establishing asymptotic bounds on the respective approximation
error similar to our bound for the gradient approximation error.

Although our framework applies to any type of graph, our theoretical analysis considers
random geometric graphs, whose definition simplifies convergence proofs for our approxima-
tions. However, judging from segmentation quality, more regular graph structures, such as
DTs, lead to more accurate results. Therefore, an interesting extension of our work is the
theoretical study of our approximations on graphs formed as DTs. Furthermore, our initial
Gaussian smoothing of the image corresponds to isotropic diffusion, which blurs predominant
edges and rounds corners. More faithful preservation of edges in the final segmentation can
be ensured by defining anisotropic smoothing on graphs.
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[19] A. Elmoataz, O. Lézoray, and S. Bougleux, Nonlocal discrete regularization on weighted graphs: A
framework for image and manifold processing, IEEE Trans. Image Process., 17 (2008), pp. 1047–1060.

[20] A. Elmoataz, M. Toutain, and D. Tenbrinck, On the p-Laplacian and ∞-Laplacian on graphs
with applications in image and data processing, SIAM J. Imaging Sci., 8 (2015), pp. 2412–2451,
https://doi.org/10.1137/15M1022793.
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