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Abstract This work addresses the problem of seman-

tic foggy scene understanding (SFSU). Although ex-

tensive research has been performed on image dehaz-

ing and on semantic scene understanding with clear-

weather images, little attention has been paid to SFSU.

Due to the difficulty of collecting and annotating foggy

images, we choose to generate synthetic fog on real im-

ages that depict clear-weather outdoor scenes, and then

leverage these partially synthetic data for SFSU by em-

ploying state-of-the-art convolutional neural networks

(CNN). In particular, a complete pipeline to add syn-

thetic fog to real, clear-weather images using incom-

plete depth information is developed. We apply our fog

synthesis on the Cityscapes dataset and generate Foggy

Cityscapes with 20550 images. SFSU is tackled in two

ways: 1) with typical supervised learning, and 2) with a
novel type of semi-supervised learning, which combines

1) with an unsupervised supervision transfer from clear-

weather images to their synthetic foggy counterparts.

In addition, we carefully study the usefulness of image

dehazing for SFSU. For evaluation, we present Foggy

Driving, a dataset with 101 real-world images depict-

ing foggy driving scenes, which come with ground truth

annotations for semantic segmentation and object de-

tection. Extensive experiments show that 1) supervised

learning with our synthetic data significantly improves

the performance of state-of-the-art CNN for SFSU on

Foggy Driving ; 2) our semi-supervised learning strategy

further improves performance; and 3) image dehazing

marginally advances SFSU with our learning strategy.
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1 Introduction

Cameras and the accompanying vision algorithms are

widely used for applications such as surveillance [9],

remote sensing [17], and automated cars [34], and

their deployment keeps expanding. While these sensors

and algorithms are constantly getting better, they are

mainly designed to operate on clear-weather images and

videos [47]. Yet, outdoor applications can hardly escape
from “bad” weather. Thus, such computer vision sys-

tems should also function under adverse weather con-

ditions. Here we focus on the presence of fog.

Fog degrades the visibility of a scene signifi-

cantly [48,62]. This causes problems not only to human

observers, but also to computer vision algorithms. Dur-

ing the past years, a large body of research has been

conducted on image defogging (dehazing) to increase

scene visibility [29,50,70]. Meanwhile, marked progress

has been made in semantic scene understanding with

clear-weather images and videos [15,53,72]. In contrast,

the semantic understanding of foggy scenes has received

little attention, despite its importance in outdoor appli-

cations. For instance, an automated car still requires a

robust detection of road lanes, traffic lights, and other

traffic agents in the presence of fog. This work investi-

gates semantic foggy scene understanding (SFSU).

High-level semantic scene understanding is usually

tackled by learning from many annotations of real im-

ages [15, 58]. Yet, the difficulty of collecting and an-
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Fig. 1 The pipeline of semantic foggy scene understanding with partially synthetic data: from a) fog simulation on real
outdoor scenes, to b) training with pairs of such partially synthetic foggy images and semantic annotations as well as pairs of
foggy images and clear-weather images, and c) scene understanding of real foggy scenes. This figure is seen better on a screen

notating images for unusual weather conditions such

as fog renders this standard protocol problematic. To

overcome this problem, we depart from this traditional

paradigm and propose another route, also different from

moving to fully synthetic scenes. Instead, we choose

to generate synthetic fog into real images that contain

clear-weather outdoor scenes, and then leverage these

partially synthetic foggy images for SFSU.

Given the fact that large-scale annotated data are

available for clear-weather images [15, 19, 24, 58], we
present an automatic pipeline to add synthetic yet

highly realistic fog to such datasets. Our fog simu-

lation uses the standard optical model for daytime

fog [39] (which has already been used extensively in im-

age dehazing) to overlay existing clear-weather images

with synthetic fog in a physically sound way, simulat-

ing the underlying mechanism of foggy image forma-

tion. We leverage our fog simulation pipeline to cre-

ate our Foggy Cityscapes dataset, by adding fog to

urban scenes from the Cityscapes dataset [15]. This

has led to 550 carefully refined high-quality synthetic

foggy images with fine semantic annotations inherited

directly from Cityscapes, plus an additional 20000 syn-

thetic foggy images without fine annotations. The re-

sulting “synthetic-fog” images are used to adapt two

semantic segmentation models [44, 72] and an object

detector [25] to foggy scenes. The models are trained

in two fashions: 1) by the typical supervised learning

scheme, using the 550 high-quality annotated foggy im-

ages, and 2) by a novel semi-supervised learning ap-

proach, which augments the dataset that is used in 1)

with the additional 20000 foggy images and draws the

missing supervision for these images from the predic-

tions of the source, clear-weather model on their clear-

weather counterparts. For evaluation purposes, we col-

lect and annotate a new dataset, Foggy Driving, with

101 images of driving scenes in the presence of fog. See

Figure 1 for the whole pipeline of our work. In addi-

tion, this work studies the utility of three state-of-the-

art image dehazing methods for SFSU as well as human

understanding of foggy scenes.

The main contributions of the paper are: 1) an au-

tomatic and scalable pipeline to impose high-quality

synthetic fog on real clear-weather images; 2) two new

datasets, one synthetic and one real, to facilitate train-

ing and evaluation of models used in SFSU; 3) a new

semi-supervised learning approach for SFSU; and 4)

a detailed study of the benefit of image dehazing for

SFSU and human perception of foggy scenes.

The rest of the paper is organized as follows. Sec-

tion 2 presents the related work. Section 3 is devoted

to our fog simulation pipeline, followed by Section 4

that introduces our two foggy datasets. Section 5 de-

scribes supervised learning with our synthetic foggy

data and studies the usefulness of image dehazing for

SFSU in this context. Finally, Section 6 extends the

learning to a semi-supervised paradigm, where super-

vision is transferred from clear-weather images to their

synthetic foggy counterparts, and Section 7 concludes

the paper.



Semantic Foggy Scene Understanding with Synthetic Data 3

2 Related Work

Our work is relevant to image defogging (dehazing),

depth denoising and completion, foggy scene under-

standing, synthetic visual data, and transfer learning.

2.1 Image Defogging/Dehazing

Fog fades the color of observed objects and reduces

their contrast. Extensive research has been conducted

on image defogging (dehazing) to increase the visibility

of foggy scenes. This ill-posed problem has been tack-

led from different perspectives. For instance, in contrast

enhancement [48,62] the rationale is that clear-weather

images have higher contrast than images degraded by

fog. Depth and statistics of natural images are exploited

as priors as well [6, 20, 21, 50]. Another line of work is

based on the dark channel prior [29], with the empiri-

cally validated assumption that pixels of clear-weather

images are very likely to have low values in some of

the three color channels. Certain works focus particu-

larly on enhancing foggy road scenes [49, 65]. Methods

have also been developed for nighttime [42], given its

importance in outdoor applications. Fast dehazing ap-

proaches have been developed in [64, 69] towards real-

time applications. Recent approaches also rely on train-

able architectures [63], which have evolved to end-to-

end models [45, 54, 73]. For a comprehensive overview

of defogging/dehazing algorithms, we point the reader

to [43,71]. All these approaches can greatly increase vis-

ibility. Our work is complementary and focuses on the

semantic understanding of foggy scenes.

2.2 Depth Denoising and Completion

Synthesizing a foggy image from its real, clear counter-

part generally requires an accurate depth map. In pre-

vious works, the colorization approach of [40] has been

used to inpaint depth maps of the indoor NYU Depth

dataset [60]. Such inpainted depth maps have been used

in state-of-the-art dehazing approaches such as [54] to

generate training data in the form of synthetic indoor

foggy images. In contrast, our work considers real out-

door urban scenes from the Cityscapes dataset [15],

which contains significantly more complex depth con-

figurations than NYU Depth. Furthermore, the avail-

able depth information in Cityscapes is not provided

by a depth sensor, but it is rather an estimate of the

depth resulting from the application of a semiglobal

matching stereo algorithm based on [32]. This depth

estimate usually contains a large amount of severe ar-

tifacts and large holes (cf. Figure 1), which render it

inappropriate for direct use in fog simulation. There are

several recent approaches that handle highly noisy and

incomplete depth maps, including stereoscopic inpaint-

ing [68], spatio-temporal hole filling [11] and layer depth

denoising and completion [59]. Our method builds on

the framework of stereoscopic inpainting [68] which per-

forms depth completion at the level of superpixels, and

introduces a novel, theoretically grounded objective for

the superpixel-matching optimization that is involved.

2.3 Foggy Scene Understanding

Semantic understanding of outdoor scenes is a cru-

cial enabler for applications such as assisted or au-

tonomous driving. Typical examples include road and

lane detection [5], traffic light detection [35], car and

pedestrian detection [24], and a dense, pixel-level seg-

mentation of road scenes into most of the relevant se-

mantic classes [8, 15]. While deep recognition networks

have been developed [25, 44, 53, 72, 75] and large-scale

datasets have been presented [15, 24], that research

mainly focused on clear weather. There is also a large

body of work on fog detection [7, 22, 51, 61]. Classifica-

tion of scenes into foggy and fog-free has been tackled as

well [52]. In addition, visibility estimation has been ex-

tensively studied for both daytime [28,46,66] and night-

time [23], in the context of assisted and autonomous

driving. The closest of these works to ours is [66], in

which synthetic fog is generated and foggy images are

segmented to free-space area and vertical objects. Our

work differs in that: 1) our semantic understanding task

is more complex, with 19 semantic classes that are com-

monly involved in driving scenarios, 8 of which occur as

distinct objects; 2) we tackle the problem with modern

deep CNN for semantic segmentation [44,72] and object

detection [25], taking full advantage of the most recent

advances in this field; and 3) we compile and release a

large-scale dataset of synthetic foggy images based on

real scenes plus a dataset of real-world foggy scenes,

featuring both dense pixel-level semantic annotations

and annotations for object detection.

2.4 Synthetic Visual Data

The leap of computer vision in recent years can to

an important extent be attributed to the availability

of large, labeled datasets [15, 19, 58]. However, acquir-

ing and annotating such a dataset for each new prob-

lem is not (yet) doable. Thus, learning with synthetic

data is gaining attention. We give some notable ex-

amples. Dosovitskiy et al. [18] use the renderings of

a floating chair to train dense optical flow regression
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networks. Gupta et al. [26] impose text onto natural

images to learn an end-to-end text detection system.

Vázquez et al. [67] train pedestrian detectors with vir-

tual data. In [55,56] the authors leverage video game en-

gines to render images along with dense semantic anno-

tations that are subsequently used in combination with

real data to improve the semantic segmentation per-

formance of modern CNN architectures on real scenes.

Going one step further, [36] shows that for the task

of vehicle detection, training a CNN model only on

massive amounts of synthetic images can outperform

the same model trained on large-scale real datasets like

Cityscapes. By contrast, our work tackles semantic seg-

mentation and object detection for real foggy urban

scenes, by adding synthetic fog to real images taken un-

der clear weather. Hence, our approach is based on only

partially synthetic data. In the same vein, [2] is based

on real urban scenes, augmented with virtual cars. A

very interesting project is “FOG” [13]. Its team devel-

oped a prototype of a small-scale fog chamber, able to

produce stable visibility levels and homogeneous fog to

test the reaction of drivers.

2.5 Transfer Learning

Our work bears resemblance to works from the broad

field of transfer learning. Model adaptation across

weather conditions to semantically segment simple road

scenes is studied in [41]. More recently, a domain ad-

versarial based approach was proposed to adapt seman-

tic segmentation models both at pixel level and fea-

ture level from simulated to real environments [33]. Our

work generates synthetic fog from clear-weather data to

close the domain gap. Combining our method and the

aforementioned transfer learning methods is a promis-

ing direction for future work. The supervision trans-

fer from clear weather to foggy weather in this paper

is inspired by the stream of work on model distilla-

tion/imitation [16, 27, 31]. Our approach is similar in

that knowledge is transferred from one domain (model)

to another by using paired data samples as a bridge.

3 Fog Simulation on Real Outdoor Scenes

To simulate fog on input images that depict real scenes

with clear weather, the standard approach is to model

the effect of fog as a function that maps the radiance

of the clear scene to the radiance observed at the cam-

era sensor. Critically, this space-variant function is usu-

ally parameterized by the distance ` of the scene from

the camera, which equals the length of the path along

which light has traveled and is closely related to scene

depth. As a result, the pair of the clear image and its

depth map forms the basis of our foggy image synthesis.

In this section, we first detail the optical model which

we use for fog and then present our complete pipeline

for fog simulation, with emphasis on our denoising and

completion of the input depth. Finally, we present some

criteria for selecting suitable images to generate high-

quality synthetic fog.

3.1 Optical Model of Choice for Fog

In the image dehazing literature, various optical mod-

els have been used to model the effect of haze on the

appearance of a scene. For instance, optical models tai-

lored for nighttime haze removal have been proposed

in [42, 74], taking into account the space-variant light-

ing that characterizes most nighttime scenes. This vari-

ety of models is directly applicable to the case of fog as

well, since the physical process for image formation in

the presence of either haze or fog is essentially similar.

For our synthesis of foggy images, we consider the stan-

dard optical model of [39], which is used extensively in

the literature [20,29,54,63,64] and is formulated as

I(x) = R(x)t(x) + L(1− t(x)), (1)

where I(x) is the observed foggy image at pixel x,

R(x) is the clear scene radiance and L is the atmo-

spheric light. This model assumes the atmospheric light

to be globally constant, which is generally valid only

for daytime images. The transmission t(x) determines

the amount of scene radiance that reaches the cam-

era. In case of a homogeneous medium, transmission

depends on the distance `(x) of the scene from the cam-

era through

t(x) = exp (−β`(x)) . (2)

The parameter β is named attenuation coefficient and

it effectively controls the thickness of the fog: larger

values of β mean thicker fog. The meteorological optical

range (MOR), also known as visibility, is defined as the

maximum distance from the camera for which t(x) ≥
0.05, which implies that if (2) is valid, then MOR =

2.996/β. Fog decreases the MOR to less than 1 km by

definition [1]. Therefore, the attenuation coefficient in

homogeneous fog is by definition

β ≥ 2.996× 10−3 m−1, (3)

where the lower bound corresponds to the lightest fog

configuration. In our fog simulation, the value that is

used for β always obeys (3).

Model (1) provides a powerful basis for simulating

fog on outdoor scenes with clear weather. Even though
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(a) Input from Cityscapes (b) Nearest-neighbor depth completion (c) Our fog simulation

Fig. 2 Comparison of our fog simulation to nearest-neighbor interpolation for depth completion on images from Cityscapes.
This figure is better seen on a screen and zoomed in

its assumption of homogeneous atmosphere is strong, it

generates synthetic foggy images that can act as good

proxies for real world foggy images where this assump-

tion might not hold exactly, as long as it is provided

with an accurate transmission map t. Straightforward

extensions of (1) are used in [65] to simulate heteroge-

neous fog on synthetic scenes.

To sum up, the necessary inputs for fog simulation

using (1) are a color image R of the original clear scene,

atmospheric light L and a dense transmission map t

defined at each pixel of R. Our task is thus twofold:

1. estimation of t, and

2. estimation of L from R.

Step 2 is simple: we use the method proposed in [29]

with the improvement of [63]. In the following, we focus

on step 1 for the case of outdoor scenes with a noisy,

incomplete estimate of depth serving as input.

3.2 Depth Denoising and Completion for Outdoor

Scenes

The inputs that our method requires for generating an

accurate transmission map t are:

• the original, clear-weather color image R to add syn-

thetic fog on, which constitutes the left image of a

stereo pair,

• the right image Q of the stereo pair,

• the intrinsic calibration parameters of the two cam-

eras of the stereo pair as well as the length of the

baseline,

• a dense, raw disparity estimate D for R of the same

resolution as R, and

• a set M comprising the pixels where the value of D

is missing.

These requirements can be easily fulfilled with a stereo

camera and a standard stereo matching algorithm [32].

The main steps of our pipeline are the following:

1. calculation of a raw depth map d in meters,

2. denoising and completion of d to produce a refined

depth map d′ in meters,

3. calculation of a scene distance map ` in meters from

d′,

4. application of (2) to obtain an initial transmission

map t̂, and

5. guided filtering [30] of t̂ using R as guidance to com-

pute the final transmission map t.

The central idea is to leverage the accurate structure

that is present in the color images of the stereo pair

in order to improve the quality of depth, before using

the latter as input for computing transmission. We now

proceed in explaining each step in detail, except step 4

which is straightforward. In step 1, we use the input

disparity D in combination with the values of the focal

length and the baseline to obtain d. The missing values

for D, indicated by M , are also missing in d.

Step 2 follows a segmentation-based depth filling

approach, which builds on the stereoscopic inpainting

method presented in [68]. More specifically, we use a

superpixel segmentation of the clear image R to guide

depth denoising and completion at the level of super-

pixels, making the assumption that each individual su-

perpixel corresponds roughly to a plane in the 3D scene.

First, we apply a photo-consistency check between

R and Q, using the input disparity D to establish pixel

correspondences between the two images of the stereo
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pair, similar to Equation (12) in [68]. All pixels in R

for which the color deviation (measured as difference in

the RGB color space) from the corresponding pixel in

Q has greater magnitude than ε = 12/255 are deemed

invalid regarding depth and hence are added to M .

We then segment R into superpixels with SLIC [3],

denoting the target number of superpixels as K̂ and

the relevant range domain scale parameter as m = 10.

For depth denoising and completion on Cityscapes, we

use K̂ = 2048. The final number of superpixels that are

output by SLIC is denoted by K. These superpixels are

classified into reliable and unreliable ones with respect

to depth information, based on the number of pixels

with missing or invalid depth that they contain. More

formally, we use the criterion of Equation (2) in [68],

which states that a superpixel T is reliable if and only

if

card(T \M) ≥ max{P, λ card(T )}, (4)

setting P = 20 and λ = 0.6.

For each superpixel that fulfills (4), we fit a depth

plane by running RANSAC on its pixels that have a

valid value for depth. We use an adaptive inlier thresh-

old to account for differences in the range of depth val-

ues between distinct superpixels. For a superpixel T ,

the inlier threshold is set as

θ = 0.01 median
x∈T\M

{d(x)}. (5)

We use adaptive RANSAC and set the maximum num-

ber of iterations to 2000 and the bound on the probabil-

ity of having obtained a pure inlier sample to p = 0.99.

The greedy approach of [68] is used subsequently to

match unreliable superpixels to reliable ones pairwise

and assign the fitted depth planes of the latter to the

former. Different than [68], we propose a novel objective

function for matching pairs of superpixels. For a super-

pixel pair (s, t), our proposed objective is formulated as

E(s, t) = ‖Cs −Ct‖2 + α‖xs − xt‖2. (6)

The first term measures the proximity of the two

superpixels in the range domain, where we denote the

average CIELAB color of superpixel s with Cs. In

other words, we penalize the squared Euclidean dis-

tance between the average colors of the superpixels in

the CIELAB color space, which has been designed to

increase perceptual uniformity [14]. On the contrary,

the objective of [68] uses the cosine similarity of aver-

age superpixel colors to form the range domain cost:

1− Cs

‖Cs‖
· Ct

‖Ct‖
. (7)

The disadvantage of (7) is that it assigns zero matching

cost to dissimilar colors in certain cases. For instance,

in the RGB color space, the pair of colors (δ, δ, δ) and

(1− δ, 1− δ, 1− δ), where δ is a small positive constant,

is assigned zero penalty, even though the former color

is very dark gray and the latter is very light gray.

The second term on the right-hand side of (6) mea-

sures the proximity of the two superpixels in the spatial

domain as the squared Euclidean distance between their

centroids xs and xt. By contrast, the spatial proximity

term of [68] assigns zero cost to pairs of adjacent super-

pixels and unit cost to non-adjacent pairs. This implies

that close yet non-adjacent superpixels are penalized

equally to very distant superpixels by [68]. As a result,

a certain superpixel s can be erroneously matched to

a very distant superpixel t which is highly unlikely to

share the same depth plane as s, as long as the range

domain term for this pair is minimal and all superpix-

els adjacent to s are dissimilar to it with respect to ap-

pearance. Our proposed spatial cost handles these cases

successfully: t is assigned a very large spatial cost for

being matched to s, and other superpixels that have

less similar appearance yet smaller distance to s are

preferred.

In (6), α > 0 is a parameter that weights the rela-

tive importance of the spatial domain term versus the

range domain term. Similarly to [3], we set α = m2/S2,

where S =
√
N/K, N denotes the total number of pix-

els in the image, and m = 10 and K are the same as

for SLIC. Our matching objective (6) is similar to the

distance that is defined in SLIC [3] and other super-

pixel segmentation methods for assigning an individual

pixel to a superpixel. In our case though, this distance

is rather used to measure similarity between pairs of

superpixels.

After all superpixels have been assigned a depth

plane, we use these planes to complete the missing

depth values for pixels belonging to M . In addition,

we replace the depth values of pixels which do not be-

long to M but constitute large-margin outliers with

respect to their corresponding plane (deviation larger

than θ̂ = 50m) with the values imputed by the plane.

This results in a complete, denoised depth map d′, and

concludes step 2.

In step 3, we compute the distance `(x) of the scene

from the camera at each pixel x based on d′(x), using

the coordinates of the principal point plus the focal

length of the camera.

Finally, in step 5 we post-process the initial trans-

mission map t̂ with guided filtering [30], in order to

smooth transmission while respecting the boundaries

of the clear image R. We fix the radius of the guided

filter window to r = 20 and the regularization param-
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(a) Input image from Cityscapes

(b) Output of our fog simulation

Fig. 3 Sunny scene from Cityscapes and the result of our
fog simulation

eter to µ = 10−3, i.e. we use the same values as in the

haze removal experiments of [30].

Results of the presented pipeline for fog simulation

on example images from Cityscapes are provided in Fig-

ure 2 for β = 0.01, which corresponds to visibility of ca.

300m. We compare our fog simulation to an alternative

implementation, which employs nearest-neighbor inter-

polation to complete the missing values of the depth

map before computing the transmission and does not

involve guided filtering as a postprocessing step.

3.3 Input Selection for High-Quality Fog Simulation

Applying the presented pipeline to simulate fog on large

datasets with real outdoor scenes such as Cityscapes

with the aim of producing synthetic foggy images of

high quality calls for careful refinement of the input.

To be more precise, the sky is clear in the majority

of scenes in Cityscapes, with intense direct or indirect

sunlight, as shown in Figure 3(a). These images usu-

ally contain sharp shadows and have high contrast com-

pared to images that depict foggy scenes. This causes

our fog simulation to generate synthetic images which

do not resemble real fog very well, e.g. Figure 3(b).

Therefore, our first refinement criterion is whether the

sky is overcast, ensuring that the light in the input real

scene is not strongly directional.

Secondly, we observe that atmospheric light estima-

tion in step 2 of our fog simulation sometimes fails to

select a pixel with ground truth semantic label sky as

the representative of the value of atmospheric light. In

rare cases, it even happens that the sky is not visible

at all in an image. This results in an erroneous, phys-

ically invalid value of atmospheric light being used in

(1) to synthesize the foggy image. Consequently, our

second refinement criterion is whether the pixel that

is selected as atmospheric light is labeled as sky, and

affords an automatic implementation.

4 Foggy Datasets

We present two distinct datasets for semantic un-

derstanding of foggy scenes: Foggy Cityscapes and

Foggy Driving. The former derives from the Cityscapes

dataset [15] and constitutes a collection of synthetic

foggy images generated with our proposed fog simu-

lation that automatically inherit the semantic anno-

tations of their real, clear counterparts. On the other

hand, Foggy Driving is a collection of 101 real-world

foggy road scenes with annotations for semantic seg-

mentation and object detection, used as a benchmark

for the domain of foggy weather.

4.1 Foggy Cityscapes

We apply the fog simulation pipeline that is presented

in Section 3 to the complete set of images provided in

the Cityscapes dataset. More specifically, we first obtain

20000 synthetic foggy images from the larger, coarsely

annotated part of the dataset, and keep all of them,

without applying the refinement criteria of Section 3.3.

In this way, we trade the high visual quality of the syn-

thetic images for a very large scale and variability of the

synthetic dataset. We do not make use of the original

coarse annotations of these images for semantic seg-

mentation; rather, we produce labellings with state-of-

the-art semantic segmentation models on the original,

clear images and use them to transfer knowledge from

clear weather to foggy weather, as will be discussed in

Section 6. We name this set Foggy Cityscapes-coarse.

In addition, we use the two criteria of Section 3.3

in conjunction to filter the finely annotated part of

Cityscapes that originally comprises 2975 training and

500 validation images, and obtain a refined set of 550

images, 498 from the training set and 52 from the val-

idation set, which fulfill both criteria. Running our

fog simulation on this refined set provides us with

a moderate-scale collection of high-quality synthetic

foggy images. This collection automatically inherits the

original fine annotations for semantic segmentation, as

well as bounding box annotations for object detection
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(a) clear-weather (b) β = 0.005 (c) β = 0.01 (d) β = 0.02

Fig. 4 Different versions of an exemplar scene from Foggy Cityscapes for varying visibility

which we generate by leveraging the instance-level se-

mantic annotations that are provided in Cityscapes

for the 8 classes person, rider, car, truck, bus, train,

motorcycle and bicycle. We term this collection Foggy

Cityscapes-refined.

Since MOR can vary significantly in reality for dif-

ferent instances of fog, we generate five distinct ver-

sions of Foggy Cityscapes, each of which is character-

ized by a constant simulated attenuation coefficient β

in (2), hence a constant MOR. In particular, we use

β ∈ {0.005, 0.01, 0.02, 0.03, 0.06}, which correspond

approximately to MOR of 600m, 300m, 150m, 100m

and 50m respectively. Figure 4 shows three of the five

synthesized foggy versions of a clear scene in Foggy

Cityscapes.

4.2 Foggy Driving

Foggy Driving consists of 101 color images depicting

real-world foggy driving scenes. We captured 51 of these

images with a cell phone camera in foggy conditions at

various areas of Zurich, and the rest 50 images were

carefully collected from the web. We note that all im-

ages have been preprocessed so that they have a maxi-
mum resolution of 960× 1280 pixels.

We provide dense, pixel-level semantic annotations

for all images of Foggy Driving. In particular, we use

the 19 evaluation classes of Cityscapes: road, sidewalk,

building, wall, fence, pole, traffic light, traffic sign, vege-

tation, terrain, sky, person, rider, car, truck, bus, train,

motorcycle and bicycle. Pixels that do not belong to any

of the above classes or are not labeled are assigned the

void label, and they are ignored for semantic segmenta-

tion evaluation. At annotation time, we label individual

instances of person, rider, car, truck, bus, train, motor-

cycle and bicycle separately following the Cityscapes

annotation protocol, which directly affords bounding

box annotations for these 8 classes.

In total, 33 images have been finely annotated (cf.

the last three rows of Figure 13) in the aforementioned

procedure, and the rest 68 images have been coarsely

annotated (cf. the top three rows of Figure 13). We

provide per-class statistics for the pixel-level semantic

annotations of Foggy Driving in Figure 5. Furthermore,

Table 1 Absolute and average number of annotated pixels,
humans and vehicles for Foggy Driving (“Ours”), KITTI and
Cityscapes. “h/im” stands for humans per image and “v/im”
for vehicles per image. Only the training and validation sets
of KITTI and Cityscapes are considered

pixels humans vehicles h/im v/im

Ours (fine) 38.3M 236 288 7.2 8.7
Ours (coarse) 34.6M 54 221 0.8 3.3
KITTI 0.23G 6.1k 30.3k 0.8 4.1
Cityscapes 9.43G 24.0k 41.0k 7.0 11.8

statistics for the number of objects in the bounding

box annotations are shown in Figure 6. Because of the

coarse annotation that is created for one part of Foggy

Driving, we do not use this part in evaluation of object

detection approaches, as difficult objects that are not

included in the annotations may be detected by a good

method and missed by a comparatively worse method,

resulting in incorrect comparisons with respect to pre-

cision. On the contrary, the coarsely annotated images

are used without such issues in evaluation of seman-

tic segmentation approaches, since predictions at unla-

beled pixels are simply ignored and thus do not affect

the measured performance.

Foggy Driving may have a smaller size than other

recent datasets for semantic scene understanding, how-

ever, it features challenging foggy scenes with compara-

tively high complexity. As Table 1 shows, the subset of

33 images with fine annotations is roughly on par with

Cityscapes regarding the average number of humans

and vehicles per image. In total, Foggy Driving contains

more than 500 vehicles and almost 300 humans. We also

underline the fact that Table 1 compares Foggy Driv-

ing — a dataset used purely for testing — against the

unions of training and validation sets of KITTI [24] and

Cityscapes, which are much larger than their respective

testing sets that would provide a better comparison.

As a final note, we identify the subset of the 19 an-

notated classes that occur frequently in Foggy Driving.

These “frequent” classes either have a larger number

of total annotated pixels, e.g. road, or a larger number

of total annotated polygons or instances, e.g. pole and

person, compared to the rest of the classes. They are:

road, sidewalk, building, pole, traffic light, traffic sign,
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Fig. 6 Number of objects per class in Foggy Driving. (a) includes statistics for the complete set of eight classes for which
instances are distinguished, whereas (b) presents a zoomed version of (a) for six of these classes

vegetation, sky, person, and car. In the experiments that

follow in Section 5.1, we occasionally use this set of fre-

quent semantic classes as an alternative to the complete

set of semantic classes for averaging per-class scores, in

order to further verify results based only on classes with

plenty of examples.

5 Supervised Learning with Synthetic Fog

We first show that our synthetic Foggy Cityscapes-

refined dataset can be used per se for successfully

adapting modern CNN models to the condition of fog

with the usual supervised learning paradigm. Our ex-

periments focus primarily on the task of semantic seg-

mentation and additionally include comparisons on the

task of object detection, evidencing clearly the useful-

ness of our synthetic foggy data in understanding the

semantics of real foggy scenes such as those in Foggy

Driving.

More specifically, the general outline of our main

experiments can be summarized in two steps:

1. fine-tuning a model that has been trained on the

original Cityscapes dataset for clear weather by

using only synthetic images of Foggy Cityscapes-

refined, and

2. evaluating the fine-tuned model on Foggy Driving

and showing that its performance is improved com-

pared to the original, clear-weather model. Thus,

the reported results pertain to Foggy Driving unless

otherwise mentioned.

In other words, all models are ultimately evaluated on

data from a different domain than that of the data on

which they have been fitted, revealing their true gener-

alization potential on previously unseen foggy scenes.

We also consider dehazing as an optional prepro-

cessing step before feeding the input images to seman-

tic segmentation models for training and testing, and

examine the effect of this dehazing preprocessing on the

performance of such a model using state-of-the-art de-

hazing methods. The effect of dehazing on semantic seg-

mentation performance is additionally correlated with

its utility for human understanding of foggy scenes by

conducting a user study on Amazon Mechanical Turk.

5.1 Semantic Segmentation

Our model of choice for conducting experiments on se-

mantic segmentation with the supervised pipeline is the

modern dilated convolutions network (DCN) [72]. In
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particular, we make use of the publicly available Di-

lation10 model, which has been trained on the 2975

images of the training set of Cityscapes. We wish to

note that this model was originally trained and tested

on 1396× 1396 image crops by the authors of [72], but

due to GPU memory limitations we train it on 756×756

crops and test it on 700 × 700 crops. Still, Dilation10

enjoys a fair mean intersection over union (IoU) score

of 34.9% on Foggy Driving.

In the following experiments of Section 5.1, we fine-

tune Dilation10 on the training set of Foggy Cityscapes-

refined which consists of 498 images, and reserve the

52 images of the respective validation set for additional

evaluation. In particular, we fine-tune all layers of the

original model for 3k iterations (ca. 6 epochs) using

mini-batches of size 1. Unless otherwise mentioned, the

attenuation coefficient β used in Foggy Cityscapes is

equal to 0.01.

Overall, we consider four different options with re-

spect to dehazing preprocessing: applying no dehazing

at all, dehazing with multi-scale convolutional neural

networks (MSCNN) [54], dehazing using the dark chan-

nel prior (DCP) [29], and non-local image dehazing [6].

Unless otherwise specified, no dehazing is applied. Our

experimental protocol is consistent with respect to de-

hazing preprocessing: the same option for dehazing pre-

processing is used both at training time and test time.

More specifically, at training time we first process the

synthetic foggy images of Foggy Cityscapes-refined ac-

cording to the specified option for dehazing preprocess-

ing and then use the processed images as input for fine-

tuning Dilation10. At evaluation time, we process the

images in Foggy Driving with the same dehazing pre-

processing that was used at training time (if any was),

and use the processed images to test the fine-tuned

model.

Benefit of Fine-tuning on Synthetic Fog. Our first

experiment evidences the benefit of fine-tuning on Foggy

Cityscapes-refined for improving semantic segmentation

performance on Foggy Driving. Table 2 presents com-

parative performance of the original Dilation10 model

against its fine-tuned counterparts in terms of mean

IoU over all annotated classes in Foggy Driving as well

as over frequent classes only. All four options regarding

dehazing preprocessing are considered. Note that we

also evaluate the original Dilation10 model for all de-

hazing preprocessing alternatives (only relevant at test

time in this case) in the first row of each part of Table 2.

Indeed, all fine-tuned models outperform Dilation10 ir-

respective of the type of dehazing preprocessing that is

applied, both for mean IoU over all classes and over

frequent classes only. The best-performing fine-tuned

model, which we refer to as FT-0.01, involves no dehaz-

Table 2 Performance comparison on Foggy Driving of Dila-
tion10 versus fine-tuned versions of it using Foggy Cityscapes-
refined, for four options regarding dehazing preprocessing.
“FT” stands for using fine-tuning and “W/o FT” for not
using fine-tuning

Mean IoU over all classes (%)

No dehazing MSCNN DCP Non-local

W/o FT 34.9 34.7 29.9 29.3
FT 37.8 37.1 37.4 36.6

Mean IoU over frequent classes in Foggy Driving (%)

No dehazing MSCNN DCP Non-local

W/o FT 52.4 52.4 45.5 46.2
FT 57.4 56.2 56.7 55.1

Table 3 Performance comparison on Foggy Driving of var-
ious fine-tuned versions of Dilation10 that correspond to
different fog simulation methods for generating the training
dataset Foggy Cityscapes-refined that is used for fine-tuning,
and different learning rate policies during fine-tuning. Mean
IoU (%) over all classes is used to report results

Constant l.r. “Poly” l.r.

Nearest neighbor 32.9 36.2
Ours w/o guided filtering 33.0 36.8
Ours 34.4 37.8

ing and outperforms Dilation10 significantly, i.e. by 3%

for mean IoU over all classes and 5% for mean IoU over

frequent classes. Note additionally that FT-0.01 has

been fine-tuned on only 498 training images of Foggy

Cityscapes-refined, compared to the 2975 training im-

ages of Cityscapes for Dilation10.

Comparison of Fog Simulation Approaches. Next,

we compare in Table 3 the utility of our proposed fog

simulation method for generating useful synthetic train-

ing data in terms of semantic segmentation performance

on Foggy Driving, against two alternative approaches:

the baseline that we considered in Figure 2 and a trun-

cated version of our method, where we omit the guided

filtering step. We consider two different policies for the

learning rate when fine-tuning on Foggy Cityscapes-

refined : a constant learning rate of 10−5 and a poly-

nomially decaying learning rate, commonly referred to

as “poly” [12], with a base learning rate of 10−5 and

a power parameter of 0.9. Our method for fog simula-

tion consistently outperforms the two baselines and the

“poly” learning rate policy allows the model to be fine-

tuned more effectively than the constant policy. In all

other experiments with DCN, we use the “poly” learn-

ing rate policy with the parameters specified above for

fine-tuning.

Increasing Returns at Larger Distance. As can

easily be deduced from (2), fog has a growing effect
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on the appearance of the scene as distance from the

camera increases. Ideally, a model that is dedicated to

foggy scenes must deliver a greater benefit for distant

parts of the scene. In order to examine this aspect of

semantic segmentation of foggy scenes, we use the com-

pleted, dense distance maps of Cityscapes images that

have been computed as an intermediate output of our

fog simulation, given that Foggy Driving does not in-

clude depth information. In more detail, we consider

the validation set of Foggy Cityscapes-refined, the im-

ages of which are unseen both for Dilation10 and our

fine-tuned models, and bin the pixels according to their

value in the corresponding distance map. Each distance

range is considered separately for evaluation by ignoring

all pixels that do not belong to it. In Figure 7, we com-

pare mean IoU of Dilation10 and FT-0.01 individually

for each distance range. FT-0.01 brings a consistent

gain in performance across all distance ranges. What

is more, this gain is larger in both absolute and rela-

tive terms for pixels that are more than 50m away from

the camera, implying that our model is able to han-

dle better the most challenging parts of a foggy scene.

Note that most pixels in the very last distance range

(more than 400m away from the camera) belong to the

sky class and their appearance does not change much

between the clear and the synthetic foggy images.

Generalization in Synthetic Fog across Densi-

ties. In order to verify the ability of a model that has

been fine-tuned on Foggy Cityscapes-refined for a fixed

value β(t) of the attenuation coefficient, hence fixed fog

density, to generalize well to new, unseen fog densities,

we evaluate the model on multiple versions of the val-

idation set of Foggy Cityscapes-refined, each rendered

using a different value for β which is in general not equal

to β(t). In particular, we use the five different versions

of Foggy Cityscapes-refined as described in Section 4.1

and obtain five models by fine-tuning Dilation10 on the

training set of each version. In congruence with nota-
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Fig. 8 Performance of semantic segmentation models on var-
ious versions of the validation set of Foggy Cityscapes-refined
corresponding to different values of attenuation coefficient β

tion in previous experiments, we denote such a fine-

tuned model by FT-β(t), e.g. FT-0.02. Afterwards, we

evaluate each of these models plus Dilation10 on the

validation set of each of the five foggy versions plus the

original, clear-weather version where β = 0. The mean

IoU performance of the six models is presented in Fig-

ure 8. Whereas the performance of Dilation10 drops

rapidly as β increases, all five fine-tuned “foggy” mod-

els are more robust to changes in β across the examined

range. Analyzing the performance of each fine-tuned

model individually, we observe that performance is high

and fairly stable in the range [0, β(t)] and drops for

β > β(t). This implies that a “foggy” model is able to

generalize well to lighter synthetic fog than what was

used to fine-tune it. Moreover, all “foggy” models com-

pare favorably to Dilation10 across the largest part of

the range of β, with most “foggy” models being beaten

by Dilation10 only for clear weather. Note also that

the performance gain with “foggy” models under foggy

conditions is much larger than the corresponding per-

formance loss for clear weather.

Effect of Synthetic Fog Density on Real-world

Performance. Our final experiment on semantic seg-

mentation serves two purposes: to examine the ef-

fect of varying the fog density of the synthetic train-

ing data as well as that of dehazing preprocessing on

the performance of the fine-tuned model on real foggy

data. To this end, we use three of the versions of

Foggy Cityscapes-refined corresponding to the values

{0.005, 0.01, 0.02} for β and consider all four options

regarding dehazing preprocessing for fine-tuning Dila-

tion10. The performance of the 12 resulting fine-tuned

models on Foggy Driving in terms of mean IoU over all
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Table 4 Performance comparison on Foggy Driving of fine-
tuned versions of Dilation10 using Foggy Cityscapes-refined,
for three different values of attenuation coefficient β in fog
simulation and four options regarding dehazing preprocessing

Mean IoU over all classes (%)

β = 0.005 β = 0.01 β = 0.02

No dehazing 37.6 37.8 36.1
MSCNN 38.3 37.1 36.9
DCP 36.6 37.4 36.1
Non-local 36.2 36.6 35.3

Mean IoU over frequent classes in Foggy Driving (%)

β = 0.005 β = 0.01 β = 0.02

No dehazing 57.0 57.4 56.2
MSCNN 57.3 56.2 56.3
DCP 56.0 56.7 55.2
Non-local 55.1 55.1 54.5

annotated classes as well as over frequent classes only is

reported in Table 4. We first discuss the effect of vary-

ing fog density for each dehazing option individually

and defer a general comparison of the various dehazing

preprocessing options to the next paragraph.

The two conditions that must be met in order for

the examined models to achieve better performance are:

1. a good matching of the distributions of the synthetic

training data and the real, testing data, and

2. a clear appearance of both sets of data, in the sense

that the segmentation model should have an easy

job in mining discriminative features from the data.

Focusing on the case that does not involve dehazing, we

observe that the models with β = 0.005 and β = 0.01
perform significantly better than that with β = 0.02,

implying that according to point 1 Foggy Driving is

dominated by scenes with light or medium fog. On the

other hand, each of the three dehazing methods that

are used for preprocessing has its own particularities in

enhancing the appearance and contrast of foggy scenes

while also introducing artifacts to the output. More

specifically, MSCNN is slightly conservative in remov-

ing fog, as was found for other learning-based dehazing

methods in [43], and operates best under lighter fog,

providing a significant improvement in this setting with

regard to point 2. In conjunction with the light-fog char-

acter of Foggy Driving, this explains why fine-tuning on

light fog (β = 0.005) combined with MSCNN prepro-

cessing delivers one of the two best overall results. By

contrast, the more aggressive DCP is known to operate

better at high levels of fog, as its estimated transmission

is biased towards lower values [63]. The performance of

models with DCP preprocessing thus peaks at medium

rather than low simulated-fog density, which signifies

a trade-off between removing fog to the proper extent

and minimal introduction of artifacts. Non-local dehaz-

ing has also been found to operate best at medium levels

of fog [43], which results in a similar performance trend

to DCP.

Effect of Dehazing Preprocessing on Real-world

Performance and Discussion. Comparing the four

options regarding dehazing preprocessing via Table 4,

we observe that applying no dehazing is the best or sec-

ond best option for both measures and across all three

values of β. Only MSCNN marginally beats the no-

dehazing option in some cases, while overall these two

options are roughly on a par. The absence of a signifi-

cant performance gain on Foggy Driving when perform-

ing dehazing preprocessing can be ascribed to generic

as well as method-specific reasons.

First, in the real-world setting of Foggy Driving, the

homogeneity and uniformity assumptions of the opti-

cal model (1) that is used by all examined dehazing

methods may not hold exactly. Of course, this model is

also used in our fog simulation, however, foggy image

synthesis is a forward problem, whereas image defog-

ging/dehazing is an inverse problem, hence inherently

more difficult. Thus, the artifacts that are introduced

by our fog simulation are likely to be less prominent

than those introduced by dehazing. This fact appears to

outweigh the potential increase in visibility for dehazed

images as far as point 2 above is concerned. An interest-

ing insight that follows is the use of forward techniques

to generate training data for hard target domains based

on data from the source domain as an alternative to the

application of inverse techniques to transform such tar-

get domains into the easier source domain.

Second, the optical model (1), on which most of the

popular dehazing approaches rely, assumes a linear re-

lation between the irradiance at a pixel and the actual

value of the pixel in the processed hazy image. There-

fore, these approaches require that an initial gamma

correction step be applied before dehazing, otherwise

their performance may deteriorate significantly. This in

turn implies that the value of gamma must be known

for each image, which is not the case for Cityscapes

and Foggy Driving. Manually searching for “best” per-

image values is also infeasible for these large datasets.

In the absence of any further information, we have used

a constant value of 1 for gamma as the authors of [6]

recommend, which is probably suboptimal for most of

the images. We thus wish to point out that future work

on outdoor datasets, whether considering fog/haze or

not, should ideally record the value of gamma for each

image, so that dehazing methods can show their full

potential on such datasets.
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Specifically for DCP, performance decreases com-

pared to MSCNN partly due to the light-fog charac-

ter of Foggy Driving which does not match the opti-

mal operating point of DCP. On the other hand, non-

local dehazing uses a different model for estimating

atmospheric light than the one that is shared by our

fog simulation, MSCNN, and DCP, and thus already

faces greater difficulty in dehazing images from Foggy

Cityscapes.

5.2 Linking the Objective and Subjective Utility of

Dehazing Preprocessing in Foggy Scene Understanding

Our experiments in Section 5.1 indicate that using any

of the three examined state-of-the-art dehazing meth-

ods to preprocess foggy images before feeding them to

a CNN for semantic segmentation does not provide a

clear benefit over feeding the foggy images directly in

the objective terms of mean IoU performance of the

trained model. In this section, we complement this ob-

jective evaluation with a study of the utility of dehazing

preprocessing for human understanding of foggy scenes

and show that the comparative results of the objective

evaluation generally agree with the comparative results

of the human-based evaluation.

Both for the objective semantic-segmentation-based

and the subjective human-based evaluation, we com-

pare the four aforementioned options with regard to

dehazing preprocessing individually on each image of

our datasets. Figure 9 presents examples of the tetrads

of images that we consider: the foggy image, which ei-

ther belongs to the validation set of Foggy Cityscapes-

refined with β = 0.01 or to Foggy Driving and corre-

sponds to no usage of dehazing, and its dehazed ver-

sions using DCP, MSCNN and non-local dehazing. For

comparative objective evaluation of the four alterna-

tives on each image, we use the mean IoU scores of the

respective fine-tuned DCN models that are considered

in the experiment of Table 2, measured on that image.

The classes that do not occur in an image are not con-

sidered for computing mean IoU on this image. The

four alternatives are ranked for each image according

to their mean IoU scores on it. Comparative evaluation

based on human subjects considers the same tetrads of

images but employs a more composite protocol, which

is detailed below.

User Study via Amazon Mechanical Turk. Hu-

mans are subjective and are not good at giving scores

to individual images in a linear scale [38]. We thus fol-

low the literature [57] and choose the paired compar-

isons technique to let human subjects compare the four

options regarding dehazing preprocessing. The partici-

pants are shown two images at a time that both pertain

to the same scene, side by side, and are simply asked to

choose the one which is more suitable for safe driving

(i.e. easier to interpret). Thus, six comparisons need to

be performed per scene, corresponding to all possible

pairs.

We use Amazon Mechanical Turk (AMT) to per-

form these comparisons. In order to guarantee high

quality, we only employ AMT Masters in our study and

verify the answers via a Known Answer Review Policy.

Masters are an elite group of subjects, who have con-

sistently demonstrated superior performance on AMT.

Each individual task completed by the participants, re-

ferred to as Human Intelligence Task (HIT), comprises

five image pairs to be compared, out of which three

pairs are the true query pairs and the rest two pairs

have a known correct answer and are only used for val-

idation. In particular, each known-answer pair consists

of two versions of a scene from Foggy Cityscapes-refined

with different levels of fog, choosing from three versions

of the dataset corresponding to clear weather, β = 0.005

and β = 0.01. The version with less fog is considered

the correct answer. In order to avoid answers based on

memorized patterns, the five image pairs in each HIT

are randomly shuffled and the left-right order of the

images in each pair is randomly swapped. In addition,

each HIT is completed by three different subjects to

increase reliability. The overall quality of the user sur-

vey is shown in Figure 10, which demonstrates that the

subjects have done a decent job: for 83% of the HITs,

both known-answer questions are answered correctly.

We only use results from these HITs in our following

analysis.

Consistency of Subjects’ Answers. We first study

the consistency of choices among subjects; all subjects

are in high agreement if the advantage of one option

over the other is obvious and consistent. To measure

this, we employ the coefficient of agreement [38]:

µ =
2σ(
m
2

)(
t
2

) − 1, with σ =

t∑
i=1

t∑
j=1

(
aij
2

)
, (8)

where aij is the number of times that option i is chosen

over option j, m = 3 is the number of subjects, and

t = 4 is the number of dehazing options. The maximum

of µ is 1 for complete agreement and its minimum is

−1/3 for complete disagreement. The values of µ for all

pairs of options are shown in Table 5. The small positive

numbers in the table suggest that subjects tend to agree

when comparing options pairwise but no single option

has dominant advantage over another one.

Ranking and Correlation with Objective Eval-

uation. We finally compute the overall ranking of all

four options for each image based on the number of
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Fig. 9 Example images from Foggy Driving and their dehazed versions using three state-of-the-art dehazing methods that
are examined in our experiments

0 10 20 30 40 50 60 70 80
Percentage (%)

0

50

100

C
or

re
ct

ne
ss

 (
%

)

Fig. 10 Quality of our user survey on AMT, computed using
known-answer questions

Foggy vs. DCP 0.155
Foggy vs. MSCNN 0.115
Foggy vs. Non-local 0.010
DCP vs. MSCNN 0.182
DCP vs. Non-local 0.036
MSCNN vs. Non-local 0.182

Mean 0.113

Table 5 Agreement coefficients for all pairwise comparisons
of the four dehazing options

times each option is chosen in all relevant pairwise com-

parisons. The correlation of these rankings with those

induced by mean IoU performance is measured with

Kendall’s τ coefficient [37] with −1 ≤ τ ≤ 1, where a

value of 1 implies perfect agreement, −1 implies perfect

disagreement, and 0 implies zero correlation. Figure 11

provides a complete overview of the comparative results

both for our user study and the semantic-segmentation-

based evaluation on Foggy Cityscapes-refined and Foggy

Driving, including rank correlation results for the two

types of evaluation.

The results in the top row of Figure 11 indicate that

none of the three examined methods for dehazing pre-

processing improves reliably the human understanding

of synthetic foggy scenes from Foggy Cityscapes or real

foggy scenes from Foggy Driving. In particular, the no-

dehazing option beats all other three options in pairwise

comparisons on Foggy Cityscapes-refined and loses only

to DCP marginally on Foggy Driving, while it is also

ranked first on more images than any other option for

both datasets.

In addition, the rankings obtained with the two

types of evaluation are generally in congruence for the

real-world case of Foggy Driving. The no-dehazing and

DCP options are ranked higher than MSCNN and non-

local dehazing both in the user study and in the objec-

tive evaluation. The high performance of DCP com-

pared to MSCNN is due to the usage of β = 0.01

for Foggy Cityscapes-refined (cf. the discussion in Sec-

tion 5.1). What is more, the two rankings exhibit a

positive correlation on average for Foggy Driving based

on the respective distribution of τ in the bottom right

chart of Figure 11, which supports our conclusion in

Section 5.1 about the marginal benefit of dehazing pre-

processing for foggy scene understanding.

5.3 Object Detection

For our experiment on object detection in foggy scenes,

we select the modern Fast R-CNN [25] as the architec-

ture of the evaluated models. We prefer Fast R-CNN

over more recent approaches such as Faster R-CNN [53]

because the former involves a simpler training pipeline,

making fine-tuning to foggy conditions straightforward.

Consequently, we do not learn the front-end of the ob-

ject detection pipeline which involves generation of ob-

ject proposals; rather, we use multiscale combinatorial

grouping [4] for this task.

In order to ensure a fair comparison, we first ob-

tain a baseline Fast R-CNN model for the original

Cityscapes dataset, similarly to the preceding seman-

tic segmentation experiments. Since no such model is

publicly available, we begin with the model released by

the author of [25] which has been trained on PASCAL

VOC 2007 [19] and fine-tune it on the union of the
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(a) Foggy Cityscapes-refined (b) Foggy Driving

Fig. 11 Comparison of four options for dehazing preprocessing, i.e. no dehazing (“Foggy”), “DCP” [29], “MSCNN” [54], and
“NonLocal” [6], on (a) the validation set of Foggy Cityscapes-refined for β = 0.01 and (b) Foggy Driving, in terms of subjective
human understanding of the foggy scenes (top) and performance of the corresponding fine-tuned DCN models (middle). For
each combination of dataset and evaluation setting, we show the percentage of scenes for which each option is ranked first
overall on the left, and the respective percentages for pairwise comparisons of the options on the right. Bottom: Histograms of
correlation of the rankings obtained for the two evaluation settings over the datasets, measured with Kendall’s τ

training and validation sets of Cityscapes which com-

prises 3475 images. Fine-tuning through all layers is run

with the same configurations as in [25], except that we

use the “poly” learning rate policy with a base learning

rate of 2× 10−4 and a power parameter of 0.9, with 7k

iterations (4 epochs).

This baseline model that has been trained on the

real Cityscapes with clear weather serves as initializa-

tion for fine-tuning on our synthetic images from Foggy

Cityscapes-refined. To this end, we use all 550 training
and validation images of Foggy Cityscapes-refined and

fine-tune with the same settings as before, only that

the base learning rate is set to 10−4 and we run 1650

iterations (6 epochs).

We experiment with two values of the attenuation

coefficient β for Foggy Cityscapes-refined and present

comparative performance on the 33 finely annotated

images of Foggy Driving in Table 6. No dehazing is in-

volved in this experiment. We concentrate on the classes

car and person for evaluation, since they constitute the

intersection of the set of frequent classes in Foggy Driv-

ing and the set of annotated classes with distinct in-

stances. Individual average precision (AP) scores for

car and person are reported, as well as mean scores

over these two classes (“mean frequent”) and over the

complete set of 8 classes occurring in instances (“mean

all”). For completeness, we note that the original VOC

2007 model of [25] exhibits an AP of 2.1% for car and

1.9% for person.

Table 6 Performance comparison on Foggy Driving of base-
line Fast R-CNN model trained on Cityscapes (“W/o FT”)
versus fine-tuned versions of it using Foggy Cityscapes-refined.
“FT” stands for using fine-tuning and “W/o FT” for not us-
ing fine-tuning. AP (%) is used to report results

mean all car person mean frequent

W/o FT 11.1 30.5 10.3 20.4
FT β = 0.01 11.1 34.6 10.0 22.3
FT β = 0.005 11.7 35.3 10.3 22.8

Both of our fine-tuned models outperform the base-

line model by a significant margin for car. At the same

time, they are on a par with the baseline model for

person. The overall winner is the model that has been

fine-tuned on light fog, which we refer to as FT-0.005 :

it outperforms the baseline model by 2.4% on average

on the two frequent classes and it is also slightly better

when taking all 8 classes into account.

We provide a visual comparison of FT-0.005 and

the baseline model for car detection on example images

from Foggy Driving in Figure 12. Note the ability of our

model to detect distant cars, such as the two cars in the

image of the second row which are moving on the left

side of the road and are visible from their front part.

These two cars are both missed by the baseline model.
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Fig. 12 Qualitative results for detection of cars on Foggy Driving. From left to right: ground truth annotation, baseline Fast
R-CNN model trained on original Cityscapes, and our model FT-0.005 fine-tuned on Foggy Cityscapes-refined with light fog.
This figure is seen better when zoomed in on a screen

6 Semi-supervised Learning with Synthetic Fog

While standard supervised learning can improve the

performance of SFSU using our synthetic fog, the

paradigm still needs manual annotations for corre-

sponding clear-weather images. In this section, we ex-

tend the learning to a new paradigm which is also able

to acquire knowledge from unlabeled pairs of foggy im-

ages and clear-weather images. In particular, we train

a semantic segmentation model on clear-weather im-

ages using the standard supervised learning paradigm,

and apply the model to an even larger set of clear but

“unlabeled” images (e.g. our 20000 unlabeled images

of Foggy Cityscapes-coarse) to generate the class re-

sponses. Since we have created a foggy version for the

unlabeled dataset, these class responses can then be

used to supervise the training of models for SFSU.

This learning approach is inspired by the stream of

work on model distillation [27,31] or imitation [10,16].

[10,16,31] transfer supervision from sophisticated mod-

els to simpler models for efficiency, and [27] transfers

supervision from the domain of images to other do-

mains such as depth maps. In our case, supervision is

transferred from clear weather to foggy weather. The

underpinnings of our proposed approach are the fol-

lowing: 1) in clear weather, objects are easier to rec-

ognize than in foggy weather, thus models trained on

images with clear weather in principle generalize better

to new images of the same condition than those trained

on foggy images; and 2) since the synthetic foggy images

and their clear-weather counterparts depict exactly the

same scene, recognition results should also be the same

for both images ideally.

We formulate our semi-supervised learning (SSL)

for semantic segmentation as follows. Let us denote
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(a) foggy image (b) ground truth (c) [44] (d) Ours

Void Road Sidewalk Building Wall Fence Pole Traffic Light Traffic Sign Vegetation

Terrain Sky Person Rider Car Truck Bus Train Motorcycle Bicycle

Fig. 13 Qualitative results for semantic segmentation on Foggy Driving, both for coarsely annotated images (top three rows)
and finely annotated images (bottom three rows). “Ours” stands for [44] fine-tuned with our SSL on Foggy Cityscapes

a clear-weather image by x, the corresponding foggy

one by x′, and the corresponding human annotation

by y. Then, the training data consist of both labeled

data Dl = {(xi,x′i,yi)}li=1 and unlabeled data Du =

{(xj ,x′j)}
l+u
j=l+1, where ym,ni ∈ {1, ...,K} is the label

of pixel (m,n), and K is the total number of classes.
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l is the number of labeled training images, and u is

the number of unlabeled training images. The aim is to

learn a mapping function φ′ : X ′ 7→ Y from Dl and Du.

In our case, Dl consists of the 498 high-quality foggy

images in the training set of Foggy Cityscapes-refined

which have human annotations with fine details, and

Du consists of the additional 20000 foggy images in

Foggy Cityscapes-coarse which do not have fine human

annotations.

Since Du does not have class labels, we use the idea

of supervision transfer to generate the supervisory la-

bels for all the images therein. To this end, we first learn

a mapping function φ : X 7→ Y with Dl and then obtain

the labels ŷj = φ(xj) for xj and x′j , ∀j ∈ {l+1, ..., l+u}.
Du is then upgraded to D̂u = {(xj ,x′j , ŷj)}

l+u
j=l+1. The

proposed scheme for training semantic segmentation

models for foggy images x′ is to learn a mapping func-

tion φ′ so that human annotations y and the transferred

labels ŷ are both taken into account:

min
φ′

l∑
i=1

L(φ′(x′i),yi) + λ

l+u∑
j=l+1

L(φ′(x′j), ŷj), (9)

where L(., .) is the Categorical Cross Entropy Loss func-

tion for classification, and λ = l
u ×w is a parameter for

balancing the contribution of the two terms, serving as

the relative weight of each unlabeled image compared

to each labeled one. We empirically set w = 5 in our

experiment, but an optimal value can be obtained via

cross-validation if needed. In our implementation, we

approximate the optimization of (9) by mixing images

from Dl and D̂u in a proportion of 1 : w and feeding the

stream of hybrid data to a CNN for standard supervised
training.

We select RefineNet [44] as the CNN model for se-

mantic segmentation, which is a more recent and better

performing method than DCN [72] that is used in Sec-

tion 5. The reason for using DCN in Section 5 is that

RefineNet had not been published yet at the time that

we were conducting the experiments of Section 5. We

would like to note that the state-of-the-art PSPNet [75],

which has been trained on the Cityscapes dataset sim-

ilarly to the original version of RefineNet that we use

as our baseline, achieved a mean IoU of only 24.0% on

Foggy Driving in our initial experiments.

We use mean IoU for evaluation, similarly to Sec-

tion 5, and β = 0.01 for Foggy Cityscapes. We com-

pare the performance of three trained models: 1) origi-

nal RefineNet [44] trained on Cityscapes, 2) RefineNet

fine-tuned on Dl, and 3) RefineNet fine-tuned on Dl
and D̂u. The mean IoU scores of the three models on

Foggy Driving are 44.3%, 46.3%, and 49.7% respec-

tively. The 2% improvement of 2) over 1) confirms the

conclusion we draw in Section 5 that fine-tuning with

our synthetic fog can indeed improve the performance

of semantic foggy scene understanding. The 3.4% im-

provement of 3) over 2) validates the efficacy of the SSL

paradigm. Figure 13 shows visual results of 1) and 3),

along with the foggy images and human annotations.

The re-trained model with our SSL paradigm can bet-

ter segment certain parts of the images which are mis-

classified by the original RefineNet, e.g. the pedestrian

in the first example, the tram in the fourth one, and

the sidewalk in the last one.

Both the quantitative and qualitative results sug-

gest that our approach is able to alleviate the need for

collecting large-scale training data for semantic under-

standing of foggy scenes, by training with the annota-

tions that are already available for clear-weather images

and the generated foggy images directly and by trans-

ferring supervision from clear-weather images to foggy

images of the same scenes.

7 Conclusion

In this paper, we have demonstrated the benefit of syn-

thetic data that are based on real images for seman-

tic understanding of foggy scenes. Two foggy datasets

have been constructed to this end: the partially syn-

thetic Foggy Cityscapes dataset which derives from

Cityscapes, and the real-world Foggy Driving dataset,

both with dense pixel-level semantic annotations for

19 classes and bounding box annotations for objects

belonging to 8 classes. We have shown that Foggy

Cityscapes can be used to boost performance of state-

of-the-art CNN models for semantic segmentation and

object detection on the challenging real foggy scenes

of Foggy Driving, both in a usual supervised setting

and in a novel, semi-supervised setting. Last but not

least, we have exposed through detailed experiments

the fact that image dehazing faces difficulties in work-

ing out of the box on real outdoor foggy data and

thus is marginally helpful for SFSU. In the future,

we would like to combine dehazing and semantic un-

derstanding of foggy scenes into a unified, end-to-end

learned pipeline, which can also leverage the type of

synthetic foggy data we have introduced. The datasets,

models and code are available at http://www.vision.

ee.ethz.ch/~csakarid/SFSU_synthetic.
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