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Abstract

We present Multi-Baseline Radiance Fields (MuRF), a
general feed-forward approach to solving sparse view syn-
thesis under multiple different baseline settings (small and
large baselines, and different number of input views). To
render a target novel view, we discretize the 3D space into
planes parallel to the target image plane, and accordingly
construct a target view frustum volume. Such a target vol-
ume representation is spatially aligned with the target view,
which effectively aggregates relevant information from the
input views for high-quality rendering. It also facilitates
subsequent radiance field regression with a convolutional
network thanks to its axis-aligned nature. The 3D context
modeled by the convolutional network enables our method
to synthesis sharper scene structures than prior works. Our
MuRF achieves state-of-the-art performance across multi-
ple different baseline settings and diverse scenarios ranging
from simple objects (DTU) to complex indoor and outdoor
scenes (RealEstate10K and LLFF). We also show promis-
ing zero-shot generalization abilities on the Mip-NeRF 360
dataset, demonstrating the general applicability of MuRF.

1. Introduction
Novel view synthesis from sparse input views is a criti-
cal and practical problem in computer vision and graph-
ics. However, typical optimization-based Neural Radiance
Fields (NeRFs) [1, 2, 4, 18] cannot cope well with sparse
views, and additional regularizations [19, 29, 33] are usu-
ally required to better constrain the optimization process.

In this paper, we aim at learning feed-forward NeRF
models [3, 32, 38] that are able to perform feed-forward
inference on new unseen data, without requiring per-scene
optimization. Moreover, inductive biases could be acquired
from data and better results can potentially be attained.

To achieve this, existing sparse view methods can be
broadly classified into methods that take small baseline im-
ages as input and methods that focus on large baseline set-
tings. However, none of the existing methods works well
across different baselines (see Fig. 1a and Fig. 1b). In par-
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(a) MuRF outperforms previous state-
of-the-art small baseline method ENeRF.
The larger baseline, the larger perfor-
mance gap.

1 2 4 8 16 32 64 128
Camera baseline

20

22

24

26

28

30

32

PS
N

R

AttnRend
MuRF

(b) MuRF outperforms previous state-of-
the-art large baseline method AttnRend.
The smaller baseline, the larger perfor-
mance gap.
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Figure 1. MuRF supports multiple different baseline settings.
Previous methods are specifically designed for either small (e.g.,
ENeRF [16]) or large (e.g., AttnRend1 [8]) baselines. However, no
existing method performs well on both (see Table 1).

ticular, small baseline methods [3, 5, 6, 15–17, 32] rely
heavily on feature matching to extract relevant information
from input views and suffer significantly when there is in-
sufficient image overlap or occlusion occurs. In contrast,
large baseline methods [8, 24] are mostly data-driven, and
often discard matching cues. Instead, they resort to large-
scale datasets and generic architectures (e.g., Transform-
ers [7, 30]) to learn geometric inductive biases implicitly.
However, due to their correspondence-unaware and data-
driven nature, even state-of-the-art methods [8, 24] tend to
produce blurry renderings and their generalization ability is
still limited, as we show in Fig. 3 and Table 6.

Our goal is to address sparse view synthesis under both

1We name the previously unnamed method of Du et al. [8] as AttnRend,
according its GitHub repository name.

https://github.com/yilundu/cross_attention_renderer


small and large camera baselines, different number of input
views, and diverse scenarios ranging from simple objects to
complex scenes. To this end, we introduce Multi-Baseline
Radiance Fields (MuRF), a method for sparse view synthe-
sis from multiple different baseline settings (Fig. 1).

More specifically, to render a target novel view, we dis-
cretize the 3D space with planes parallel to the target im-
age plane, and accordingly construct a target view frustum
volume that is spatially aligned with the target view to ren-
der. This is a crucial difference to previous volume-based
methods like MVSNeRF [3] and GeoNeRF [15], where the
volumes are constructed in a pre-defined reference input
view by straightforwardly following the standard practice
in multi-view stereo (MVS). However, a key difference be-
tween MVS and novel view synthesis (NVS) is that MVS
estimates the depth of a reference input view, while NVS
aims to render a novel view. Taking this difference into ac-
count is crucial, since the reference view volume will not be
able to effectively aggregate information from input views
when the overlap between the reference and target view is
small, which results in failure for large baselines (Fig. 5).

Our target view frustum volume is constructed by sam-
pling multi-view input image colors and features, which
provide appearance information to the prediction of the 3D
point’s color. We also compute the cosine similarities be-
tween sampled features to provide multi-view consistency
cues to aid the prediction of volume density [5]. The sam-
pled colors and features, and the computed cosine similari-
ties are concatenated together to provide relevant informa-
tion for both small and large baseline scenarios.

Equipped with this axis-aligned target volume represen-
tation, we further propose to use a convolutional neural net-
work (CNN) to reconstruct the radiance field from this vol-
ume. Thanks to the context modeling abilities of CNNs,
our method yields more accurate scene structures than pre-
vious (MLP-based) point-wise [6, 8] and (Ray Transformer-
based) ray-wise methods [5, 27, 32] (see Fig. 6).

In practice, we perform 8× subsampling in the spatial
dimension when constructing the target volume, which en-
ables our method to efficiently handle high-resolution im-
ages. The full resolution radiance field is finally obtained
with a lightweight 8× upsampler [25]. We also use a com-
putationally more efficient 3D CNN alternative by factoriz-
ing the 3D 3×3×3 convolution to a 2D 3×3×1 convolution
on the spatial dimension and a 1D 1× 1× 3 convolution on
the depth dimension, i.e., (2+1)D CNN, a popular strategy
in video recognition works [9, 28].

We conduct extensive experiments to demonstrate the ef-
fectiveness of our proposed target view frustum volume and
3D context-aware radiance field decoder. More specifically,
we outperform previous specialized models on both small
(DTU [14], LLFF [18]) and large (RealEstate10K [40])
baselines, and achieve promising zero-short generalization

abilities on the Mip-NeRF 360 [2] dataset, indicating the
general applicability of our method.

2. Related Work
Multi-Baseline. The concept of “multi-baseline” dates
back to multi-baseline stereo depth estimation [10, 20, 36,
37], where multiple stereo pairs with various baselines are
used to surpass matching ambiguities and thus achieve im-
proved precision. In this paper, we aim at designing a gen-
erally applicable approach to solving novel view synthesis
from multiple different sparse view settings. When consid-
ering multiple images as input, our problem setup is some-
what similar to multi-baseline stereo, while with the radi-
ance field as the output for volumetric rendering. Besides,
we are also interested in novel view synthesis from very
sparse (as few as 2) input views with different baselines. In
this sense, our proposed multi-baseline radiance field not
only draws connections to classic multi-baseline stereo, but
also extends it to view synthesis from 2 input views with
both small and large baselines.
Sparse Input Novel View Synthesis. Applying NeRF to
novel view synthesis with sparse input views has garnered
considerable interest in recent years. Several works im-
prove the optimization-based pipeline via the incorporation
of additional training regularizations, e.g., depth [19], cor-
respondence [29] and diffusion model [33]. An alternative
area of research turns to the feed-forward designs by learn-
ing reliable representations from data, and accordingly re-
moving the need of per-scene optimization. Among them,
MVSNeRF [3], GeoNeRF [15] and NeuRay [17] follow the
spirit of multi-view stereo (MVS) to construct cost volumes
at pre-defined reference viewpoints. However, the reference
volume will not be able to effectively aggregate the informa-
tion for input views when the overlap between the reference
and target novel view is small, which accordingly results
in failure for large baselines. Besides, ENeRF [16] essen-
tially relies on an MVS network to guide NeRF’s sampling
process with the estimated depth. However, the depth qual-
ity will be unreliable for large baselines and thus severely
affects the subsequent rendering process.

Another line of works such as SRF [6], IBRNet [32],
GPNR [26], GNT [27] and MatchNeRF [5] mostly perform
ray-based rendering, where each ray is rendered indepen-
dently and no explicit 3D context between different rays is
modeled. In contrast, our target view volume representa-
tion effectively encodes the scene geometry and naturally
enables 3D context modeling with a convolutional network,
yielding better scene structures. Despite various motiva-
tions and implementations, the above models are all de-
signed and experimented only on small baseline settings,
limiting their applications in real-world scenarios. Only
a few existing approaches focus on the large baseline set-
tings. Nevertheless, these works [8, 24] resort to large-scale
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Figure 2. Overview. Given multiple input images, we first extract multi-view image features with a multi-view Transformer. To render
a target image of resolution H ×W , we construct a target view frustum volume by performing 8× subsampling in the spatial dimension
while casting rays and sampling D equidistant points on each ray. For each 3D point, we sample feature and color information from the
extracted feature maps and input images, which consists of the elements of the target volume z ∈ R
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8
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8
×D×C . Here, C denotes the

channel dimension after aggregating sampled features and colors. To reconstruct the radiance field from the volume, we model the context
information in the decoder with a (2+1)D CNN operating on low resolution and subsequently obtain the full-resolution radiance field with
a lightweight 8× upsampler. The target image is finally rendered with volumetric rendering.

datasets and generic architectures, without employing ex-
plicit 3D representations, which ultimately leads to blurry
rendering and limited generalization. As a comparison, our
MuRF is developed with both geometry-aware target view
frustum volume representation and 3D context-aware con-
volutional network, which make it excel at both small and
large baseline settings on different datasets.

3. Approach
Our MuRF (Multi-Baseline Radiance Fields) is an encoder-
decoder architecture (Fig. 2), where the encoder maps the
multi-view input images to features that are used to con-
struct a volume at the target view’s camera frustum, and the
decoder regresses the radiance field from this volume repre-
sentation. The target image is finally obtained using volume
rendering [18]. The key components are introduced below.

3.1. Multi-View Feature Encoder
To aggregate essential information required as input for
learning feed-forward NeRF models, we first extract fea-
tures {Fk}Kk=1 from K input images {Ik}Kk=1. Our feature
encoder consists of a weight-sharing per-image 2D CNN
and a joint multi-view Transformer. The CNN consists of
6 residual blocks [12] and every 2 residual blocks include
a stride-2 convolutional layer to achieve 2× downsampling.
Accordingly, we obtain features at 1/2, 1/4 and 1/8 reso-
lutions. The 1/8 convolutional features are then fed into a
joint multi-view Transformer to obtain features at 1/8 res-
olution. Our Transformer is built on GMFlow [34, 35]’s
2-view Transformer architecture, where we extend the 2-
view cross-attention to K(K ≥ 2) input views by per-
forming cross-attention for all K views simultaneously.
This facilitates more efficient processing of additional in-
put views without significantly increasing memory footprint
compared to the pair-wise architecture [5]. The multi-scale

features are sampled in next volume reconstruction step and
the sampled features are concatenated together.

3.2. Target View Frustum Volume
To render an image for a target novel view, our key differ-
ence with previous methods [3, 15, 17] is that we construct
our volume aligned with the target view frustum, instead
of a pre-defined reference input view. Such a spatially-
aligned target view frustum volume representation naturally
enables effective aggregation of information from input im-
ages. This is in contrast to the reference volume construc-
tion approach which has a high risk missing the information
outside the epipolar lines of the reference view. This phe-
nomenon is more pronounced for large baselines where the
scene overlap is small, as illustrated in Fig. 5.

The volume elements are sampled from the input images
and features to provide necessary cues to aid the prediction
of color and density for volume rendering. More specifi-
cally, to render a target image of resolution H×W , we per-
form 8× subsampling in the spatial dimension while cast-
ing rays and uniformly sample D points on each ray. The
8× subsampling enables our method to maintain an accept-
able volume resolution for high-resolution images, and we
finally obtain the full resolution volume with a lightweight
upsampler [25]. Next, we introduce the sampling process.

Color sampling within a window. Due to the 8× subsam-
pling, we might risk losing some information if we only
sample a single point compared to full resolution sampling.
To remedy this, we instead sample a 9×9 window centered
at the 2D projection of the 3D point and thus obtain a color
vector of {c̃wk }Kk=1 for K input views, where c̃wk denotes the
concatenation of colors within the window.

Feature sampling and matching. We also sample image
features {fi}Ki=1 from K feature maps. To obtain geometric



cues, we quantify the multi-view consistency of these fea-
tures by computing their pair-wise cosine similarities. We
then use the cosine feature similarities to provide geometric
cues for volume density prediction, based on the observa-
tion that the multi-view features of a surface point tend to
exhibit high multi-view consistency [5]. All the pair-wise
cosine similarities are aggregated with a learned weighted
average, which can be expressed as

ŝ = wij

∑
i<j

cos(fi,fj), i, j = 1, 2, . . . ,K (1)

where sij denotes the cosine similarity between pair
(fi,fj), and (i, j) iterates over all possible K(K − 1)/2
non-repeated pairs. Following previous work [39], wij are
normalized visibility weights learned from the entropy of
the depth distribution on each ray.

It’s worth noting that the pair-wise cosine similarities
cos(fi,fj) in Eq. (1) can be computed in parallel with a
single matrix multiplication. More specifically, we first nor-
malize the features to unit vectors and then collect them as
a K × M matrix, where M is the feature dimension. Fi-
nally all K(K − 1)/2 pair-wise cosine similarities can be
obtained by extracting the upper triangle of the multiplica-
tion of this matrix with its transpose. In practice, we use
group-wise cosine similarities [5, 11] for further improved
expressiveness, where the same computation still applies.

Multi-view aggregation. Next, the sampled colors and fea-
tures from K input views are aggregated with a learned
weighted average. More specifically, the aggregated color
and features are

ĉ = wi

K∑
i=1

c̃wi , f̂ = wi

K∑
i=1

fi, (2)

where wi are normalized learned weights [16]. In partic-
ular, we use a small MLP network to predict wi from the
concatenation of sampled features and view direction dif-
ference between the source and target views.

The cosine similarity ŝ in Eq. (1), colors ĉ and features
f̂ in Eq. (2) are then concatenated and projected to a C-
dimensional vector with a linear layer. Accordingly we ob-
tain a target volume z ∈ RH

8 ×W
8 ×D×C for all H

8 × W
8 ×D

3D points. This volume encodes appearance and geometry
information from multi-view images and features, which is
next fed as input to the decoder for radiance field prediction.

3.3. Context-aware Radiance Field Decoder

Given the target view frustum volume z ∈ RH
8 ×W

8 ×D×C ,
our decoder learns to predict the 4-dimensional (color and
density) radiance field R ∈ RH×W×D×4 of all H×W ×D
3D points. In order to perform well on both small and large
baseline input views, we observe that it’s crucial to model
the 3D context between different 3D points. The context
information can help learn useful inductive biases from data

and accordingly leads to better scene structures.
To achieve this, we model the 3D context with a convolu-

tional network. A straightforward approach would be using
a 3D CNN. In this paper, we explore an alternative for better
memory and parameter efficiency, while maintaining simi-
lar performance (Fig. 7). More specifically, we factorize the
3D (3× 3× 3) convolution to a 2D (3× 3× 1) convolution
in the spatial dimension and a 1D (1×1×3) convolution in
the depth dimension, i.e., (2+1)D CNN, which is a popular
strategy in video recognition works [9, 28].

The full decoder consists of two major components: a
(2+1)D CNN which operates on the low resolution vol-
ume and a lightweight upsampler which achieves 8× up-
sampling and thus outputs a full-resolution radiance filed.
The low-resolution (2+1)D CNN architecture is composed
of 12 stacked (2+1)D residual blocks [12]. The final color
and density predictions are obtained using two linear layers,
with output channels of 3 and 1, respectively. More archi-
tectural details are presented in the supplementary material.

3.4. Hierarchical Volume Sampling

Like other NeRF methods [1, 18, 32], our model also sup-
ports hierarchical volume sampling for further improved
performance. When hierarchical sampling is used, the
model presented before can be viewed as a coarse model,
and the hierarchical stage as a fine model. The fine model
has a very similar overall architecture as the coarse stage,
with the ray sampling process as the key difference. More
specifically, given the density prediction from the coarse
model, we first compute the Probability Distribution Func-
tion (PDF) [18] on each ray by normalizing the color com-
position weights in the volume rendering equation. Next,
we sample a new set of points on each ray according to
this distribution. Thanks to the coarse geometry predicted
by the coarse network, the fine model requires sampling
fewer points since the influence of empty space or occluded
regions can be removed. In our implementation, we uni-
formly sample 64 points on each ray in the coarse model,
and only sample 16 points in the fine stage. Due to the
smaller number of sampling points, we are able to directly
construct a target view frustum volume at the full resolution.
We also reduce the volume’s channel dimension from 128
to 16, which makes it more efficient for subsequent regres-
sion. Thus the volume at the fine stage is more compact.
We use a lightweight 3D U-Net [22, 23] to predict the color
and density from this volume, and the final color prediction
is similarly obtained using volume rendering [18]. More
details are presented in the supplementary material.

3.5. Training Loss

We use random crops from the full image for training, the
training loss is an addition of ℓ1, SSIM and LPIPS losses
between rendered and ground truth image color.



4. Experiments
Implementation details. We implement our method us-
ing PyTorch [21] and we adopt a two-stage training pro-
cess, where we first train the coarse model only, and then
train the fine model with the coarse model frozen. For all
the experiments, we sample 64 points in the coarse model,
and 16 points in the fine model. For experiments on the
RealEstate10K [40] dataset, we follow AttnRend [8]’s set-
ting to train and evaluate on the 256 × 256 resolution.
On this resolution, our method can easily use 4× sub-
sampling when constructing the volume, unlike the default
8× subsampling. We also reduce the number of channels
of the volume from 128 to 64 when 4× subsampling is
used. We don’t include the additional hierarchical sampling
stage for experiments on the RealEstate10K dataset since
the single scale model already performs very competitively
with 4× subsampling. Our code is available at https:
//github.com/autonomousvision/murf.

Evaluation settings. Our evaluations include both small
and large baselines, different number of views, and diverse
scenarios, including object-centric, indoor and unbounded
outdoor scenes, to test the model’s general applicability.

4.1. Main Results
Both small & large baselines. To compare with ex-
isting methods on both small and large baselines, we
choose previous state-of-the-art small baseline method EN-
eRF [16] and large baseline method AttnRend [8] as two
representative approaches. The evaluations are conducted
on DTU [14] and RealEstate10K [40] datasets. Since
ENeRF only reported its results on DTU and AttnRend
only on RealEstate10K, not both, we re-train ENeRF on
RealEstate10K and AttnRend on DTU, which allows for
more comprehensive comparisons. The results in Table 1
demonstrate that previous state-of-the-art methods are spe-
cialized to either small or large baselines, but they can not
work well on both. In contrast, our MuRF performs con-
sistently better on both small and large baselines. Next, we
conduct comparisons in different specialized settings.

3-view small baseline on DTU. In this setting, to render
a target view, 3 nearest views are selected from all source
views based on the distance to the target camera location.
Thus this constitutes a small baseline setting. As shown
in Table 2, we achieve more than 1dB PSNR improvement
compared to previous best method ENeRF [16]. The visual
comparisons are shown in Fig. 3, where our method pro-
duces significantly better scene structures.

2-view large baseline on RealEstate10K. The
RealEstate10K is a very large dataset, which consists
of more than 66K training scenes and more than 7K testing
scenes. We follow the evaluation setting of AttnRend [8]
for comparisons. More specifically, the two input views are

Method
DTU (small baseline) RealEstate10K (large baseline)

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

ENeRF [16] 27.61 0.956 0.091 19.52 0.739 0.341
AttnRend[8] 18.57 0.732 0.419 21.38 0.839 0.262
MuRF 28.76 0.961 0.077 24.20 0.865 0.170

Table 1. Comparison on both small and large baselines. Pre-
vious state-of-the-art methods are specialized to either small (EN-
eRF) or large (AttnRend) baselines, but can not work well on both.

Method PSNR↑ SSIM↑ LPIPS↓

PixelNeRF [38] 19.31 0.789 0.382
SRF [6] 22.12 0.845 0.292
IBRNet [32] 26.04 0.917 0.190
MVSNeRF [3] 26.63 0.931 0.168
GeoNeRF [15] 26.76 0.893 0.150
MatchNeRF [5] 26.91 0.934 0.159
ENeRF [16] 27.61 0.956 0.091
MuRF 28.76 0.961 0.077

Table 2. DTU 3-view small baseline.

Method PSNR↑ SSIM↑ LPIPS↓

PixelNeRF [38] 13.91 0.460 0.591
SRF [6] 15.40 0.486 0.604
GeoNeRF [15] 16.65 0.511 0.541
IBRNet [32] 15.99 0.484 0.532
GPNR [26] 18.55 0.748 0.459
AttnRend [8] 21.38 0.839 0.262
MuRF 24.20 0.865 0.170

Table 3. RealEstate10K 2-view large baseline.

GT ENeRF MuRF

GT AttnRender MuRF

GT GPNR MuRF
Figure 3. Visual comparisons with previous best methods on
DTU, RealEstate10K and LLFF datasets.

selected from a video with a distance of 128 frames, and
the target view to synthesis is an intermediate frame. This
is a challenging setting since the overlap between two input

https://github.com/autonomousvision/murf
https://github.com/autonomousvision/murf


Method Setting
3-view 6-view 9-view

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Mip-NeRF [1]

per-scene
optimization

8.68 0.571 0.353 16.65 0.741 0.198 23.58 0.879 0.092
DietNeRF [13] 11.85 0.633 0.314 20.63 0.778 0.201 23.83 0.823 0.173
RegNeRF [19] 18.89 0.745 0.190 22.20 0.841 0.117 24.93 0.884 0.089
DiffusioNeRF [33] 16.20 0.698 0.207 20.34 0.818 0.139 25.18 0.883 0.095
SPARF [29] 21.01 0.870 0.100 - - - - - -

SRF [6]

feed-forward
inference

15.32 0.671 0.304 17.54 0.730 0.250 18.35 0.752 0.232
PixelNeRF [38] 16.82 0.695 0.270 19.11 0.745 0.232 20.40 0.768 0.220
MVSNeRF [3] 18.63 0.769 0.197 20.70 0.823 0.156 22.40 0.853 0.135
ENeRF† [16] 19.84 0.856 0.171 21.82 0.894 0.131 23.49 0.919 0.106
MuRF 21.31 0.885 0.127 23.74 0.921 0.095 25.28 0.936 0.084

Table 4. DTU 3, 6 and 9 input views. †Enhanced ENeRF baseline by doubling the number of sampling points on each ray, otherwise we
were not able to obtain meaningful results. We again outperform ENeRF by 1∼2dB PSNR even compared to this enhanced baseline.

views is usually small, useful priors should be acquired
from the model and the data in order to obtain reliable
synthesis results. In this large baseline setting, we achieve
significant improvement (∼3dB PSNR) than previous best
method AttnRend [8], as shown in Table 3. The visual
comparison in Fig. 3 indicates that our method produces
clearer rendering results than AttnRend [8]. We attribute
such large improvements to our target view frustum volume
and the convolutional radiance field decoder, which are two
key missing components in AttnRend [8]. The target view
frustum volume effectively encodes the geometric structure
of the view synthesis task and the convolutional decoder
enables context-modeling between neighbouring 3D points,
both significantly contributing to our final performance.
Their effects are more thoroughly analyzed in Sec. 4.2.

Different number of input views on DTU and LLFF. We
also evaluate on different number of input views to fur-
ther understand the effect of different baselines. Firstly,
we follow RegNeRF [19]’s setting of 3, 6 and 9 input
views on DTU. Different from the aforementioned 3-view
small baseline setting on DTU, the baseline of this setting
is larger. More specifically, for each test scene, different
numbers of views (3, 6 and 9) are sampled from a fixed
set of 9 views. Each scene has 25 test views and they all
share the same input views. This is different from the small
baseline DTU setting before where the nearest views (in-
stead of shared fixed views for all test views in each scene)
are selected for each test view. Thus this setting is more
close to the large baseline setting, especially when the num-
ber of input views is small. In this setting, our MuRF sig-
nificantly outperforms previous representative methods like
PixelNeRF [38] and MVSNeRF [3], as shown in Table 4.

To better understand the performance of different meth-
ods on different baselines, we re-train ENeRF [16], the pre-
vious state-of-the-art method on DTU’s small baseline set-
ting, on this large baseline setting with their official code.
Since the key component of ENeRF is to use depth-guided
sampling to skip empty space in NeRF’s volume rendering
process, its performance heavily relies on the quality of the

Method #views PSNR↑ SSIM↑ LPIPS↓

PixelNeRF [38] 10 18.66 0.588 0.463
MVSNeRF [3] 10 21.18 0.691 0.301
IBRNet [32] 10 25.17 0.813 0.200
NeuRay [17] 10 25.35 0.818 0.198
GPNR [26] 10 25.72 0.880 0.175
GNT [31] 10 25.53 0.885 0.218

MuRF
4 25.95 0.897 0.149
6 26.04 0.900 0.153
10 26.49 0.909 0.143

Table 5. LLFF. Our 4-view model already outperforms previous
10-view methods. It improves further with more views.

estimated depth. In this large baseline setting, our re-trained
ENeRF is not able to produce reasonable results with their
original hyper-parameters since the small overlap between
input views makes the depth estimation quality lower and
thus negatively affect NeRF’s rendering process. Thus we
train an enhanced ENeRF baseline by doubling the number
of sampling points (from original 8 and 2 to 16 and 4 for
2-stage NeRFs) on each ray such that the model is more tol-
erant to the depth estimation error. The results are shown in
Table 4. Our MuRF again outperforms ENeRF by 1∼2dB
PSNR in different number of input views.

Compared with per-scene optimization methods, our
MuRF achieves similar performance with the state-of-the-
art 3-view method SPARF [29] in the 3-view setting. It’s
worth noting that SPARF specifically focuses on 3 input
views and they didn’t report the performance on 6 and 9
views. In contrast, we purse thorough evaluation on differ-
ent number of views and we show clear improvement than
previous per-scene optimization methods with 6 and 9 input
views, despite without using any per-scene optimization.

We also compare with previous methods on the LLFF
dataset [18]. Since this is a forward-facing dataset, the base-
lines between different images are typically small. Previous
methods usually evaluate on this dataset with 10 input views
following IBRNet [32]’s setting. Surprisingly, our MuRF
trained with 4 input views already outperforms all previous
10-view methods (Table 5), suggesting our model is also
more data-efficient. Our performance gets further improve-
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Figure 4. Zero-shot generalization on Mip-NeRF 360 dataset.

Input 1 Input 2 GT target view Reference volume Error Target volume Error

Figure 5. Our target view volume vs. reference (first image) view volume. Constructing the volume at the pre-defined reference view
space might miss relevant information (e.g., red arrows regions) in other views since such information could be far away from the the
reference view’s epipolar lines and thus hard to be sampled. In contrast, we construct the volume in the target view, which more effectively
aggregates information from all input views and thus maximizes the information usage.

Method
DTU Mip-NeRF 360 Dataset

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

AttnRend [8] 11.35 0.567 0.651 14.00 0.474 0.712
MuRF 22.19 0.894 0.211 23.98 0.800 0.293

Table 6. Zero-shot generalization after trained on
RealEstate10K. Our method outperforms AttnRend [8] by
significantly large margins.

ment with more input views. The visual comparison with
previous state-of-the-art method GPNR [26] in Fig. 3 shows
that our rendering has better structures.

Generalization on DTU and Mip-NeRF 360 dataset. For
feed-forward models, we are also interested in their zero-
shot generalization abilities on unseen datasets, which is a
practical problem setting. For this evaluation, we compare
with AttnRend [8] using their released model trained on the
same RealEstate10K dataset. The results are reported on the
object-centric dataset DTU and scene-level Mip-NeRF 360
dataset with 2 input views. From Table 6, we observe our
MuRF generalizes significantly better than AttnRend. The
lack of geometric inductive biases makes AttnRend more
data-hungry and prone to overfitting to the training data.

To further explore the zero-shot performance limit on
Mip-NeRF 360 dataset, we conduct additional fine-tuning
with our RealEstate10K pre-trained model on a mixed
dataset collected by IBRNet [32]. We achieve further im-
provement and the promising visual results shown in Fig. 4
indicate the general applicability of our method.

4.2. Ablation and Analysis
For fast ablation experiments, we only train coarse models
on both DTU and RealEstate10K datasets. Since the full
RealEstate10K dataset is very large, which would take sig-
nificant compute to train all the ablations, we use the subset
provided by AttnRend [8] for training and evaluation.

Volume Orientation. One key difference of our method
with previous approaches is that we construct the volume in
the target view frustum, unlike the popular reference view-
based volume in multi-view stereo related methods [3, 15].
Such a volume representation essentially aggregates infor-
mation from multi-view input images, where the reference
view volume would suffer from information loss since the
regions outside its epipolar lines are less likely to be sam-
pled. This issue would be more pronounced for large base-



Module Method
Large Baseline (RealEstate10K) Small Baseline (DTU)
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Volume Orientation
target view 21.29 0.808 0.246 26.89 0.925 0.119
reference view 20.20 0.776 0.309 26.50 0.922 0.138

Volume Elements

cosine & feature & color 21.29 0.808 0.246 26.89 0.925 0.119
w/o cosine 21.06 0.800 0.255 26.68 0.919 0.124
w/o feature 20.91 0.794 0.275 26.79 0.923 0.132
w/o color 20.04 0.789 0.275 25.80 0.916 0.133

Radiance Decoder

(2+1)D CNN (spatial + depth) 21.29 0.808 0.246 26.89 0.925 0.119
3D CNN (spatial & depth) 21.39 0.809 0.243 26.86 0.924 0.121
2D CNN (spatial only) 21.06 0.801 0.256 26.67 0.921 0.124
1D CNN (depth only) 20.78 0.788 0.272 26.37 0.920 0.124
Ray Transformer (depth only) 20.57 0.780 0.283 26.22 0.912 0.129
MLP (point only) 20.41 0.778 0.298 26.24 0.918 0.126

Table 7. Ablations. Settings used in our final model are underlined. The 3D CNN model has more than 50% parameters (16.6M vs. 10.4M)
than our factorized (2+1)D CNN model, and the performance is similar, thus we choose to use the (2+1)D CNN.

GT MLP CNNRay Transformer

Figure 6. CNN vs. MLP vs. Ray Transformer. Our CNN-based
decoder yields sharper structures thanks to its context modeling
abilities in both spatial and depth dimensions.

lines, as illustrated in Fig. 5. In Table 7, we can observe a
1dB PSNR performance drop by replacing our target view
volume with the reference view volume on the large base-
line RealEstate10K dataset. Even on the small baseline
DTU dataset, our target view volume is still better since it
maximizes the information usage from input views.

Volume Elements. We construct the volume using informa-
tion from the sampled colors, features, and features’ cosine
similarities, they are concatenated together as the volume
elements. We ablate different inputs in Table 7 to under-
stand their roles. It’s interesting to see that for the large
baseline setting, the features are more important than the
cosine similarities, while cosine similarities become more
important for small baselines. This could be expected since
the feature matching information would be less reliable for
large baselines due to insufficient scene overlap. It’s also
worth noting that for both small and large baselines, the
sampled colors also contribute to the final performance. The
image color provides valuable cues for predicting the 3D
points’ color, thus leading to improved performance.

Radiance Decoder. We compare different approaches to
predict the radiance field from the target view frustum vol-

ume in Table 7. It can be observed that the spatial context
modeled by the 2D CNN is more important to the final per-
formance than that on the depth dimension. Previous meth-
ods like IBRNet [32] and GNT [27] use Ray Transformer
to only model the context information on the depth dimen-
sion. However, we observe in our experiments that the Ray
Transformer not always produces better results than MLP
(see Fig. 6), while our (2+1)D CNN is consistently better.
We also compare with the straightforward 3D CNN decoder
and the performance is similar. However, 3D CNN has more
than 50% more parameters than our (2+1)D CNN, and thus
we choose to use the (2+1)D CNN for better efficiency. The
visual comparison in Fig. 6 illustrates that our CNN-based
decoder produces clearly better structures.

5. Conclusion

We present MuRF, a feed-forward method to sparse view
synthesis from multiple different baseline settings. Key
to our approach are the proposed target view frustum vol-
ume and CNN-based radiance field decoder. We achieve
state-of-the-art performance on various evaluation settings,
demonstrating the general applicability of our method.

Limitation and Discussion. Currently, large-scale scene-
level datasets are still scarce, we expect more diverse train-
ing data would improve our performance further. Besides,
our model currently assumes known camera parameters and
static scenes, extending our method to pose-free scenarios
and dynamic scenes could be interesting future directions.
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