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Abstract

Most progress in semantic segmentation reports on day-

time images taken under favorable illumination conditions.

We instead address the problem of semantic segmentation

of nighttime images and improve the state-of-the-art, by

adapting daytime models to nighttime without using night-

time annotations. Moreover, we design a new evaluation

framework to address the substantial uncertainty of seman-

tics in nighttime images. Our central contributions are: 1) a

curriculum framework to gradually adapt semantic segmen-

tation models from day to night via labeled synthetic images

and unlabeled real images, both for progressively darker

times of day, which exploits cross-time-of-day correspon-

dences for the real images to guide the inference of their

labels; 2) a novel uncertainty-aware annotation and evalu-

ation framework and metric for semantic segmentation, de-

signed for adverse conditions and including image regions

beyond human recognition capability in the evaluation in a

principled fashion; 3) the Dark Zurich dataset, which com-

prises 2416 unlabeled nighttime and 2920 unlabeled twi-

light images with correspondences to their daytime coun-

terparts plus a set of 151 nighttime images with fine pixel-

level annotations created with our protocol, which serves as

a first benchmark to perform our novel evaluation. Exper-

iments show that our guided curriculum adaptation signifi-

cantly outperforms state-of-the-art methods on real night-

time sets both for standard metrics and our uncertainty-

aware metric. Furthermore, our uncertainty-aware eval-

uation reveals that selective invalidation of predictions can

lead to better results on data with ambiguous content such

as our nighttime benchmark and profit safety-oriented ap-

plications which involve invalid inputs.

1. Introduction

The state of the art in semantic segmentation is rapidly

improving in recent years. Despite the advance, most meth-

ods are designed to operate at daytime, under favorable illu-

mination conditions. However, many outdoor applications

require robust vision systems that perform well at all times

of day, under challenging lighting conditions, and in bad

weather [22]. Currently, the popular approach to solving

perceptual tasks such as semantic segmentation is to train

deep neural networks [20, 38, 44] using large-scale human

annotations [6,9,23]. This supervised scheme has achieved

great success for daytime images, but it scales badly to ad-

verse conditions. In this work, we focus on semantic seg-

mentation at nighttime, both at the method level and the

evaluation level.

At the method level, this work adapts semantic seg-

mentation models from daytime to nighttime, without an-

notations in the latter domain. To this aim, we propose

a new method called Guided Curriculum Model Adap-

tation (GCMA). The underpinnings of GCMA are three-

fold: power of time, power of place, and power of data.

Time: environmental illumination changes continuously

from daytime to nighttime. This enables adding interme-

diate domains between the two to smoothly transfer seman-

tic knowledge. This idea is found to be effective in [8, 26];

we extend it by adding two more modules. Place: images

taken over different time but with the same 6D camera pose

share a large portion of content. The shared content can

be used to guide the knowledge transfer process from a fa-

vorable condition (daytime) to an adverse condition (night-

time). We formalize this observation and propose a solu-

tion for large-scale application. Data: GCMA takes advan-

tage of the powerful image translation techniques to stylize

large-scale real annotated daytime datasets to darker target

domains in order to perform standard supervised learning.

The adversity of nighttime poses further challenges for

perceptual tasks compared to daytime. The extracted fea-

tures become corrupted due to visual hazards [41] such as

underexposure, noise, and motion blur. The degradation of

affected input regions is often so intense that they are ren-

dered indiscernible, i.e. determining their semantic content

is impossible even for humans. We term such regions as



invalid for the task of semantic segmentation. A robust

model should predict with high uncertainty on invalid re-

gions while still being confident on valid (discernible) re-

gions, and a sound evaluation framework should reward

such behavior. The above requirement is particularly sig-

nificant for safety-oriented applications such as autonomous

cars, since having the vision system declare a prediction as

invalid can help the downstream driving system avoid the

fatal consequences of this prediction being false, e.g. when

a pedestrian is missed.

To this end, we design a generic uncertainty-aware anno-

tation and evaluation framework for semantic segmentation

in adverse conditions which explicitly distinguishes invalid

from valid regions of input images, and apply it to night-

time. On the annotation side, our novel protocol leverages

privileged information in the form of daytime counterparts

of the annotated nighttime scenes, which reveal a large por-

tion of the content of invalid regions. This allows to reli-

ably label invalid regions and to indeed include invalid re-

gions in the evaluation, contrary to existing semantic seg-

mentation benchmarks [6] which completely exclude them

from evaluation. Moreover, apart from the standard class-

level semantic annotation, each image is annotated with a

mask which designates its invalid regions. On the evalua-

tion side, we allow the invalid label in predictions and adopt

from [40] the principle that for invalid pixels with legiti-

mate semantic labels, both these labels and the invalid label

are considered correct predictions. However, this principle

does not cover the case of valid regions. We address this

by introducing the concept of false invalid predictions. This

enables calculation of uncertainty-aware intersection-over-

union (UIoU), a joint performance metric for valid and in-

valid regions which generalizes standard IoU, reducing to

the latter when no invalid prediction exists. UIoU rewards

predictions with confidence that is consistent to human an-

notators, i.e. with higher confidence on valid regions than

invalid ones, meeting the aforementioned requirement.

Finally, we present Dark Zurich, a dataset of real im-

ages which contains corresponding images of the same driv-

ing scenes at daytime, twilight and nighttime. We use this

dataset to feed real data to GCMA and to create a bench-

mark with 151 nighttime images for our uncertainty-aware

evaluation. Our dataset and code are publicly available1.

2. Related Work

Vision at Nighttime. Nighttime has attracted a lot of at-

tention in the literature due to its ubiquitous nature. Sev-

eral works pertain to human detection at nighttime, using

FIR cameras [10, 37], visible light cameras [15], or a com-

bination of both [4]. In driving scenarios, a few meth-

ods have been proposed to detect cars [17] and vehicles’

1https://trace.ethz.ch/projects/adverse/GCMA_UIoU

rear lights [30]. Contrary to these domain-specific meth-

ods, previous work also includes both methods designed for

robustness to illumination changes, by employing domain-

invariant representations [1, 25] or fusing information from

complementary modalities and spectra [33], and datasets

with adverse illumination [21, 29] for localization bench-

marking. A recent work [8] on semantic nighttime seg-

mentation shows that images captured at twilight are help-

ful for supervision transfer from daytime to nighttime. Our

work is partially inspired by [8] and extends it by propos-

ing a guided curriculum adaptation framework which learns

jointly from stylized images and unlabeled real images of

increasing darkness and exploits scene correspondences.

Domain Adaptation. Performance of semantic segmenta-

tion on daytime scenes has increased rapidly in recent years.

As a consequence, attention is now turning to adaptation to

adverse conditions [3,11,33,35]. A case in point are recent

efforts to adapt clear-weather models to fog [7, 26, 27], by

using both labeled synthetic images and unlabeled real im-

ages of increasing fog density. This work instead focuses

on the nighttime domain, which poses very different and—

as we would claim—greater challenges than the foggy do-

main (e.g. artificial light sources casting very different il-

lumination patterns at night). A major class of adaptation

approaches, including [5,12,13,19,28,31,34,36,43,46], in-

volves adversarial confusion or feature alignment between

domains. The general concept of curriculum learning has

been applied to domain adaptation by ordering tasks [42] or

target-domain pixels [47], while we order domains. Cross-

domain correspondences as guidance have only been used

very recently in [18], which requires pixel-level matches,

while we use more generic image-level correspondences.

Semantic Segmentation Evaluation. Semantic segmenta-

tion evaluation is commonly performed with the IoU met-

ric [9]. Cityscapes [6] introduced an instance-level IoU

(iIoU) to remove the large-instance bias, as well as mean

average precision for the task of instance segmentation. The

two tasks have recently been unified into panoptic segmen-

tation [16], with a respective panoptic quality metric. The

most closely related work to ours in this regard is Wild-

Dash [40], which uses standard IoU together with a fine-

grained evaluation to measure the impact of visual hazards

on performance. In contrast, we introduce UIoU, a new

semantic segmentation metric that handles images with re-

gions of uncertain semantic content and is suited for ad-

verse conditions. Our uncertainty-aware evaluation is com-

plementary to uncertainty-aware methods such as [14] that

explicitly incorporate uncertainty in their model formula-

tion and aims to promote the development of such meth-

ods, as UIoU rewards models that accurately capture het-

eroscedastic aleatoric uncertainty [14] in the input images

through the different treatment of invalid and valid regions.



3. Guided Curriculum Model Adaptation

3.1. Problem Formulation

GCMA involves a source domain S , an ultimate target

domain T , and an intermediate target domain Ṫ . In this

work, S is daytime, T is nighttime, and Ṫ is twilight time

with an intermediate level of darkness between S and T .

GCMA adapts semantic segmentation models through this

sequence of domains (S, Ṫ , T ), which is sorted in ascend-

ing order with respect to level of darkness. The approach

proceeds progressively and adapts the model from one do-

main in the sequence to the next. The knowledge is trans-

ferred through the domain sequence via this gradual adap-

tation process. The transfer is performed using two cou-

pled branches: 1) learning from labeled synthetic stylized

images and 2) learning from real data without annotations,

to jointly leverage the assets of both. Stylized images in-

herit the human annotations of their original counterparts

but contain unrealistic artifacts, whereas real images have

less reliable pseudo-labels but are characterized by artifact-

free textures.

Let us use z ∈ {1, 2, 3} as the index in (S, Ṫ , T ). Once

the model for the current domain z is trained, its knowledge

can be distilled on unlabeled real data from z, and then used,

along with a new version of synthetic data from the next

domain z + 1 to adapt the current model to z + 1.

Before diving into the details, we first define all datasets

used. The inputs for GCMA consist of: 1) a labeled day-

time set with M real images D1
lr = {(I1m, Y 1

m)}Mm=1, e.g.

Cityscapes [6], where Y 1
m(i, j) ∈ C = {1, ..., C} is the

ground-truth label of pixel (i, j) of I1m; 2) an unlabeled day-

time set of N1 images D1
ur = {I1n}

N1

n=1; 3) an unlabeled

twilight set of N2 images D2
ur = {I2n}

N2

n=1; and 4) an un-

labeled nighttime set of N3 images D3
ur = {I3n}

N3

n=1. In

order to perform knowledge transfer with annotated data,

D1
lr is rendered in the style of D2

ur and D3
ur. We use Cycle-

GAN [45] to perform this style transfer, leading to two more

sets: D2
ls = {(Ī2m, Y 1

m)}Mm=1 and D3
ls = {(Ī3m, Y 1

m)}Mm=1,

where Ī2m and Ī3m are the stylized twilight and nighttime ver-

sion of I1m respectively, and labels are copied. For z = 1,

the semantic segmentation model φ1 is trained directly on

D1
lr. In order to perform knowledge transfer with unlabeled

data, pseudo-labels for all three unlabeled real datasets need

to be generated. The pseudo-labels for D1
ur are generated

using the model φ1 via Ŷ 1
n = φ1(I1n). For z > 1, training

φz and generating Ŷ z
m is performed progressively as GCMA

proceeds, as is detailed in Sec. 3.1.1. All six datasets are

summarized in Table 1.

3.1.1 Guided Curriculum Model Adaptation

Since the method proceeds in an iterative manner, we

present the algorithmic details only for a single adaptation

Table 1. The training sets used in GCMA. I indicates an image

and Y its label map; Ī is a synthetic image and Ŷ a pseudo-label

map. See the text for details.

Labeled Unlabeled

Real Synthetic Real

1. Daytime {(I1m, Y 1
m)}M

m=1
{(I1n, Ŷ

1
n )}N1

n=1

2. Twilight time {(Ī2m, Y 1
m)}M

m=1
{(I2n, Ŷ

2
n )}N2

n=1

3. Nighttime {(Ī3m, Y 1
m)}M

m=1
{(I3n, Ŷ

3
n )}N3

n=1

step from z−1 to z. The presented algorithm is straightfor-

ward to generalize to multiple intermediate target domains.

In order to adapt the semantic segmentation model φz−1

from the previous domain z−1 to the current domain z, we

generate synthetic stylized data in domain z: Dz
ls.

For real unlabeled images, since no human annotations

are available, we rely on a strategy of self-learning or cur-

riculum learning. Our motivating assumption is that objects

are generally easier to recognize in lighter conditions, so

the tasks are solved in ascending order with respect to the

level of darkness and the easier, solved tasks are used to re-

train the model to further solve the harder tasks. This is in

line with the concept of curriculum learning [2]. In partic-

ular, the model φz−1 for domain z − 1 can be applied to

the unlabeled real images of domain z − 1 to generate su-

pervisory labels for training φz . Specifically, the dataset of

real images with pseudo-labels for adaptation to domain z

is Dz−1
ur = {(Iz−1

n , Ŷ z−1
n )}

Nz−1

n=1 , where Ŷ z−1
n denotes the

predicted labels of image Iz−1
n . A simple way to get these

labels is by directly feeding Iz−1
n to φz−1, similar to the

approach of [7, 26] for the case of fog. This choice, how-

ever, suffers from accumulation of substantial errors in the

prediction of φz−1 into the subsequent training step if do-

main z − 1 is not the daytime domain. We instead propose

a method to refine these errors by using guidance from the

semantics of a daytime image I1n that corresponds to Iz−1
n ,

i.e. depicts roughly the same scene as Iz−1
n (the difference

in the camera pose is small):

Ŷ z−1
n = G

(

φz−1(Iz−1
n ), Iz−1

n , φ1(I1Az−1→1(n)
)
)

, (1)

where G is a guidance function which will be defined in

Sec. 3.2 and z − 1 > 1. Az−1→1(n) is the correspondence

function giving the index of the daytime image that corre-

sponds to Iz−1
n .

Once we have the two training sets Dz−1
ur (with labels

inferred through (1)) and Dz
ls, learning φz is performed by

optimizing a loss function that involves both datasets:

min
φz

(

∑

(I,Y )
∈D

z

ls

L(φz(I), Y ) + µ
∑

(I,Ŷ )

∈D
z−1

ur

L(φz(I), Ŷ )

)

, (2)

where L(., .) is the cross entropy loss and µ is a hyper-

parameter balancing the contribution of the two datasets.



In order to leverage the place prior at large scale to im-

prove predictions through the guided label refinement de-

fined in (1), specific aligned datasets need to be compiled.

With this aim, we collected the Dark Zurich dataset by driv-

ing several laps in disjoint areas of Zurich; each lap was

driven multiple times during the same day, starting from

daytime through twilight to nighttime. The recordings in-

clude GPS readings and are split into three sets: daytime,

twilight and nighttime (cf. Sec. 5). Since different drives

of the same lap correspond to the same route, the camera

orientation at a certain point of the lap is similar across all

drives. We implement the correspondence function Az→1

that assigns to each image in domain z its daytime counter-

part using a GPS-based nearest neighbor assignment. The

method presented in Sec. 3.2 carefully handles the effects

of misalignment and dynamic objects in paired images.

3.2. Guided Segmentation Refinement

In the following presentation of our guided segmentation

refinement for dark images using corresponding daytime

images, we drop for brevity the subscript which was used

to indicate this correspondence. The guidance function G
which models our refinement approach and was introduced

in a general form in (1) can be written more specifically as

G
(

φz(Iz), Iz, φ1(I1)
)

= R
(

φz(Iz), B(φ1(I1), Iz)
)

,
(3)

i.e. as the composition of a cross bilateral filter B on the

daytime predictions, which aligns them to the dark image,

with a fusion function R, which adaptively combines the

aligned daytime predictions with the initial dark image pre-

dictions to refine the latter.

3.2.1 Cross Bilateral Filter for Prediction Alignment

The correspondences between real images that are used in

GCMA are not perfect, in the sense that they are not aligned

at a pixel-accurate level. Therefore, to leverage the predic-

tion for the daytime image I1 as guidance for refining the

respective prediction for the dark image Iz , it is necessary

to first align the former prediction to Iz . To this end, we

operate on soft predictions and define a cross bilateral filter

on the initial soft prediction map S1 = φ1(I1) which uses

the color of the dark image Iz as reference:

S̃1(p)

=

∑

q∈N (p)

Gσs
(‖q− p‖)Gσr

(‖Iz(q)− Iz(p)‖)S1(q)

∑

q∈N (p)

Gσs
(‖q− p‖)Gσr

(‖Iz(q)− Iz(p)‖)
.

(4)

In (4), p and q denote pixel positions, N (p) is the neigh-

borhood of p, Gσs
is the spatial-domain Gaussian kernel

and Gσr
is the color-domain kernel. The definition of the

filter implies that only pixels q with similar color to the ex-

amined pixel p in the dark image Iz contribute to the output

S̃1(p), which shifts salient edges in the initial daytime pre-

diction to their correct position in the dark image. For the

color-domain kernel, we use the CIELAB version of Iz , as

it is more appropriate for measuring color similarity [24].

We set the spatial parameter σs to 80 to account for large

misalignment, and σr to 10 following [24, 26].

3.2.2 Confidence-Adaptive Prediction Fusion

The final step in our refinement approach is to fuse the

aligned prediction S̃1 for I1 with the initial prediction

Sz = φz(Iz) for Iz in order to obtain the refined predic-

tion Ŝz , the hard version of which is subsequently used in

training. We propose an adaptive fusion scheme, which

uses the confidence associated with the two predictions at

each pixel to weigh their contribution in the output and

addresses disagreements due to dynamic content by prop-

erly adjusting the fusion weights. Let us denote the con-

fidence of the aligned prediction S̃1 for I1 at pixel p by

F 1(p) = maxc∈C S̃
1
c (p) and respectively the confidence of

the initial prediction Sz for Iz by F z(p). Our confidence-

adaptive fusion is then defined as

Ŝz =
F z

F z + αF 1
Sz +

αF 1

F z + αF 1
S̃1, (5)

where 0 < α = α(p) ≤ 1 may vary and we have

completely dropped the pixel argument p for brevity. In

this way, we allow the daytime image prediction to have

a greater effect on the output at regions of the dark image

which were not easy for model φz to classify, while preserv-

ing the initial prediction Sz at lighter regions of the dark

image where Sz is more reliable.

Our fusion distinguishes between dynamic and static

scene content by regulating α. In particular, α downweights

S̃1 to induce a preference towards Sz when both predictions

have high confidence. However, apart from imperfect align-

ment, the two scenes also differ due to dynamic content. In-

tuitively, the prediction of a dynamic object in the daytime

image should be assigned an even lower weight in case the

corresponding prediction in the dark image does not agree,

since this object might only be present in the former scene.

More formally, we denote the subset of C that includes dy-

namic classes by Cd and define

α(p)

=











αl, if c1 = argmax
c∈C

S̃1
c (p) ∈ Cd and Sz

c1
(p) ≤ η

or c2 = argmax
c∈C

Sz
c (p) ∈ Cd and S̃1

c2
(p) ≤ η,

αh otherwise.

(6)



(a) Dark image Iz (b) Daytime image I1 (c) Initial prediction Sz for Iz (d) Our refined prediction Ŝz for Iz

Figure 1. Example pair of corresponding images from Dark Zurich, initial prediction for the dark image and our refined prediction.

In our experiments, we manually tune αl = 0.3, αh = 0.6
and η = 0.2 on a couple of training images (no grid search).

A result of our guided refinement is shown in Fig. 1.

4. Uncertainty-Aware Evaluation

Images taken under adverse conditions such as nighttime

contain invalid regions, i.e. regions with indiscernible se-

mantic content. Invalid regions are closely related to the

concept of negative test cases which was considered in [40].

However, invalid regions constitute intra-image entities and

can co-exist with valid regions in the same image, whereas

a negative test case refers to an entire image that should be

treated as invalid. We build upon the evaluation of [40] for

negative test cases and generalize it to be applied uniformly

to all images in the evaluation set, whether they contain in-

valid regions or not. Our annotation and evaluation frame-

work includes invalid regions in the set of evaluated pixels,

but treats them differently from valid regions to account for

the high uncertainty of their content. In the following, we

elaborate on the generation of ground-truth annotations us-

ing privileged information through the day-night correspon-

dences of our dataset and present our UIoU metric.

4.1. Annotation with Privileged Information

For each image I , the annotation process involves two

steps: 1) creation of the ground-truth invalid mask J , and

2) creation of the ground-truth semantic labeling H .

For the semantic labels, we consider a predefined set C of

C classes, which is equal to the set of Cityscapes [6] eval-

uation classes (C = 19). The annotator is first presented

only with I and is asked to mark the valid regions in it as

the regions which she can unquestionably assign to one of

the C classes or declare as not belonging to any of them.

The result of this step is the invalid mask J , which is set to

0 at valid pixels and 1 at invalid pixels.

Secondly, the annotator is asked to mark the semantic

labels of I , only that this time she also has access to an aux-

iliary image I ′. This latter image has been captured with

roughly the same 6D camera pose as I but under more fa-

vorable conditions. In our dataset, I ′ is captured at day-

time whereas I is captured at nighttime. The large overlap

of static scene content between the two images allows the

annotator to label certain regions in H with a legitimate se-

mantic label from C, even though the same regions have

been annotated as invalid (and are kept as such) in J . This

allows joint evaluation on valid and invalid regions, as it cre-

ates regions which can accept both the invalid label and the

ground-truth label from C as correct predictions. Due to the

imperfect match of the camera poses for I and I ′, the label-

ing of invalid regions in H is done conservatively, mark-

ing a coarse boundary which may leave unlabeled zones

around the true semantic boundaries in I , so that no pixel

is assigned a wrong label. The parts of I which remain in-

discernible even after inspection of I ′ are left unlabeled in

H . These parts as well as instances of classes outside C
are not considered during evaluation. We illustrate a visual

example of our annotation inputs and outputs in Fig. 2.

4.2. UncertaintyAware Predictions

The semantic segmentation prediction that is fed to our

evaluation is expected to include pixels labeled as invalid.

Instead of defining a separate, explicit invalid class, which

would potentially require the creation of new training data

to incorporate this class, we allow a more flexible approach

for soft predictions with the original set of semantic classes

by using a confidence threshold, which affords an evalua-

tion curve for our UIoU metric by varying this threshold.

In particular, we assume that the evaluated method out-

puts an intermediate soft prediction S(p) at each pixel p

as a probability distribution among the C classes, which is

subsequently converted to a hard assignment by outputting

the class H̃(p) = argmaxc∈C{Sc(p)} with the highest

probability. In this case, SH̃(p)(p) ∈ [1/C, 1] is the ef-

fective confidence associated with the prediction. This as-

sumption is not very restrictive, as most recent semantic

segmentation methods are based on CNNs with a softmax

layer that outputs such soft predictions.

The final evaluated output Ĥ is computed based on a

free parameter θ ∈ [1/C, 1] which acts as a confidence

threshold by invalidating those pixels where the confidence

of the prediction is lower than θ, i.e. Ĥ(p) = H̃(p) if

SH̃(p)(p) ≥ θ and invalid otherwise. Increasing θ results

in more pixels being predicted as invalid. This approach is

motivated by the fact that ground-truth invalid regions are

identified during annotation by the uncertainty of their se-



(a) Input image I (b) Auxiliary image I′ (c) GT invalid mask J (d) GT semantic labeling H

Figure 2. Example input images from Dark Zurich-test and output annotations with our protocol. Valid pixels in J are marked green.

mantic content, which implies that a model should ideally

place lower confidence (equivalently higher uncertainty) in

predictions on invalid regions than on valid ones, so that the

former get invalidated for lower values of θ than the latter.

The formulation of our UIoU metric rewards this behav-

ior as we shall see next. Note that our evaluation does not

strictly require soft predictions, as UIoU can be normally

computed for fixed, hard predictions Ĥ .

4.3. UIoU

We propose UIoU as a generalization of the standard IoU

metric for evaluation of semantic segmentation predictions

which may contain pixels labeled as invalid. UIoU reduces

to standard IoU if no pixel is predicted to be invalid, e.g.

when θ = 1/C.

The calculation of UIoU for class c involves five sets of

pixels, which are listed along with their symbols: true pos-

itives (TP), false positives (FP), false negatives (FN), true

invalids (TI), and false invalids (FI). Based on the ground-

truth invalid masks J , the ground-truth semantic labelings

H and the predicted labels Ĥ for the set of evaluation im-

ages, these five sets are defined as follows:

TP = {p : H(p) = Ĥ(p) = c}, (7)

FP = {p : H(p) 6= c and Ĥ(p) = c}, (8)

FN = {p : H(p) = c and Ĥ(p) /∈ {c, invalid}}, (9)

TI = {p : H(p) = c and Ĥ(p) = invalid and J(p) = 1},
(10)

FI = {p : H(p) = c and Ĥ(p) = invalid and J(p) = 0}.
(11)

UIoU for class c is then defined as

UIoU =
|TP|+ |TI|

|TP|+ |TI|+ |FP|+ |FN|+ |FI|
. (12)

Note that a true invalid prediction results in equal reward to

predicting the correct semantic label of the pixel. Moreover,

an invalid prediction does not come at no cost: it incurs the

same penalty on valid pixels as predicting an incorrect label.

When dealing with multiple classes, we modify our no-

tation to UIoU(c) (similarly for the five sets of pixels related

to class c), which we avoided in the previous definitions to

Table 2. Comparison of Dark Zurich against related datasets with

nighttime semantic annotations. “Night annot.”: annotated night-

time images, “Invalid”: can invalid regions get legitimate labels?

Dataset Night annot. Classes Reliable GT Fine GT Invalid

WildDash [40] 13 19 X X ×
Raincouver [32] 95 3 X × ×
BDD100K [39] 345 19 × X ×
Nighttime Driving [8] 50 19 X × ×
Dark Zurich 151 19 X X X

reduce clutter. The overall semantic segmentation perfor-

mance on the evaluation set is reported as the mean UIoU

over all C classes. By varying the confidence threshold θ
and using the respective output, we obtain a parametric ex-

pression UIoU(θ). When θ = 1/C, no pixel is predicted as

invalid and thus UIoU(1/C) = IoU.

We motivate the usage of UIoU instead of standard IoU

in case the test set includes ground-truth invalid masks by

showing in Th. 1 that UIoU is guaranteed to be larger than

IoU for some θ > 1/C under the assumption that predic-

tions on invalid regions are associated with lower confi-

dence than those on valid regions, which lies in the heart of

our evaluation framework. The proof is in the supplement.

Theorem 1. Assume that there exist θ1, θ2 such that

θ1 < θ2, ∀p : J(p) = 1 ⇒ SH̃(p)(p) ≤ θ1 and

J(p) = 0 ⇒ SH̃(p)(p) ≥ θ2. If we additionally assume

that ∃p ∈ FN(c)(1/C) ∪ FP(c)(1/C) : J(p) = 1, then

IoU(c) < UIoU(c)(θ1).

5. The Dark Zurich Dataset

Dark Zurich was recorded in Zurich using a 1080p Go-

Pro Hero 5 camera, mounted on top of the front windshield

of a car. The collection protocol with multiple drives of sev-

eral laps to establish correspondences is detailed in Sec. 3.

We split Dark Zurich and reserve one lap for testing.

The rest of the laps remain unlabeled and are used for train-

ing. They comprise 3041 daytime, 2920 twilight and 2416

nighttime images extracted at 1 fps, which are named Dark

Zurich-{day, twilight, night} respectively and correspond to

the three sets in the rightmost column of Table 1. From the

testing night lap, we extract one image every 50m or 20s,

whichever comes first, and assign to it the corresponding



daytime image to serve as the auxiliary image I ′ in our an-

notation (cf. Sec. 4.1). We annotate 151 nighttime images

with fine pixel-level Cityscapes labels and invalid masks

following our protocol and name this set Dark Zurich-test.

In total, 272.2M pixels have been annotated with semantic

labels and 56.7M of these pixels are marked as invalid. We

validate the quality of our annotations by having 20 images

annotated twice by different subjects and measuring con-

sistency. 93.5% of the labeled pixels are consistent in the

semantic annotations and respectively 95% in the invalid

masks. We compare to existing annotated nighttime sets

in Table 2, noting that most large-scale sets for road scene

parsing, such as Cityscapes [6] and Mapillary Vistas [23],

contain few or no nighttime scenes. Nighttime Driving [8]

and Raincouver [32] only include coarse annotations. Dark

Zurich-test contains ten times more nighttime images than

WildDash [40]—the only other dataset with reliable fine

nighttime annotations. Detailed inspection showed that

∼70% of the 345 densely annotated nighttime images of

BDD100K [39] contain severe labeling errors which render

them unsuitable for evaluation, especially in dark regions

we treat as invalid (e.g. sky is often mislabeled as building).

Our annotation protocol helps avoid such errors by properly

defining invalid regions and using daytime images to aid

annotation, and Dark Zurich-test is an initial high-quality

benchmark to promote our uncertainty-aware evaluation.

6. Results

Our architecture of choice for implementing GCMA is

RefineNet [20]. We use the publicly available RefineNet-

res101-Cityscapes model, trained on Cityscapes, as the

baseline model to be adapted to nighttime. Throughout our

experiments, we train this model with a constant learning

rate of 5× 10−5 on mini-batches of size 1.

Comparison to Other Adaptation Methods. Our first

experiment compares GCMA to state-of-the-art approaches

for adaptation of semantic segmentation models to night-

time. To obtain the synthetic labeled datasets for GCMA,

we stylize Cityscapes to twilight using a CycleGAN model

that is trained to translate Cityscapes to Dark Zurich-

twilight (respectively to nighttime with Dark Zurich-night).

The real training datasets for GCMA are Dark Zurich-day,

instantiating D1
ur, and Dark Zurich-twilight, instantiating

D2
ur. Each adaptation step comprises 30k SGD iterations

and uses µ = 1. For the second step, we apply our guided

refinement to the labels of Dark Zurich-twilight that are pre-

dicted by model φ2 fine-tuned in the first step, using the cor-

respondences of Dark Zurich-twilight to Dark Zurich-day.

We evaluate GCMA on Dark Zurich-test against the

state-of-the-art adaptation approaches AdaptSegNet [31]

and DMAda [8] and report standard IoU performance in

Table 3, including invalid pixels which are assigned a le-

gitimate semantic label in the evaluation. We have trained

AdaptSegNet to adapt from Cityscapes to Dark Zurich-

night. For fair comparison, we also report the perfor-

mance of the respective baseline Cityscapes models for each

method. RefineNet is the common baseline of GCMA and

DMAda. GCMA significantly outperforms the other meth-

ods for most classes and achieves a substantial 10% im-

provement in the overall mIoU score against the second-

best method. The improvement with GCMA is pronounced

for classes which usually appear dark at nighttime, such

as sky, vegetation, terrain and person, indicating that our

method successfully handles large domain shifts from its

source daytime domain. These findings are supported by

visually assessing the predictions of the compared methods,

as in the examples of Fig. 3. We repeat the above com-

parison on Nighttime Driving [8] in Table 4 and show that

GCMA generalizes very well to different datasets.

Ablation Study for GCMA. We measure the individual ef-

fect of the main components of GCMA in Table 5 by evalu-

ating its ablated versions on Dark Zurich-test. Direct adap-

tation to nighttime in a single step using only Cityscapes

images stylized as nighttime with CycleGAN is a strong

baseline, due to the reliable ground-truth labels that accom-

pany the stylized Cityscapes, its high diversity and the lim-

ited artifacts of CycleGAN-based translation. Adding our

real images to the training algorithm and applying our two-

stage curriculum significantly improves upon this baseline.

Finally, our guided segmentation refinement in the second

step of GCMA brings an additional 2.6% benefit, as it cor-

rects a lot of errors in the pseudo-labels of the real twilight

images, which helps compute more reliable gradients from

the corrected loss during the subsequent training.

Comparisons with UIoU. In Fig. 4, we use our novel UIoU

metric to evaluate GCMA against DMAda and our base-

line RefineNet model on Dark Zurich-test for varying con-

fidence threshold θ and plot the resulting mean UIoU(θ)
curves. Note that standard mean IoU can be read out from

the leftmost point of each curve. First, our expectation

based on Th. 1 is confirmed for all methods, i.e. maxi-

mum UIoU values over the range of θ are larger than IoU

by ca. 3%. This implies that on Dark Zurich-test, these

models generally have lower confidence on invalid regions

than valid ones. Second, the comparative performance of

the methods is the same across all values of θ —GCMA

substantially outperforms the other two—which shows that

UIoU is generally consistent with standard IoU and is a suit-

able substitute of the latter in adverse settings where declar-

ing the input as invalid is relevant.

7. Conclusion

In this paper, we have introduced GCMA, a method to

gradually adapt semantic segmentation models from day-



(a) Image (b) Semantic GT (c) AdaptSegNet [31] (d) DMAda [8] (e) GCMA (Ours)

Figure 3. Qualitative semantic segmentation results on Dark Zurich-test. “AdaptSegNet” adapts from Cityscapes to Dark Zurich-night.

Table 3. Comparison on Dark Zurich-test. AdaptSegNet-Cityscapes→DZ-night denotes adaptation from Cityscapes to Dark Zurich-night.
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mIoU

RefineNet [20] 68.8 23.2 46.8 20.8 12.6 29.8 30.4 26.9 43.1 14.3 0.3 36.9 49.7 63.6 6.8 0.2 24.0 33.6 9.3 28.5

AdaptSegNet-Cityscapes [31] 79.0 21.8 53.0 13.3 11.2 22.5 20.2 22.1 43.5 10.4 18.0 37.4 33.8 64.1 6.4 0.0 52.3 30.4 7.4 28.8

AdaptSegNet-Cityscapes→DZ-night [31] 86.1 44.2 55.1 22.2 4.8 21.1 5.6 16.7 37.2 8.4 1.2 35.9 26.7 68.2 45.1 0.0 50.1 33.9 15.6 30.4

DMAda [8] 75.5 29.1 48.6 21.3 14.3 34.3 36.8 29.9 49.4 13.8 0.4 43.3 50.2 69.4 18.4 0.0 27.6 34.9 11.9 32.1

Ours: GCMA 81.7 46.9 58.8 22.0 20.0 41.2 40.5 41.6 64.8 31.0 32.1 53.5 47.5 75.5 39.2 0.0 49.6 30.7 21.0 42.0

Table 4. Comparison on Nighttime Driving [8]. Read as Table 3.

Method mIoU (%)

RefineNet [20] 31.5

AdaptSegNet-Cityscapes [31] 32.6

AdaptSegNet-Cityscapes→DZ-night [31] 34.5

DMAda [8] 36.1

Ours: GCMA 45.6

Table 5. Ablations of GCMA on Dark Zurich-test, reporting mIoU.

Daytime baseline: RefineNet [20] 28.5%

+direct CycleGAN adapt. (w/o real, w/o curriculum) 37.1%

+GCMA w/o guided refinement 39.4%

+GCMA w/ guided refinement 42.0%

time to nighttime with stylized data and unlabeled real data

of increasing darkness, as well as UIoU, a novel evalua-

tion metric for semantic segmentation designed for images

with indiscernible content. We have also presented Dark

Zurich, a large-scale dataset of real scenes captured at mul-

tiple times of day with cross-time-of-day correspondences,

and annotated 151 nighttime scenes of it with a new proto-

col which enables our evaluation. Detailed evaluation with

standard IoU on real nighttime sets demonstrates the merit

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Confidence threshold 

0.1

0.2

0.3

0.4

0.5
Mean UIoU

0.318

0.355

0.458

RefineNet

DMAda

GCMA

Figure 4. Uncertainty-aware evaluation of RefineNet [20],

DMAda [8] and GCMA on Dark Zurich-test. We evaluate mean

UIoU across the entire range [1/C, 1] of confidence threshold θ.

For each method, the point at which mean UIoU is maximized is

marked black and labeled with this maximum mean UIoU value.

of GCMA, which substantially improves upon competing

state-of-the-art methods. Finally, evaluation on our bench-

mark with UIoU shows that invalidating predictions is use-

ful when the input includes ambiguous content.
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