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Abstract

This work addresses the challenging task of LiDAR-
based 3D object detection in foggy weather. Collecting and
annotating data in such a scenario is very time, labor and
cost intensive. In this paper, we tackle this problem by simu-
lating physically accurate fog into clear-weather scenes, so
that the abundant existing real datasets captured in clear
weather can be repurposed for our task. Our contribu-
tions are twofold: 1) We develop a physically valid fog
simulation method that is applicable to any LiDAR dataset.
This unleashes the acquisition of large-scale foggy train-
ing data at no extra cost. These partially synthetic data
can be used to improve the robustness of several perception
methods, such as 3D object detection and tracking or si-
multaneous localization and mapping, on real foggy data.
2) Through extensive experiments with several state-of-the-
art detection approaches, we show that our fog simulation
can be leveraged to significantly improve the performance
for 3D object detection in the presence of fog. Thus, we are
the first to provide strong 3D object detection baselines on
the Seeing Through Fog dataset. Our code is available at
www.trace.ethz.ch/lidar fog simulation.

1. Introduction
Light detection and ranging (LiDAR) is crucial for the

implementation of safe autonomous cars, because LiDAR
measures the precise distance of objects from the sensor,
which cameras cannot measure directly. Thus, LiDAR
has found its way into many applications, including detec-
tion [23, 34], tracking [7, 50], localization [25, 8], and map-
ping [48, 15]. Despite the benefit of measuring exact depth
information, LiDAR has a significant drawback. The light
pulses that LiDAR sensors emit in the invisible near infrared
(NIR) spectrum (typically at 850 and 903 to 905 nm wave-
length [4]) do not penetrate water particles, as opposed to
automotive radars. This means as soon as there are water
particles in the form of fog in the air, light pulses emitted
by the sensor will undergo backscattering and attenuation.

(a) strongest returns (b) last returns

Figure 1: LiDAR returns caused by fog in the (top) scene.
(a) shows the strongest returns and (b) the last returns, color
coded by the LiDAR channel. The returns of the ground are
removed for better visibility of the points introduced by fog.
Best viewed in color (red =̂ low, cyan =̂ high, 3D bounding
box annotation in green, ego vehicle dimensions in gray).

Attenuation reduces the received signal power that corre-
sponds to the range of the solid object in the line of sight
which should be measured, while backscattering creates a
spurious peak in the received signal power at an incorrect
range. As a result, the acquired LiDAR point cloud will
contain some spurious returns whenever there is fog present
at the time of capture. This poses a big challenge for most
outdoor applications, as they typically require robust per-
formance under all weather conditions.

In recent years, several LiDAR datasets for 3D object
detection [10, 3, 19, 5, 39, 27, 11, 16] have been presented.
Although many of them contain diverse driving scenarios,
none of them allows an evaluation on different kinds of ad-
verse weather. Only recently, the Canadian Adverse Driving
Conditions (CADC) Dataset [28] and the Seeing Through
Fog (STF) Dataset [2] address the need for such an eval-
uation. While CADC focuses on snowfall, STF is targeted
towards evaluation under fog, rain and snow. Consequently,
there is still not a large quantity of LiDAR foggy data avail-
able that could be used to train deep neural networks.



The reason for this is obvious: collecting and annotating
large-scale datasets per se is time, labor and cost intensive,
let alone when done for adverse weather conditions.

This is exactly the shortfall that our work addresses. In
Sec. 3, we propose a physically-based fog simulation that
converts real clear-weather LiDAR point clouds into foggy
counterparts. In particular, we use the standard linear sys-
tem [30] that models the transmission of LiDAR pulses. We
distinguish between the cases of clear weather and fog with
respect to the impulse response of this system and estab-
lish a formal connection between the received response un-
der fog and the respective response in clear weather. This
connection enables a straightforward transformation of the
range and intensity of each original clear-weather point, so
that the new range and intensity correspond to the measure-
ment that would have been made if fog was present in the
scene. We then show in Sec. 4 that several state-of-the-art
3D object detection pipelines can be trained on our partially
synthetic data to get improved robustness on real foggy
data. This scheme has already been applied on images for
semantic segmentation [32, 31, 13] and we show that it is
also successful for LiDAR data and 3D object detection.

For our experiments, we simulate fog on the clear-
weather training set of STF [2] and evaluate on their real
foggy test set. Fig. 1 shows an example scene from the
STF dense fog test set, where the noise introduced by fog is
clearly visible in the LiDAR data. The authors of STF [2]
used a Velodyne HDL-64E as their main LiDAR sensor.
This sensor comes with 64 channels and a so-called dual
mode. In this mode, it can measure not only the strongest,
but also the last return received for each individual emitted
light pulse. Even though the last signal contains less severe
noise, fog still causes a significant amount of spurious re-
turns. Therefore, even in this dual mode, the sensor cannot
fully “see through fog”.

Fig. 2 shows an interesting characteristic of the noise in-
troduced by fog, namely that it is not uniformly distributed
around the sensor. On the contrary, the presence of noise de-
pends on whether there is a target in the line of sight below
a certain range from the sensor. If there is a solid object at a
moderate range, there are few, if any, spurious returns from
the respective pulses. On the other hand, if there is no target
in the line of sight below a certain range, there are a lot of
spurious returns that are caused by fog. This becomes ap-
parent in the example of Fig. 2, where on the left side of the
road there is a hill and on the right side there is open space
behind the guardrail. Only in the latter case does the noise
caused by fog appear in the measurement. This behavior is
explained with our theoretical formulation in Sec. 3.

As a side note, similar sensor noise can also be caused
by exhaust smoke, but if the future of transportation goes
electric, at least this problem may vanish into thin air.

(a) channel (b) intensity

Figure 2: LiDAR returns caused by fog in the (top) scene.
Color coded by the LiDAR channel in (a) and by the inten-
sity in (b). The returns of the ground are removed for better
visibility of the points introduced by fog. Best viewed in
color, same color coding as in Fig. 1 applies.

2. Related Work

2.1. Effects of Adverse Weather on LiDAR

Some of the early works include Isaac et al. [20]. In
2001, they investigate the influences of fog and haze on op-
tical wireless communications in the NIR spectrum. Then,
in 2011, Rasshofer et al. [30] investigate the influences of
weather phenomena on automotive LiDAR systems. In re-
cent years, adverse weather conditions got a lot more at-
tention and there are many other works worth mentioning
that look into the degradation of LiDAR data in different
adverse weather conditions [45, 9, 21, 17, 14, 44, 24, 22].
Very recently, in 2020, the authors of LIBRE [4] test several
LiDAR sensors in a weather chamber under rain and fog.
Thereby they provide great and valuable insights on the ro-
bustness of individual sensors of this time on challenging
weather conditions.

2.2. Adverse Weather and LiDAR Simulation

In the automotive context, artificial fog simulation is so
far mostly limited to image based methods. Sakaridis et
al. [32] e.g. create a foggy version of Cityscapes [6], a
dataset for Semantic Segmentation, and Hahner et al. [13] a
foggy version of the purely synthetic dataset Synscapes [46]
by leveraging the depth information given in the origi-
nal datasets. Sakaridis et al. also released ACDC [33], a
dataset providing semantic pixel-level annotations for 19
Cityscapes classes in adverse conditions. Only recently,
Bijelic et al. [2] propose a first order approximation to sim-
ulate fog in an automotive LiDAR setting. However, their
simulation only aims at reproducing measurements they
carried out in a 30m long fog chamber.



Goodin et al. [12] develop a model to quantify the perfor-
mance degradation of LIDAR in rain and incorporate their
model into a simulation which they use to test an advanced
driver assist system (ADAS). Michaud et al. [26] and Trem-
blay et al. [41] propose a method to render rain on images
to evaluate and improve the robustness on rainy images.

2.3. 3D Object Detection

After the release of many LiDAR datasets [10, 3, 19, 5,
39, 27, 11, 16, 28, 2] over the past few years, 3D object de-
tection is receiving increasing attention in the race towards
autonomous driving. While there exist camera based meth-
ods such as Simonelli et al. [38] and gated camera meth-
ods such as Gated3D [18], the top ranks across all dataset
leaderboards are typically sorted out among LiDAR based
methods.

Seminal work in LiDAR based 3D object detec-
tion methods include PointNet [29] and VoxelNet [49].
PointNet [29] is a neural network that directly processes
point clouds without quantizing the 3D space into voxels
beforehand. Most notably, the network architecture is ro-
bust to input perturbation, so the order in which the points
get fed into the network do not effect its performance.
VoxelNet [49] builds on the idea to quantize the 3D space
into equally sized voxels and then leverages PointNet-like
layers to process each and every voxel. Due to it’s com-
putational intensive 3D convolutions, it is however a rather
heavy architecture.

That’s where PointPillars [23] comes in: it gets rid of the
quantization in the height domain and processes the point
cloud instead in a 3D pillar grid. PointPillars [23] is based
on the SECOND [47] codebase, but due to the novel pillar
idea, it can fall back to much faster 2D convolutions and
achieves very competitive results at a much faster speed. Its
successor PointPainting [43] further leverages image seg-
mentation results and “paints” the points with a pseudo class
label before processing them with the PointPillars [23] ar-
chitecture.

Shi et al. achieved several recent milestones in 3D ob-
ject detection. PointRCNN [36] is a two-stage architecture,
where the first stage generates 3D bounding box proposals
from a point cloud in a bottom-up manner and the second
stage refines these 3D bounding box proposals in a canon-
ical fashion. Part-A2 [37] is part-aware in a sense that the
network takes into account which part of the object a point
belongs to. It leverages these intra-object part locations
and can thereby achieve higher results. PV-RCNN [34]
and it’s successor PV-RCNN++ [35] are the latest of their
works that simultaneously process (coarse) voxels and the
raw points of the point cloud at the same time.

3. Fog Simulation on Real LiDAR Point Clouds
To simulate the effect of fog on real-world LiDAR point

clouds that have been recorded in clear weather, we need to
resort to the optical system model that underlies the function
of the transmitter and receiver of the LiDAR sensor. In par-
ticular, we examine a single measurement/point, model the
full signal of received power as a function of the range and
recover its exact form corresponding to the original clear-
weather measurement. This allows us to operate in the sig-
nal domain and implement the transformation from clear
weather to fog simply by modifying the part of the impulse
response that pertains to the optical channel (i.e. the atmo-
sphere). In the remainder of this section, we first provide the
background on the LiDAR sensor’s optical system and then
present our fog simulation algorithm based on this system.

3.1. Background on the LiDAR Optical Model

Rasshofer et al. [30] introduced a simple linear sys-
tem model to describe the received signal power at a
LiDAR’s receiver, which is valid for non-elastic scattering.
In particular, the range-dependent received signal power
PR is modeled as the time-wise convolution between the
time-dependent transmitted signal power PT and the time-
dependent impulse response H of the environment:

PR(R) = CA

∫ 2R/c

0

PT (t)H

(
R− ct

2

)
dt. (1)

c is the speed of light and CA is a system constant which is
independent of time and range. For our fog simulation, as
we explain in Sec. 3.2, CA can be factored out.

We proceed with the description and modeling of the re-
maining terms in (1). The time signature of the transmit
pulse can be modeled for automotive LiDAR sensors [30]
by a sin2 function:

PT (t) =

{
P0 sin

2
(

π
2 τH

t
)
, 0 ≤ t ≤ 2 τH

0 otherwise.
(2)

Where P0 denotes the pulse’s peak power and τH the half-
power pulse width. Typical values for τH lie between 10
and 20 ns [30]. In (2), the time origin is set to the start
of the pulse, so in case a LiDAR sensor does not report the
range associated with a rising edge, but the maximum of the
corresponding peak in the return signal, we can perform the
required correction later in our pipeline. Since it is common
to report the rising edge in embedded signal processing, we
keep this convention throughout all of our equations and
show where one can perform such a correction later on.

The spatial impulse response function H of the environ-
ment can be modeled as the product of the individual im-
pulse responses of the optical channel, HC , and the target,
HT :

H(R) = HC(R)HT (R). (3)



The impulse response of the optical channel HC is

HC(R) =
T 2(R)

R2
ξ(R), (4)

where T (R) stands for the total one-way transmission loss
and ξ(R) denotes the crossover function defining the ratio
of the area illuminated by the transmitter and the part of
it observed by the receiver, as illustrated in Fig. 3. Because
generally the full details of the optical configuration in com-
mercial LiDAR sensors are not publicly available (i.e. the
precise values of R1 and R2 are unknown), ξ(R) in our
case is a piece-wise linear approximation defined as

ξ(R) =


0, R ≤ R1

R
R2−R1

− R1

R2−R1
, R1 < R < R2

1, R2 ≤ R.

(5)

The total one-way transmission loss T (R) is defined as

T (R) = exp

(
−
∫ R

r=0

α(r)dr

)
, (6)

where α(r) denotes the spatially varying attenuation coef-
ficient. In our simulation, we make the assumption of a
homogeneous optical medium, i.e. α(r) = α. As a result,
(6) yields

T (R) = exp (−αR) . (7)

The attenuation coefficient α depends on the weather at the
time of measurement and increases as visibility range de-
creases. Therefore, for the same 3D scene, the impulse re-
sponse of the optical channel HC varies with visibility.

The last term of the optical system (1) that remains to be
modeled is the impulse response of the target, HT . How-
ever, we need to distinguish cases for HT according to the
weather condition, as the composition of the target for the
same 3D scene is different in fog than in clear weather. We
make the contribution of constructing a direct relation be-
tween the response PR in clear weather and in fog for the
same 3D scene and this relation enables us to simulate fog
on real clear-weather LiDAR measurements.

3.2. Fog Simulation for LiDAR

We now particularize the optical model of Sec. 3.1 for
the individual cases of clear weather and fog in terms of the
impulse response terms, HC and HT .

In clear weather, the attenuation coefficient α is 0, so

HC(R) =
ξ(R)

R2
. (8)

Moreover, the target in clear weather is comprised only of
the solid object on which the LiDAR pulse is reflected. This
type of target is called a hard target [30].

Figure 3: Sketch of a LiDAR sensor where the transmitter
Tx and the receiver Rx do not have coaxial optics, but have
parallel axes. This is called a bistatic beam configuration.
Figure adjusted from [30].

The impulse response HT of a hard target at range R0 is
a Dirac delta function of the form

HT (R) = Hhard
T (R) = β0δ(R−R0), (9)

where β0 denotes the differential reflectivity of the target. If
we only consider diffuse reflections (Lambertian surfaces),
β0 is given by

β0 =
Γ

π
, 0 < Γ ≤ 1. (10)

Consequently, plugging in (8) and (9) into (3), in clear
weather the total impulse response function H(R) can be
expressed as

H(R) =
ξ(R0)

R0
2 β0δ(R−R0), (11)

where we have used the property f(x)δ(x − x0) =
f(x0)δ(x − x0). Since in practice R2 is less than two me-
ters [42], we can safely assume R2 ≪ R0, so ξ(R0) = 1.
Thus, starting from (1) and given the range measurement R0

for the original clear-weather LiDAR point, we compute the
received signal power in closed form as

PR,clear(R)

= CA

∫ 2τH

0

P0 sin
2

(
π

2τH
t

)
1

R0
2
β0δ(R −

ct

2
− R0)dt

=

{
CAP0β0

R0
2 sin2

(
π(R−R0)

cτH

)
, R0 ≤ R ≤ R0 + cτH

0 otherwise.
(12)

The received signal power attains its maximum value at
R0 + cτH

2 . So as we mentioned in Sec. 3.1, here one can
simply shift the response PR,clear(R) by − cτH

2 if necessary.
We now establish the transformation of PR,clear(R) to

PR,fog(R) under fog. While the same hard target still ex-
ists since the 3D scene is the same, there is now an addi-
tional contribution from fog—which constitutes a soft tar-
get [30] that provides distributed scattering—to the impulse
response HT .



The impulse response of this soft fog target, Hsoft
T , is a

Heaviside function of the form

Hsoft
T (R) = βU(R0 −R), (13)

where β denotes the backscattering coefficient, which is
constant under our homogeneity assumption, and U is the
Heaviside function.

The co-existence of a hard target and a soft target can
be modeled by taking the superposition of the respective
impulse responses:

HT (R) = Hsoft
T (R) +Hhard

T (R)

= βU(R0 −R) + β0δ(R−R0). (14)

Consequently, plugging in (7) into (4) and then (4) and
(14) into (3), in fog the total impulse response function
H(R) can be expressed as

H(R) =
exp(−2αR)ξ(R)

R2

× (βU(R0 −R) + β0δ(R−R0)) . (15)

We observe that compared to clear weather, the spatial
impulse response in fog is more involved, but it can still be
decomposed into two terms, corresponding to the hard and
the soft target respectively, leading to a respective decom-
position of the received response as

PR,fog(R) = P hard
R,fog(R) + P soft

R,fog(R). (16)

Focusing on the hard target term, using (1) to calculate
the corresponding term of the received response P hard

R,fog and
leveraging again the assumption that R2 ≪ R0, we obtain

P
hard
R,fog(R) =

= CA
exp(−2αR0)

R0
2

∫ 2τH

0

P0 sin
2

(
π

2τH
t

)
β0δ(R −

ct

2
− R0)dt

=

{
CAP0β0 exp(−2αR0)

R0
2 sin2

(
π(R−R0)

cτH

)
, R0 ≤ R ≤ R0 + cτH

0 otherwise.

= exp(−2αR0)PR,clear(R). (17)

In other words, the hard target term of the response in fog is
an attenuated version of the original clear-weather response
PR,clear. On the other hand, the soft target term is

P
soft
R,fog(R) = CAP0β

∫ 2τH

0

sin
2

(
π

2τH
t

)
×

×
exp

(
− 2α

(
R − ct

2

) )
(
R − ct

2

)2 ξ(R −
ct

2
)U(R0 − R +

ct

2
)dt

(18)

and does not possess a closed-form expression, as the re-
spective integral I(R,R0, α, τH) on the right-hand side of
(18) cannot be calculated analytically.

(a) P soft
R,fog(R) < P hard

R,fog (b) P soft
R,fog > P hard

R,fog

Figure 4: The two terms of the received signal power PR,fog
from a single LiDAR pulse, associated to the solid ob-
ject that reflects the pulse (P hard

R,fog) and the soft fog target
(P soft

R,fog), plotted across the range domain. While in (a) the
fog is not thick enough to yield a return, in (b) it is thick
enough to yield a return that overshadows the solid object
at R0 = 30m.

However, for given τH and α, I(R,R0, α, τH) can be
computed numerically for fixed values of R. We use Simp-
son’s 1⁄3 rule for numerical integration and provide indica-
tive examples of the profile of P soft

R,fog(R) in Fig. 4. Depend-
ing on the distance of the hard target from the sensor, the
soft target term of the response may exhibit a larger max-
imum value than the hard target term, which implies that
the measured range changes due to the presence of fog and
becomes equal to the point of maximum of the soft-target
term.

The formulation that we have developed affords a simple
algorithm for fog simulation on clear-weather point clouds.
The input parameters to the algorithm are α, β, β0 and τH .
The main input of the algorithm is a clear-weather point
cloud, where each point p ∈ R3 has a measured intensity i.
We make the assumption that the intensity readings of the
sensor are a linear function of the maxima of the received
signal power PR,clear corresponding to each measurement.
The procedure for each point p is given in Algorithm 1.
Note, that we add some noise to the distance of P soft

R,fog (line
14-15), otherwise all points introduced by P soft

R,fog would lie
precisely on a circle around the LiDAR sensor.

4. Results
4.1. Fog Simulation

A qualitative comparison between our fog simulation
and the fog simulation in [2] can be found in Fig. 5. We
can see that in contrast to the fog simulation in [2] where
the response of soft target is only modeled heuristically, our
fog simulation models P soft

R,fog in a physically sound way.
To highlight this difference, we specifically picked a clear
weather scene with a similar layout to the real foggy scene
depicted in Fig. 2. Only in our fog simulation (best visible
in the bottom right visualization of Fig. 5), a similar half
circle of fog noise gets simulated. In the Supplementary
Materials we show a comparison with additional α values.



Algorithm 1 LiDAR fog simulation

1: procedure FOGGIFY(p, i, α, β, β0, τH )
2: R0 ← ∥p∥
3: x, y, z ← p ▷ i = PR,clear

4: CAP0 ← iR0
2

β0
▷ follows from Eq. (12)

5: ihard ← i× exp(−2αR0) ▷ see Eq. (17)

6: for R in (0, 0.1, ..., R0) do ▷ 10cm accuracy

7: IR ← SIMPSON(I(R,R0, α, τH)) ▷ see Eq. (18)

8: end for
9: itmp ← max(IR)

10: Rtmp ← argmax(IR)
11: isoft ← CAP0 β × itmp ▷ see again Eq. (18)

12: if isoft > ihard then
13: s← Rtmp

R0
▷ scaling factor s

14: p← RANDOM UNIFORM FLOAT(−1, 1)
15: n← 2p ▷ noise factor n ∈ ( 1

2 , 2)

16: x← s× n× x
17: y ← s× n× y
18: z ← s× n× z
19: i← isoft
20: else ▷ keep original location

21: i← ihard ▷ only modify intensity

22: end if
23: return x, y, z, i
24: end procedure

Figure 5: Comparison of our fog simulation (bottom) to the
fog simulation in [2] (middle) with α set to 0.06, which cor-
responds to a meteorological optical range (MOR) ≈ 50m.
In the left column, the point cloud is color coded by the in-
tensity and in the right column it is color coded by the height
(z value). The top row shows the original point cloud.

4.2. 3D Object Detection in Fog

Our experimental setup codebase is forked from Open-
PCDet [40]. It comes with implementations of the 3D Ob-
ject Detection methods PV-RCNN [34], PointRCNN [36],
SECOND [47], Part-A2 [37] and PointPillars [23]. For
our experiments we train all of these methods from scratch
for 80 epochs with their provided standard training poli-
cies on the STF [2] dataset. We also tried to fine-tune from
KITTI [10] weights (which uses the same LiDAR sensor),
but besides the networks converging faster, we did not see
any benefit, so all the numbers you see in section 4.2 are
trained from scratch on the STF [2] clear weather training
set that consist of 3469 scenes. The STF [2] clear weather
validation and testing set consists of 781 and 1847 scenes
respectively. However, the main benefit of using STF [2]
for our experiments is because it comes with test sets for
different adverse weather conditions. In particular, it comes
with a light fog test set of 946 scenes and a dense fog test
set with 786 scenes. This allows us to test the effectiveness
of our fog simulation pipeline on real foggy data.

Regarding our fog simulation, we assumed the half-
power pulse width τH of the Velodyne HDL-64E sensor to
be 20ns and set β to 0.046

MOR as in Rasshofer et al. [30]. We
empirically set β0 to 1×10−6

π for all points to get a similar in-
tensity distribution as we can observe in the real foggy point
clouds of STF [2]. Since the Velodyne HDL-64E uses some
unknown internal dynamic gain mechanism, it delivers at
each and every time step intensity values in the full value
range [0, 255]. To mimic this behaviour and also cover the
full value range again we linearly scale up the intensity val-
ues after they have been modified by Algorithm 1.

4.2.1 Quantitative Results

For the numbers we report, we select the snapshot with the
best performance on the clear weather validation set and
test it on the aforementioned test splits. In Table 1 we re-
port the 3D average precision (AP) on the STF [2] dense
fog test split for the classes Car, Cyclist and Pedestrian as
well as the 3D mean average precision (mAP) over those
three classes. Note, it is always one model that predicts
all three classes and not one model per class. All AP and
mAP numbers reported in this paper are being calculated
using 40 recall positions as suggested in [38]. We can see
that in mAP over all classes and on the major Car class, the
training runs of all methods using our fog simulation out-
performs the clear weather baseline and the training runs
using the fog simulation in [2].

As a second baseline, we evaluate the clear weather
model after applying an additional preprocessing step at test
time, where we only feed those points to the network that
are present in both, the strongest and last measurement of
the same scene. We dub this filter “strongest ∩ last filter”.



Method α
Car AP@.5IoU Cyclist AP@.25IoU Pedestrian AP@.25IoU mAP over classes

easy mod. hard easy mod. hard easy mod. hard easy mod. hard
PV-RCNN [34] † 0 45.03 46.00 45.08 24.33 24.63 24.63 43.96 41.92 40.09 37.77 37.51 36.60
PV-RCNN [34] ‡ 0 45.24 46.18 45.25 24.38 24.67 24.67 44.81 43.09 40.98 38.15 37.98 36.97

fog simulation in [2] * 45.60 46.60 45.60 26.42 26.93 27.80 42.95 40.89 39.09 38.32 38.14 37.50
our fog simulation * 46.69 47.38 46.51 27.89 27.89 29.29 42.38 40.65 39.20 38.99 38.64 38.33

PointRCNN [36] † 0 44.00 45.03 43.73 22.99 22.99 24.23 41.73 38.38 35.71 36.24 35.47 34.56
PointRCNN [36] ‡ 0 44.40 45.25 44.15 23.52 23.52 25.62 43.23 40.16 37.05 37.05 36.31 35.61

fog simulation in [2] * 46.08 47.02 45.85 20.36 20.36 20.36 43.03 41.60 39.95 36.49 36.33 35.39
our fog simulation * 47.81 47.99 46.68 22.88 22.88 25.18 45.79 43.47 41.33 38.83 38.11 37.73

SECOND [47] † 0 42.36 42.99 41.99 24.03 25.21 25.21 36.72 35.37 33.84 34.37 34.52 33.68
SECOND [47] ‡ 0 42.78 43.47 42.42 22.32 23.69 23.69 37.06 36.14 34.14 34.05 34.43 33.42

fog simulation in [2] * 42.67 43.58 42.77 26.28 27.11 27.11 37.89 36.54 35.38 35.61 35.74 35.09
our fog simulation * 43.47 44.01 43.20 26.85 27.21 27.46 38.41 37.06 35.87 36.24 36.09 35.51

Part-A² [37] † 0 37.60 38.15 37.76 24.51 25.59 25.59 41.03 39.29 37.59 34.38 34.34 33.65
Part-A² [37] ‡ 0 38.04 38.73 38.30 24.37 25.45 25.45 40.36 38.55 36.65 34.26 34.25 33.47

fog simulation in [2] * 41.07 41.63 40.81 21.12 21.12 21.12 38.83 37.57 34.94 33.67 33.44 32.29
our fog simulation * 42.16 42.75 41.70 25.13 25.72 26.22 39.19 38.29 36.29 35.49 35.59 34.74

PointPillars [23] † 0 34.30 35.23 35.00 23.05 23.26 25.50 26.43 25.35 24.17 27.93 27.95 28.22
PointPillars [23] ‡ 0 34.89 35.84 35.47 24.14 24.36 25.38 27.17 26.04 24.85 28.74 28.75 28.57

fog simulation in [2] * 37.02 38.16 37.88 21.68 21.68 23.33 28.84 28.25 26.95 29.18 29.37 29.39
our fog simulation * 38.31 39.14 38.91 23.40 23.40 25.37 30.50 29.51 27.91 30.73 30.68 30.73

Table 1: 3D average precision (AP) results on the STF [2] dense fog test split.
† clear weather baseline ‡ clear weather baseline (same model as †) with strongest ∩ last filter applied at test time
* fog simulation gets applied to every training example with α uniformly sampled from [0, 0.005, 0.01, 0.02, 0.03, 0.06]

Method α
dense fog light fog clear mAP over conditions

easy mod. hard easy mod. hard easy mod. hard easy mod. hard
PV-RCNN [34] † 0 45.03 46.00 45.08 69.55 70.17 68.44 79.61 77.05 71.03 64.73 64.41 61.52
PV-RCNN [34] ‡ 0 45.24 46.18 45.25 69.64 70.30 68.42 79.80 77.16 71.08 64.89 64.55 61.58

fog simulation in [2] * 45.60 46.60 45.60 70.02 70.56 69.37 79.63 77.48 72.48 65.08 64.88 62.48
our fog simulation * 46.69 47.38 46.51 71.42 70.96 69.03 79.27 76.75 71.80 65.79 65.03 62.45

PointRCNN [36] † 0 44.00 45.03 43.73 71.30 71.48 68.31 80.05 76.52 70.80 65.12 64.34 60.95
PointRCNN [36] ‡ 0 44.40 45.25 44.15 71.36 70.45 68.28 79.96 76.37 70.59 65.24 64.02 61.01

fog simulation in [2] * 46.08 47.02 45.85 70.80 70.27 67.66 79.90 76.16 69.18 65.59 64.48 60.90
our fog simulation * 47.81 47.99 46.68 70.74 70.84 67.65 80.41 76.58 69.68 66.32 65.14 61.34

SECOND [47] † 0 42.36 42.99 41.99 70.51 70.07 68.60 78.67 75.20 70.67 63.85 62.75 60.42
SECOND [47] ‡ 0 42.78 43.47 42.42 70.50 70.08 68.63 78.53 75.08 69.91 63.93 62.87 60.32

fog simulation in [2] * 42.67 43.58 42.77 69.67 69.89 68.45 79.23 76.61 71.89 63.85 63.36 61.04
our fog simulation * 43.47 44.01 43.20 69.55 69.63 68.49 79.44 75.95 71.94 64.15 63.20 61.21

Part-A² [37] † 0 37.60 38.15 37.76 65.29 65.88 64.31 76.38 73.79 68.56 59.76 59.27 56.88
Part-A² [37] ‡ 0 38.04 38.73 38.30 65.98 66.41 64.62 76.43 73.86 68.57 60.15 59.67 57.16

fog simulation in [2] * 41.07 41.63 40.81 65.91 65.84 63.91 76.61 73.84 68.31 61.20 60.44 57.68
our fog simulation * 42.16 42.75 41.70 68.12 67.76 65.19 76.64 73.86 68.05 62.31 61.46 58.32

PointPillars [23] † 0 34.30 35.23 35.00 67.92 68.47 66.73 77.20 74.64 69.63 59.81 59.45 57.12
PointPillars [23] ‡ 0 34.89 35.84 35.47 67.97 68.52 66.76 77.27 74.66 69.59 60.04 59.67 57.27

fog simulation in [2] * 37.02 38.16 37.88 68.18 68.24 67.10 76.33 73.91 69.03 60.51 60.10 58.00
our fog simulation * 38.31 39.14 38.91 68.31 68.95 67.18 77.42 74.56 69.55 61.34 60.88 58.55

Table 2: Car 3D AP@.5IoU results on all relevant STF [2] test splits.
† clear weather baseline ‡ clear weather baseline (same model as †) with strongest ∩ last filter applied at test time
* fog simulation gets applied to every training example with α uniformly sampled from [0, 0.005, 0.01, 0.02, 0.03, 0.06]



Figure 6: The (top) row shows predictions by PV-RCNN [34] trained on the original clear weather data (first row in tables
above), the (bottom) row shows predictions by PV-RCNN [34] trained on a mix of clear weather and simulated foggy data
(fourth row in tables above) on three example scenes from the STF [2] dense fog test split. Ground truth boxes in color,
predictions of the model in white. Best viewed on a screen (and zoomed in).

The idea for this filter stems from the fact, that all the points
that get discarded by this filter, must be noise (most likely
introduced by fog in the scene) and can not be from a phys-
ical object of interest. We can see that this filter most of
the time boosts the performance of the clear weather model
but also does not surpass any fog simulation runs for the
majority of cases. One might also notice, that the perfor-
mance on the Cyclist class is generally lower than on the
other two classes. We attribute this to the fact, that the Cy-
clist class is fairly underrepresented compared to the other
two classes in the STF [2] dataset (e.g. 28 cyclists vs. 490
pedestrians and 1186 cars in the dense fog test split). For
the Pedestrian (and Cyclist) class we still achieve three out
of five times state-of-the-art performance. For the training
runs using either our fog simulation or the fog simulation
in [2], we uniformly sample for each training example α
from [0, 0.005, 0.01, 0.02, 0.03, 0.06] which corresponds to
a MOR of approximately [∞, 600, 300, 150, 100, 50]m re-
spectively. Trying out more sophisticated techniques like
curriculum learning [1] is kept for future work.

In Table 2 we present the 3D AP of the major Car class
on the dense fog, light fog and clear test set as well as the
mAP over those three weather conditions. We can see that
in dense fog the training runs of all methods using our fog
simulation outperforms all other training runs, which is ex-
actly what we aimed for with our physically accurate fog
simulation. We can further see that mixing in our fog sim-
ulation in training does not hurt the performance in clear
weather too much, hence we also achieve state-of-the-art
for most cases in mAP over all three weather conditions.

In the Supplementary Materials, we discuss why we
chose to focus on relaxed intersection over union (IoU)
thresholds and present results using the official KITTI [10]
evaluation strictness. Additionally, we present 2D and Birds

Eye View (BEV) results, and further details on the STF [2]
dataset.

4.2.2 Qualitative Results

In Fig. 6 we showcase three examples where we clearly out-
perform the clear weather baseline. We can examine that
the model that sees our simulated fog in training, has less
false positives (left), more true positives (middle) and over-
all more accurate predictions (right), each time applying the
same confidence threshold for a fair comparison.

5. Conclusion
In this work we introduce a physically accurate way to

convert real-world clear weather point clouds into foggy
point clouds. In this process we have full control over all pa-
rameters involved in the physical equations. This not only
allows us to realistically simulate any density of fog, but
also allows us to simulate the influence of fog on basically
any LiDAR sensor currently available on the market.

We show that by using this physically accurate fog sim-
ulation, we can improve the performance of several state of
the art 3D object detection methods on point clouds that
have been collected in real-world dense fog. We expect
that our fog simulation can lead to even greater performance
boosts if the LiDAR data is annotated in 360° and not just in
the field of view of a single forward facing camera, but no
such dataset is publicly available yet to test this hypothesis.

We believe that our physically accurate fog simulation is
not just applicable to the task of 3D object detection. So we
hope that our fog simulation also finds its way into many
other tasks and works.
Acknowledgements: This work was funded by Toyota Mo-
tor Europe via the research project TRACE Zurich.
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