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ABSTRACT
The burgeoning field of Camouflaged Object Detection (COD) seeks to identify objects that blend into their surroundings. Despite
the  impressive  performance  of  recent  learning-based  models,  their  robustness  is  limited,  as  existing  methods  may  misclassify
salient objects as camouflaged ones, despite these contradictory characteristics. This limitation may stem from the lack of multi-
pattern training images, leading to reduced robustness against salient objects. To overcome the scarcity of multi-pattern training
images,  we  introduce  CamDiff,  a  novel  approach  inspired  by  AI-Generated  Content  (AIGC).  Specifically,  we  leverage  a  latent
diffusion model  to synthesize salient  objects in camouflaged scenes,  while using the zero-shot image classification ability  of  the
Contrastive Language-Image Pre-training (CLIP) model to prevent synthesis failures and ensure that the synthesized objects align
with the input prompt. Consequently, the synthesized image retains its original camouflage label while incorporating salient objects,
yielding camouflaged scenes with richer characteristics. The results of user studies show that the salient objects in our synthesized
scenes attract the user’s attention more; thus, such samples pose a greater challenge to the existing COD models. Our CamDiff
enables flexible editing and effcient large-scale dataset generation at a low cost. It significantly enhances the training and testing
phases of COD baselines, granting them robustness across diverse domains. Our newly generated datasets and source code are
available at https://github.com/drlxj/CamDiff.
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C amouflage is a predatory as well as defensive strategy that
has  evolved  in  natural  objects  through  biological
adaptation[1].  Visually,  organisms  alter  the  appearance  of

their bodies to match their surroundings, making them difficult to
detect at first glance. Motivated by this phenomenon, a recent field
of  research  called  Camouflaged  Object  Detection  (COD)[2–4] has
gained  significant  attention  from  the  computer  vision
community[5–7]. This area of study has broad applications, including
medical  image  diagnosis  and  segmentation  [8–10],  species
discovery[11], and crack inspection[12].

Several  works[10, 13, 14] directly  extend  well-developed  Salient
Object  Detection  (SOD)  towards  COD  tasks.  Yet,  salient  and
camouflaged  objects  are  two  contrasting  object  categories.  The
greater  the  level  of  saliency,  the  lower  the  degree  of  camouflage,
and  vice  versa[15].  While  the  ideal  case  is  to  have  a  method  that
detects all objects, both salient and camouflaged, while noting the
level  of  mimicry,  misclassifying  these  two  contrasting  patterns
with  the  same  semantic  label  is  not  acceptable  since  it  may
hinder  operational  efficiency  in  various  domains.  For  instance,
misidentifying  critical  components  or  defects  as  camouflaged
objects  in manufacturing or quality control  processes can lead to
production  errors,  delays,  or  compromised  product  quality.  In
healthcare,  misclassifying  salient  medical  conditions,  such  as
visible symptoms or anomalies, as camouflaged objects can result
in misdiagnoses or delayed treatments, impacting patient outcomes,
and  hindering  the  effectiveness  of  medical  interventions.
Therefore,  we  argue  that  developing  different  strategies  for
detecting  these  two  distinct  object  types  is  imperative.  SOD

models  are  based  on  global  and  local  contrasts,  whereas  COD
models should avoid such regions of high saliency. Unfortunately,
our experiments reveal a decline in the accuracy of current COD
methods  when  both  salient  and  camouflaged  objects  co-exist  in
an image.

As Fig. 1 illustrates, we tested the robustness of several state-of-
the-art COD methods, trained only with camouflaged samples, on
salient  objects.  Many  of  these  COD  methods  also  detect  objects
when they are salient. These results indicate that the current COD
models  are  not  robust  enough  regarding  scenes  with  salient
objects.  Specifically,  the  algorithms  employed  by  PFNet[16] and
ZoomNet[14],  trained  with  COD  datasets,  detect  only  the  more
salient object (yellow ball) and neglect the less salient object (green
ball). Thus, we speculate that existing COD works may only learn
to  distinguish  the  foreground  and  background  rather  than  the
camouflage  and  saliency  patterns/prompts.  This  underscores  the
necessity to gain insight into camouflage patterns and make COD
models effective.

To  distinguish  salient  and  camouflage  patterns,  one
straightforward  idea  is  to  train  the  network  via  contrastive
learning, which has demonstrated its effectiveness in other vision
tasks[19–21]. As suggested in Refs. [22–24], strong data augmentation
can significantly  support  contrastive  learning,  leading  to  effective
feature  representation  modeling.  However,  generating  positive
and  negative  pairs  as  samples  for  contrastive  training  is  not
feasible  in  our  setup  due  to  the  lack  of  salient  objects  in
conventional  camouflage  datasets.  Furthermore,  existing  COD
datasets  mainly  contain  a  single  object,  making  the  direct 
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extension of contrastive learning infeasible. Besides, collecting and
annotating  a  new  dataset  containing  camouflaged  and  salient
objects within a single image would be labor-intensive.

In this study, we aim to enhance the robustness of future COD
models  regarding  salient  objects.  To  achieve  this  objective,  we
propose  augmenting  contrastive  samples  in  the  training  data  by
leveraging  the  recent  diffusion  model[25, 26] as  a  form  of  data
augmentation  to  generate  synthetic  images.  This  approach  is
inspired by the success of AI-Generated Content (AIGC)[27, 28] and
large-scale  generative  models.  While  some  recent  attempts  have
been made to utilize diffused images for data augmentation, these
efforts are only feasible for more common scenarios such as daily
indoor  scenes[29] or  urban  landscapes[30] where  the  domain  gap  is
small.  By  contrast,  we  are  specifically  interested  in  camouflage
scenes,  which  are  rare  and  challenging  for  pre-trained  diffusion
models.  These  differences  make  our  task  very  challenging  for
synthesizing  multi-pattern  images  with  large  domain  gaps,
which,  to  the  best  of  our  knowledge,  has  not  been  addressed  in
camouflage  settings.  In  addition,  existing  works[31] rely  on
additional frozen-weight deep networks to generate pseudo-labels
as supervision, limiting their performance and applications. These
limitations motivate us to design a novel framework that generates
realistic  salient  objects  in  the  camouflage  scenes.  Our  approach
differs  from  the  concurrent  diffusion-augmentation  methods[32, 33]

regarding  (a)  the  non-negligible  domain  gap,  and  (b)  the
preserved camouflage label.

To address the problem at hand, we propose a diffusion-based
adversarial  generation  framework,  named  CamDiff.  Specifically,
our  method  consists  of  a  generator  and  a  discriminator.  The
generator is a frozen-weight Latent Diffusion Model (LDM)[25] that
has  been  trained  on  a  large  number  of  categories,  making  it
capable  of  synthesizing  the  most  salient  objects  at  scale.  For  the
discriminator,  we  adopt  the  Contrastive  Language-Image  Pre-
training (CLIP)[34] in an off-the-shelf manner for its generality. Our
discriminator  compares  the  input  image  prompt  and  the
synthesized object to ensure semantic consistency. To preserve the
original camouflage label, we only add the generated salient object
in  the  background,  i.e.,  outside  the  Ground-Truth  (GT)  label.
Therefore,  CamDiff  effectively  transforms  the  problem  into  an
inpainting task, without requiring additional labeling cost. In this
way,  we  can  effectively  and  easily  enable  customized  editing,
hence improving the development of  COD from the data-driven
aspect.

Our main contributions are summarized as follows:
● We  introduce  CamDiff,  which  superimposes  salient  objects

in  camouflage  scenes  while  preserving  the  original  label.  This
framework facilitates collating and combining contrastive patterns
within  realistic  images  without  incurring  extra  costs  related  to
learning and labeling.
● We conduct experiments to test the robustness of the state-of-

the-art  COD  methods  on  the  COD  test  sets  (i.e.,  Diff-COD),
which  are  created  from  the  original  COD  testing  sets  using
CamDiff. Our results indicate that the current COD methods are
not sufficiently robust against salient objects.
● To  improve  the  resilience  of  current  COD methods  against

salient objects,  we generate a novel training set,  called Diff-COD,
from  the  original  COD  training  sets  using  CamDiff.  Our
experimental  results  demonstrate  that  training  the  existing  COD
models  on  this  new training  set  can  enhance  their  robustness  to
salient objects.

Overall, our research provides a fresh perspective on the notion
of “camouflage”, and our newly introduced camouflage synthesis
tool  will  serve  as  a  foundation  for  advancing  this  rapidly
growing field. 

1    Related Work
 

1.1    Diffusion models
Diffusion models[25, 26] are generative models that generate samples
from a distribution by learning to remove noise from data points
gradually.  Recent  research[35] shows  that  diffusion  models
outperform  Generative  Adversarial  Networks  (GANs)[36] in  high-
resolution image generation tasks without the drawbacks of mode
collapse[37] and  unstable  training[38],  and  achieve  unprecedented
results  in  conditional  image  generation[28].  Therefore,  they  have
been applied in many domains, such as text-to-image and guided
synthesis[39, 40],  3D  shape  generation[41, 42],  molecule  prediction[43],
video generation[44], and image inpainting[25].

Some  researchers  have  studied  the  diffusion  model  for  image
inpainting.  For  example,  Meng  et  al.[39] has  found  that  diffusion
models  can  not  only  fill  regions  of  an  image  but  can  also
accomplish  it  conditioned  on  a  rough  sketch  of  the  image.
Another  study  by  Ref.  [45]  concludes  that  diffusion  models  can
smoothly  fill  regions  of  an  image  with  realistic  content  without
edge artifacts when trained directly on the inpainting task. 

1.2    Camouflage object detection
COD detects a concealed object within an image. Several research
attention  (e.g.,  SINet[13],  UGTR[46],  and  ZoomNet[14])  have  focused
on the comparison of COD with SOD and concluded that simply
extending  SOD  models  to  solve  the  COD  task  cannot  bring  the
desired results because the target objects have different attributes,
i.e., concealed or prominent. To detect the concealed image, many
methods  have  been  proposed  recently.  For  example,  some
methods utilize a multi-stage strategy to solve the concealment of
camouflaged  images.  SINet[13] is  the  first  multi-stage  method  to
locate  and  distinguish  camouflaged  objects.  Another  multi-stage
method  is  SegMar[18],  which  localizes  objects  and  zooms  in
on  possible  object  regions  to  detect  camouflaged  objects
progressively.  In  addition,  the  multi-scale  feature  aggregation  is
the  second  main  strategy  that  has  been  used  in  many  methods,
such  as  CubeNet[47],  which  integrates  low-level  and  high-level
features by introducing X connection and attention fusion, as well
as ZoomNet[14], which processes the input images at three different
scales  to  fully  explore  imperceptible  clues  between  the  candidate
objects and background surroundings. A detailed review of COD
models is out of the scope of this work; we refer readers to recent
top-tier works[4, 5].

In this paper,  we focus on analyzing the robustness of end-to-

 

Image GT SINet[13] PFNet[16] C2FNet[17] SegMAR[18] ZoomNet[14]

Fig. 1    Visual results of current COD models tested on an image with salient objects. As the object is salient, the ground truth (GT) should be all-black for the
COD task. Nonetheless, the existing COD methods, especially PFNet and ZoomNet, are less robust to salient objects.
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end  methods.  Other  generic  models  requiring  additional  post-
processing  are  out  of  the  scope  of  this  paper.  For  example,  the
recent  Segment  Anything  Model  (SAM)[48] has  shown  great
performance  in  generic  segmentation  tasks;  extending  such  a
method  to  COD  tasks  requires  additional  offline  matching
between  all  the  candidate  masks  from  SAM  and  the  target  GT
box, as suggested in Ref. [49]. Therefore, our framework may not
be directly beneficial for the vanilla SAM. However, a recent trend
is  to  fine-tune  the  large-scale  models  on  the  downstream  tasks
with  dedicated  prompts.  We  believe  that  in  such  cases,  our
framework  has  great  potential  to  improve  prompt-aware  SAM-
variants. 

1.3    Camouflage image generation
Although  generating  camouflage  images  has  received  limited
attention, a few notable works exist in this area. One of the earliest
methods,  proposed  in  2010,  relies  on  hand-crafted  features[1].
Zhang  et  al.[50] have  recently  proposed  a  deep  learning-based
approach  for  generating  camouflaged  images.  Their  method
employs  iterative  optimization  and  attention-aware  camouflage
loss to selectively mask out salient features of foreground objects,
while  a  saliency  map ensures  these  features  remain  recognizable.
However,  the  slow  iterative  optimization  process  limits  the
practical application of their method. Moreover, the style transfer
of the background image to the hidden objects can often result in
noticeable  appearance  discontinuities,  leading  to  visually
unnatural  synthesized  images.  To  overcome  these  limitations,  Li
et  al.[51] has  proposed  a  location-free  camouflage  generation
network.  Although  this  method  outperforms  the  previous
approach[50] in  terms  of  visual  quality,  it  may  fail  to  preserve
desired foreground features or make objects identifiable using the
saliency  map  in  certain  cases.  In  summary,  existing  methods  all
follow the same strategy to produce camouflage images:  they use
two  images  to  represent  the  foreground  image  and  the
background  image,  respectively,  and  then  attempt  to  directly
integrate  the  foreground  image  with  the  background  image  by
finding  a  place  where  the  foreground  object  is  hard  to  detect
within  the  synthesized  image.  Notably,  most  of  these  methods
only  synthesize  new  COD  images  without  providing  the
associated masks. Therefore, additional labeling is always required
for supervised learning. Differently, we maintain the camouflaged
ground-truth  masks  and  blend  the  salient  objects  into  the
background with  the  help  of  a  trained  diffusion  model,  allowing
us  to  benefit  from  the  original  COD  masks  while  enriching  the
scene with more patterns. 

2    Proposed CamDiff
 

2.1    Overall architecture
To evaluate the effectiveness of existing COD methods on negative
samples  (i.e.,  scenes  with  salient  objects),  we  suggest  creating
synthetic  salient  objects  on  top  of  current  camouflage  datasets.
Normally,  when  a  task-specific  model  is  trained  with  COD
datasets,  it  should  effectively  detect  the  camouflaged  samples,
while  being  robust  and  not  detecting  the  synthesized  salient
objects.  Therefore,  such  an  approach  allows  us  to  thoroughly
investigate whether a learning-based COD method can accurately
distinguish between camouflage and salient objects.

To achieve this objective, we propose a new generation network
called  CamDiff,  which  is  built  upon  existing  COD  datasets.
Since  these  datasets  already  contain  camouflaged  objects  with
corresponding camouflage ground truth masks, our aim is to add

synthesized  salient  objects  into  the  background.  By  doing  so,  we
can  maintain  the  original  camouflage  labels  and  leverage  them
while  also  introducing  salient  samples  that  have  contrasting
characteristics.

Figure  2 illustrates  the  overall  architecture  of  our  proposed
method.  We start  with a COD dataset,  which provides us with a
source  image  and  its  corresponding  GT.  Using  the  GT,  we
identify  the  bounding  box  with  the  minimum  coverage  area  to
prevent  CamDiff  from altering the camouflaged image.  Next,  we
divide  the  source  image  into  nine  areas  via  grid  lines,  using  the
bounding box to preserve the area where the camouflaged object
is  placed.  Only  eight  of  the  areas  are  available  for  input  into
CamDiff. We randomly select one of these regions and cut it out
from the source image, covering a specific proportion (e.g., 75% as
the default  setting in our experiments)  of  the total  area  from the
center.  We  then  feed  the  masked  image  into  the  generation
network,  and  CamDiff  generates  a  salient  object  within  the
masked  area.  Finally,  we  place  the  selected  region  back  into  its
original  location  within  the  source  image.  In  such  a  manner,  we
can  not  only  preserve  the  GT labels  for  camouflaged  objects  but
also add contradictory synthesized salient samples.

To  generate  the  salient  object,  we  propose  a  generation
framework based on the GAN architecture. Specifically, we utilize
the widely-acknowledged LDM as the generator and the CLIP as
the discriminator. As shown in Fig. 2, the input to our framework
is an image with the previously-masked region, along with a text
prompt  that  describes  the  target  object.  This  masked  region  and
text prompt are then fed into the generator. Based on the prompt,
the LDM block generates  the target  object  on top of  the masked
region.  The  filled-up  region  is  then  sent  to  the  discriminator  to
determine  if  it  matches  the  input  prompt.  If  not,  the  generator
adjusts the seed to generate a new salient object. The objective is to
train  the  generation  network  to  only  produce  validated  images
when  the  discriminator  predicts  a  high  probability  of  matching
the input prompt.

Our  framework  transforms  the  image  generation  task  into  an
inpainting  task,  and  thus  requires  a  mask  to  cover  the  selected
region. The mask generation process is explained in Algorithm 1.

RATIOMASK

RATIOMAX RATIOMIN

The  mask  is  designed  to  cover  a  certain  percentage  of  the
selected  region  to  avoid  artifacts  when  blending  the  synthesized
object with the source image. The ratio of the masked area to the
region  area  is  set  to  a  constant, .  The  size  of  the
selected region is crucial for the inpainting task, as it can affect the
quality  of  the  generated  salient  object.  If  the  region  is  too  small,
the LDM may fill the background instead of the object, while if it
is  too  large,  the  salient  object  may  be  too  much  larger  than  the
concealed object, misleading COD methods. Therefore, we set an
upper bound ( ) and a lower bound ( ) for the
ratio  between  the  region  area  and  the  total  area  of  the  source
image. The values for these parameters are listed in Table. 1. 

2.2    Latent diffusion model

E x ∈ RH×W×3

z ∈ RH×W×C z= E (x) D
x̃

x̃= D(z̃) x̃≈ x

We use the LDM[25] which is pre-trained on a large-scale dataset as
our generator’s base model. The LDM is a two-stage method that
consists of an autoencoding model to learn the latent representation
of  an  image  and  a  Denoising  Diffusion  Probabilistic  Model
(DDPM)[26]. In the first stage, the autoencoding model is trained to
learn  a  space  that  is  perceptually  equivalent  to  the  image  space.
The encoder  encodes the given image  to the latent
representation  so that , while the deocder 
reconstructs the estimated image  from the latent representation,
such that  and . In the second stage, the DDPM is
trained to generate the latent representation within the pre-trained
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zt
εθ(zt, t)

latent  space  based  on  a  random  Gaussian  noise  input .  The
neural  backbone  of  the  LDM  is  realized  as  a  time-
conditional  UNet,  and  the  objective  of  the  DDPM  trained  on
latent space is simplified as:

LDM := EE (x),ε∼N (0,1),t [∥ε− εθ(zt, t)∥2
2] (1)

 

2.3    Conditioning LDM

εθ(zt,y, t) y

τθ(y) ∈ RM×dτ

To control the image synthesis, the conditional LDM implements
a  conditional  denoising  autoencoder  through  inputs 
such as text,  semantic maps,  or other image-to-image translation
tasks[25].  The  proposed  CamDiff  exploits  this  ability  to  control
image  synthesis  through  text  input.  To  turn  DDPMs  into  more
flexible  conditional  image  generators,  their  underlying  UNet
backbone is augmented with the cross-attention mechanism. The
embedding  sequences  from  the  CLIP  ViT-L/14
encoder  is  fused  with  latent  feature  maps  via  a  cross-attention
layer implementing as

Attention(Q,K,V) = softmax
(
QKT

√
d
·V

)
(2)

Q=W(i)
Q ·ϕi(zt), K=W(i)

K · τθ(y), V=W(i)
V · τθ(y)

ϕi(zt)
εθ W(i)

Q W(i)
K W(i)

V

where ,  and
 is a intermediate representation of the UNet implementing

. , ,  and  are  learnable  projection  matrix.  The
objective of the conditional LDM is converted from Eq. (1) to

LCDM := EE (x),y,ε∼N (0,1),t [∥ε− εθ(zt, t,τθ(y))∥2
2] (3)

 

2.4    CLIP for zero-shot image classification
To improve the quality of generated objects based on text input, it
is necessary to use a discriminator that can assess the consistency
of the generated objects with the text prompt. However, since the
text  prompt  can  be  any  arbitrary  class,  traditional  classifiers  that
only  recognize  a  fixed  set  of  object  categories  are  unsuitable
for  this  task.  Therefore,  CLIP  models  offer  a  better  option  for
this task.

The  CLIP  model  comprises  an  image  encoder  and  a  text
encoder. The image encoder can employ various computer vision
architectures,  including  five  ResNets  of  varying  sizes  and  three
vision transformer architectures. Meanwhile, the text encoder is a
decoder-only  transformer  that  uses  masked  self-attention  to
ensure  that  the  transformer’s  representation  for  each  token  in  a
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Fig. 2    Our  CamDiff  consists  of  a  generator  and  a  discriminator.  The  input  of  CamDiff  is  a  pair  of  a  masked  image  and  a  text  prompt.  Only  after  the
discriminator judges that the synthesized object is consistent with the text input, the synthesized image can be output and placed back into the source image.
The white star in the source image means that region (8) is selected as the masked region.

 

Algorithm 1 Mask generation.
candidatesPut the eight regions’ index in a list  in order

candidatesShuffle the index in 

i candidatesfor  in  do

i RATIOMIN　if the area of region  is higher than  then

i RATIOMAX　　if the area of region  is less than  then
mask RATIOMASK　　　choose the area  that covers  of the total region

area from the center
　　　break

　　else
mask RATIOMASK ·RATIOMAX　　　choose the area  that covers  of the

total region area from the center
　　　break

　　end if

　else

　　continue

　end if
end for

maskreturn 

 

Table 1    Hyperparameters setting.

Parameter Value

RATIOMIN 6.25%

RATIOMAX 25%

RATIOMASK 75%
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sequence  depends  solely  on  tokens  that  appear  before  it.  This
approach  prevents  any  token  from  looking  ahead  to  inform  its
representation better. Both encoders undergo pre-training to align
similar text and images in vector space. This is achieved by taking
image-text pairs and pushing their output vectors closer in vector
space while separating the vectors of non-pairs.  The CLIP model
is  trained  on  a  massive  dataset  of  400  million  text-image  pairs
publicly  available  on  the  internet.  Since  the  image  and  text
encoders of the CLIP model have already been trained on diverse,
unfiltered,  and  noisy  data,  in  our  application,  we  freeze  CLIP
parameters  to  benefit  its  generalization  capability,  enabling  our
approach to be performed in a zero-shot manner.

In  CamDiff,  the  image  with  the  synthesized  object  is  encoded
via the image encoder, and the text encoder encodes the list of all
classes. As shown in Fig. 2, the embedding which is output by the
image encoder is combined via a dot-product operation with the
embedding  of  each  class  generated  by  the  text  encoder.  The
highest  value  of  the  resulting  output  vector  among  all  classes
represents the class with the embedding which is most consistent
with  the  image.  If  the  class  with  the  highest  value  is  consistent
with the language prompt given by the user, then the synthesized
image  can  be  placed  back  into  the  original  image  and
subsequently output. 

3    Experiment
 

3.1    Experimental Setup
Datasets.  To  synthesize  multi-pattern  images  for  the  COD  task,
we selected four widely-used COD datasets: CAMO[52],  CHAM[53],
COD10K[13], and NC4K[54].

It should be noted that the COD10K dataset provides semantic
labels as filenames. Therefore, we used the label directly as the text
prompt. Some prompts are shown in Fig. 2, which lists the classes.
However,  the  list  of  classes  is  not  directly  available  for  the  other
three datasets. Since they contain common animal species such as
birds, cats, dogs, etc., we randomly chose a text prompt from the
COD10K label list.

Baselines. To evaluate the robustness of existing COD methods
to  both  salient  and  camouflaged  objects,  we  selected  four
representative  and  classical  COD  methods:  SINet[13],  PFNet[16],
C2FNet[17],  and  ZoomNet[14],  as  our  baselines.  It  is  worth  noting
that  since  our  paper  submission,  several  new  state-of-the-art
models  have  emerged,  including  FSPNet[5] and  EVP  model[55].
However,  this  paper  aims  to  explore  new  mechanisms  for
detecting camouflage patterns, and thus comprehensive testing of
all models falls beyond the scope of this article.

M Fm Sm
Em

Evaluation  metrics.  To  assess  the  quality  of  the  synthesized
image, we employed Inception scores[56]. A higher Inception score
in  the  context  of  image  generation  models  means  that  the
generated images are of better quality and more diverse. For COD
models,  we  evaluated  the  performance  using  4  golden  metrics:
mean  absolute  error  ( ),  max F-measure  ( ), S-measure  ( ),
and max E-measure ( ).

Implementation  details.  Our  implementation  of  CamDiff  is
realized in  the  Pytorch framework,  with  hyperparameters  related
to  mask  generation  specified  in Table  1.  The  whole  learning
process  is  executed  on  a  2080Ti  GPU.  We  followed  the
conventional  train-test  split[2, 13, 14, 47],  using  a  training  set  of  4040
images from COD10K and CAMO.

Among  these  training  samples,  we  replaced  3717  images  with
our synthesized multi-pattern images. The original testing samples
comprised  6473  images  from  CAMO,  CHAM,  COD10K,  and

512× 512

NC4K.  To  form  our  Diff-COD  testing  set,  we  replaced  5395
images  with  our  generated  images.  Although  we  cannot  entirely
replace the camouflage dataset since some images contain specific
objects  that  the  diffusion model  may not  generate  well  using the
pre-trained  weights,  our  success  rate  remains  high.  Specifically,
over 92% of the training images and 83% of the testing images can
be  modified  with  extra  salient  patterns.  This  high  success  rate
confirms the effectiveness of our generation framework. Note that
we  resized  the  images  and  masks  to  to  meet  the
requirements of the LDM. 

3.2    Quality of synthesized images
Inception  score.  To  prove  that  our  CamDiff  can  generate  a
prominent  object  rather  than  a  concealed  object,  we  choose  the
inception  score  as  the  evaluation  metric  and  evaluate  it  on  the
SOD datasets[57–59],  COD datasets[13, 52–54],  and  our  generated  dataset
with  multi-pattern  images. Table  2 shows  that  the  original  SOD
datasets  have  a  higher  inception  score  than  the  original  COD
dataset,  which aligns with our expectations. The rationale behind
the  Inception  score  is  that  a  well-synthesized  image  should
contain easily recognizable objects for an off-the-shelf recognition
system. The recognition system is more likely to detect prominent
objects  than  camouflage  ones.  As  a  result,  images  with  multi-
patterns  tend  to  have  a  higher  Inception  score  than  those  with
camouflaged patterns.

By  comparing  the  Inception  score  before  and  after  the
modification,  we  can  easily  evaluate  the  effectiveness  of  our
framework.  Replacing  images  in  the  COD  dataset  with  multi-
pattern images shows that the inception score has increased across
all  COD  datasets.  This  indicates  that  we  have  successfully
incorporated  prominent  patterns  on  top  of  the  original  COD
datasets.

User  study.  We  also  conducted  a  user  study  to  evaluate  the
synthesized  images’ quality.  The  objective  is  to  find  the  target
object  from images  depending upon the  prompt (e.g., “Butterfly”
in Fig. 3).

Participants were given a subset of our synthesized images and
were  asked  to  circle  the  object  they  detected  first  based  on  the
corresponding  labels.  The  salient  object  chosen  by  the  user  is
considered the most  prominent since it  attracts  the most  human
attention. The results of our user study, with over 10 participants,
show  that  the  average  rate  of  users  choosing  the  synthesized
 

Table 2    Comparision of  the  generated  dataset  with  the  original  COD and
SOD  dataset.  The  type “Orig.” means  the  original  dataset,  while  the  type
“New” means  the  synthesized  dataset  based  on  the  corresponding  COD
dataset.

Dataset Type ↑Inception score 

SOD

DUTSE-TE Orig. 71.63

ECSSD Orig. 24.40

XPIE (salient) Orig. 96.79

XPIE (not salient) Orig. 13.96

COD

CAMO
Orig. 6.61

New 9.90

CHAM
Orig. 4.38

new 5.98

COD10K
Orig. 7.00

New 14.85

NC4K
Orig. 7.00
New 12.87

CamDiff: Camouflage Image Augmentation via Diffusion
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object,  i.e.,  the  salient  ones,  is  98%.  This  indicates  that  the
synthesized objects are more prominent and easier to detect than
the original objects in the images.

Overall, the increased inception score and positive results from
the  user  study  support  our  claim  that  CamDiff  generates
prominent  objects  rather  than  concealed  ones  in  the  synthesized
images.  In  addition,  CamDiff  has  demonstrated  its  robust
capability to generate diverse objects and variations in posture for
a single object type. Figure 4 provides examples of various classes
of synthesized images, each of which can be extended to generate
three additional images of the same class. 

3.3    Quantitative comparison
We introduce quantitative experiments and evaluate state-of-the-

art  COD  methods  on  the  synthesized  samples  generated  by
CamDiff. Table  3 shows  the  performance  of  pre-trained  models
on original  and generated  testing  samples; Table  4 compares  the
performance trained with original COD images and our generated
training samples; Table 5 presents the robustness analysis on SOD
datasets.

Pre-trained  weights.  We  created  a  new  Diff-COD  dataset  to
evaluate  the  effectiveness  of  existing  COD  methods  on  images
containing salient and camouflaged objects.  This dataset includes
both  types  of  images,  and  we  trained  4  state-of-the-art  COD
models (SINet[13], PFNet[16], C2FNet[17], and ZoomNet[14]) on the Diff-
COD training set.

512× 512

352× 352

We then evaluated their performance on the Diff-COD testing
set. It is important to note that the pre-trained LDM module block
can  only  output  images  with  a  resolution  of .  This
resolution  is  suitable  for  most  existing  methods  trained  with  a
resolution less than .

 

Butterfly Spider

Rabbit Dog
Fig. 3    In  the  user  study,  the  solution  involved  presenting  the  synthesized
object  within  a  green  box,  while  the  original  object  within  the  image  is
enclosed  in  a  red  box.  The  study  results  indicate  that  users  are  likelier  to
circle  the  objects  in  the  green  box,  highlighting  the  synthesized  objects  as
more  prominent  and  easier  to  detect  than  the  original  objects  within  the
images.

 

↑ ↓
Table 3    Quantitative results of the pre-trained COD models on Diff-COD
test dataset and COD dataset.  ( ) denotes that the higher (lower) is better.

Dataset SINet[13] PFNet[16] C2FNet[17] ZoomNet[14]

CAMO

M ↓ 0.099 0.085 0.079 0.066

Fm ↑ 0.762 0.793 0.802 0.832

Sm ↑ 0.751 0.782 0.796 0.819

Em ↑ 0.790 0.845 0.856 0.881

Diff-CAMO

M ↓ 0.130 0.122 0.116 0.136

Fm ↑ 0.581 0.626 0.632 0.557

Sm ↑ 0.651 0.686 0.700 0.664

Em ↑ 0.768 0.792 0.802 0.790

CHAM

M ↓ 0.044 0.033 0.032 0.023

Fm ↑ 0.845 0.859 0.871 0.883

Sm ↑ 0.868 0.882 0.888 0.900

Em ↑ 0.908 0.927 0.936 0.944

Diff-CHAM

M ↓ 0.065 0.065 0.061 0.088

Fm ↑ 0.700 0.795 0.726 0.596

Sm ↑ 0.787 0.708 0.798 0.726

Em ↑ 0.869 0.865 0.869 0.850

COD10K

M ↓ 0.051 0.040 0.036 0.029

Fm ↑ 0.708 0.747 0.764 0.799

Sm ↑ 0.771 0.800 0.813 0.836

Em ↑ 0.832 0.880 0.894 0.887

Diff-COD10K

M ↓ 0.057 0.054 0.052 0.064

Fm ↑ 0.620 0.644 0.656 0.585

Sm ↑ 0.727 0.751 0.757 0.729

Em ↑ 0.826 0.832 0.839 0.841

NC4K

M ↓ 0.058 0.053 0.049 0.044

Fm ↑ 0.804 0.820 0.831 0.845

Sm ↑ 0.808 0.829 0.838 0.851

Em ↑ 0.873 0.891 0.898 0.896

Diff-NC4K

M ↓ 0.090 0.084 0.080 0.076

Fm ↑ 0.640 0.664 0.666 0.631

Sm ↑ 0.719 0.744 0.746 0.739

Em ↑ 0.821 0.830 0.834 0.841
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Fig. 4    Examples  of  the  synthesized  images  from  CamDiff  from  various
classes.  Each  image  is  extended  to  generate  three  additional  images  of  the
same class, featuring objects with varying appearances.
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However,  the  current  state-of-the-art  method,  ZoomNet[5],
requires a main resolution of  and an additional higher
resolution with a scale of 1.5 ( ), which is larger than the
capacity  of  the  LDM  model.  To  ensure  a  fair  comparison,  we
retrained  ZoomNet  with  a  main  scale  of .  To  ensure
equal  evaluation,  we  trained  ZoomNet  on  the  original  and  our
new training sets with the same main resolution of .

Table  3 compares  each  model’s  performance  with  its  pre-
trained  checkpoints  on  both  Diff-COD  and  original  COD
datasets.  The  results  indicate  that  all  COD  methods  perform
significantly worse on the Diff-COD dataset. This is because these
methods  detect  the  additionally  generated  salient  object  and
classify  them as  camouflage  ones,  indicating  a  lack  of  robustness
to saliency. As a result, we can conclude that our Diff-COD testing

set serves as a more challenging benchmark and can be used as an
additional tool for robustness analysis.

Trained on Our Generated Datasets. As previously mentioned,
our framework has the capability to generate new training samples
with both salient and camouflage objects. By training on our Diff-
COD  dataset  using  only  camouflage  supervision,  the  networks
should learn the  distinction between the  two contrasting notions
and become more resilient to saliency.

Table  4 displays  the  results  of  the  pre-trained  COD  models
trained  with  original  COD  training  sets  and  the  newly-trained
COD models on our Diff-COD training sets. It is evident that the
models trained on the Diff-COD training set perform significantly
better  on  the  Diff-COD  testing  set  compared  to  their
counterparts.

 

Table 4    Quantitative results of the test Diff-COD dataset. “Pre.” means the model is loaded with the pre-trained checkpoint provided by the officially released
code. “Tr.” means that the model is loaded by the checkpoints trained on our synthesized training set.

Dataset
SINet[13] PFNet[16] C2FNet[17] ZoomNet[14]

Pre. Tr. Pre. Tr. Pre. Tr. Pre. Tr.

Diff-CAMO

M ↓ 0.130 0.094 0.122 0.087 0.116 0.078 0.136 0.092

Fm ↑ 0.581 0.769 0.626 0.787 0.632 0.800 0.557 0.758

Sm ↑ 0.651 0.753 0.686 0.773 0.700 0.789 0.664 0.773

Em ↑ 0.768 0.802 0.792 0.828 0.802 0.848 0.790 0.803

Diff-CHAM

M ↓ 0.065 0.036 0.065 0.033 0.061 0.030 0.088 0.058

Fm ↑ 0.700 0.864 0.795 0.858 0.726 0.870 0.596 0.764

Sm ↑ 0.787 0.884 0.708 0.880 0.798 0.888 0.726 0.816

Em ↑ 0.869 0.931 0.865 0.933 0.869 0.949 0.850 0.845

Diff-COD10K

M ↓ 0.057 0.047 0.054 0.041 0.052 0.038 0.064 0.053

Fm ↑ 0.620 0.708 0.644 0.735 0.656 0.748 0.585 0.691

Sm ↑ 0.727 0.773 0.751 0.794 0.757 0.801 0.729 0.770

Em ↑ 0.826 0.849 0.832 0.874 0.839 0.887 0.841 0.805

Diff-NC4K

M ↓ 0.090 0.060 0.084 0.052 0.080 0.047 0.076 0.069

Fm ↑ 0.640 0.807 0.664 0.821 0.666 0.834 0.631 0.789

Sm ↑ 0.719 0.811 0.744 0.830 0.746 0.840 0.739 0.814

Em ↑ 0.821 0.866 0.830 0.894 0.834 0.905 0.841 0.847

 

Table 5    Quantitative results of the original SOD testing sets. “Pre.” means the model is loaded with the pre-trained checkpoint provided by the paper, while
“Tr.” means that the model is loaded by the checkpoints trained on our synthesized training set.

Dataset
SINet[13] PFNet[16] C2FNet[17] ZoomNet[14]

Pre. Tr. Pre. Tr. Pre. Tr. Pre. Tr.

DUTS-TE

M ↓ 0.065 0.082 0.064 0.079 0.065 0.069 0.080 0.083

Fm ↑ 0.820 0.760 0.808 0.748 0.807 0.780 0.715 0.718

Sm ↑ 0.806 0.741 0.806 0.751 0.802 0.777 0.772 0.768

Em ↑ 0.846 0.757 0.845 0.778 0.832 0.812 0.840 0.842

ECSSD

M ↓ 0.106 0.135 0.105 0.130 0.116 0.115 0.129 0.134

Fm ↑ 0.844 0.784 0.822 0.762 0.802 0.790 0.744 0.751

Sm ↑ 0.766 0.692 0.766 0.703 0.748 0.734 0.722 0.715

Em ↑ 0.786 0.688 0.784 0.702 0.750 0.740 0.834 0.841

XPIE-SAL

M ↓ 0.090 0.119 0.093 0.115 0.099 0.101 0.115 0.123

Fm ↑ 0.822 0.763 0.804 0.739 0.786 0.762 0.720 0.703

Sm ↑ 0.770 0.691 0.762 697 0.749 0.728 0.723 0.705

Em ↑ 0.805 0.697 0.792 0.709 0.768 0.749 0.820 0.815

CamDiff: Camouflage Image Augmentation via Diffusion
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To  further  confirm  the  effectiveness  of  our  approach  in
enhancing  the  robustness  of  COD  models  against  saliency,  we
conducted  experiments  on  conventional  saliency  datasets,
including DUTS-TE[57], ECSSD[58], XPIE[59]. As displayed in Table 5,
when the models were trained using our Diff-COD dataset,  their
performance  on  saliency  benchmarks  declined.  This  is  expected
since the poorer performance on the SOD datasets indicates that
the  newly-trained  models  have  truly  learned  the  camouflage
pattern  but  not  the  salient  pattern.  As  a  result,  these  models  are

better equipped to withstand the influence of salient objects. 

3.4    Qualitative comparison
Figure  5 demonstrates  the  effect  of  training  on  multi-pattern
images on the performance of COD models. The figure is divided
into  three  cases,  each  presenting  the  results  for  a  different
camouflaged  object  (fish,  crab,  and  frog).  On  the  left  side  of  the
dashed line in each case, the original image from the COD dataset,
a  synthesized  multi-pattern  image,  and  the  ground  truth  are

 

Original image

SINet PENet C2FNet ZoomNet

Original image

Pretrained models on

original COD testset

Pretrained models on

Diff COD testset

Trained models on

Diff COD testset

Pretrained models on

original COD testset

Pretrained models on

Diff COD testset

Trained models on

Diff COD testset

Pretrained models on

original COD testset

Pretrained models on

Diff COD testset

Trained models on

Diff COD testset

Synthesized image

Synthesized image

Ground truth

Ground truth

Original image

Synthesized image

Ground truth

(a) Fish

(b) Crab

(c) Frog
Fig. 5    Qualitative Comparison. We conducted a qualitative comparison on three cases: Fish, Crab, and Frog. We analyzed the impact of adding salient objects
to  camouflaged  images  on  pre-trained  SINet,  PFNet,  C2FNet,  and  ZoomNet,  respectively,  by  comparing  the  results  of  the  first  two  rows.  Furthermore,  we
evaluated the training results on the Diff-COD test set by comparing the qualitative outcomes with the pre-trained results.
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shown.  The  right  side  displays  the  results  of  four  pre-trained
models  (SINet,  PFNet,  C2FNet,  and  ZoomNet)  on  the  original
COD datasets in the first row. The second row of the illustration
presents the results of the models tested on the synthesized images
using  the  same  checkpoints  as  in  the  first  row.  Most  of  them
detect  salient  objects,  which  is  undesirable,  and  the  accuracy  of
detecting camouflaged objects decreases. For instance, SINet loses
some  parts  compared  with  the  mask  in  the  first  row,  and
ZoomNet ignores camouflaged objects. These results indicate that
COD  methods  lack  robustness  to  saliency.  The  third  row  of  the
illustration presents the results of the models trained on our Diff-
COD  dataset  and  then  tested  on  the  synthesized  images.
Compared to the second row, the robustness to saliency improves
significantly.  Nevertheless,  compared  to  the  first  row,  ZoomNet
loses  some parts  of  the  camouflaged object.  We believe  this  may
be  caused  by  adding  noise  in  the  training  set  making  the  fitting
more difficult, but we plan to evaluate the cause in future work.

Overall,  it  can  be  concluded  from Fig.  5 that  the  presence  of
salient  objects  harms  the  performance  of  COD  models  in
detecting  camouflaged  objects.  However,  training  the  COD
models  on multi-pattern images increases their  robustness to the
effects of salient objects. 

4    Conclusion
In  summary,  our  work  introduces  CamDiff,  a  framework  that
generates  salient  objects  while  preserving  the  original  label  on
camouflage scenes, enabling the easier collation and combination
of  contrastive patterns in realistic  images without incurring extra
costs  related  to  learning  and  labeling.  Through  experiments
conducted  on  Diff-COD  test  sets,  we  demonstrate  that  current
COD methods  lack  robustness  to  negative  examples  (e.g.,  scenes
with salient objects). To address this limitation, we create a novel
Diff-COD training set using CamDiff. By generating multi-pattern
images  with  both  salient  and  camouflaged  objects,  CamDiff
provides  a  more  challenging  and  representative  dataset  for
training COD models, leading to better performance in real-world
scenarios  where  camouflaged  objects  may  be  more  difficult  to
detect due to the presence of salient objects. In this way, we hope
that  future  COD  methods  have  the  potential  to  improve  the
performance  in  COD  by  distinguishing  between  salient  objects
and camouflaged ones. Our experimental results demonstrate that
training  existing  COD  models  on  this  set  improves  their
resilience  to  salient  objects.  Overall,  our  work  provides  a  new
perspective on camouflage and contributes to the development of
this emerging field.

Future  work.  We  aim  to  extend  our  framework  to  consider
original  images  with  multiple  objects  and  save  room  for  their
generation.  Additionally,  while  we  only  implemented  multi-
pattern  images  as  the  data  augmentation  method  in  our
experiments,  we  plan  to  evaluate  the  results  using  other  data
augmentation methods to provide a more comprehensive analysis
of  the  impact  of  multi-pattern  images  on  the  performance  and
robustness of these models.
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