
Condition-Invariant Semantic Segmentation

Christos Sakaridis1, David Bruggemann1, Fisher Yu1, and Luc Van Gool1,2
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Abstract

Adaptation of semantic segmentation networks to differ-
ent visual conditions from those for which ground-truth an-
notations are available at training is vital for robust per-
ception in autonomous cars and robots. However, pre-
vious work has shown that most feature-level adaptation
methods, which employ adversarial training and are val-
idated on synthetic-to-real adaptation, provide marginal
gains in normal-to-adverse condition-level adaptation, be-
ing outperformed by simple pixel-level adaptation via styl-
ization. Motivated by these findings, we propose to leverage
stylization in performing feature-level adaptation by align-
ing the deep features extracted by the encoder of the net-
work from the original and the stylized view of each in-
put image with a novel feature invariance loss. In this
way, we encourage the encoder to extract features that
are invariant to the style of the input, allowing the de-
coder to focus on parsing these features and not on fur-
ther abstracting from the specific style of the input. We
implement our method, named Condition-Invariant Seman-
tic Segmentation (CISS), on the top-performing domain
adaptation architecture and demonstrate a significant im-
provement over previous state-of-the-art methods both on
Cityscapes→ACDC and Cityscapes→Dark Zurich adapta-
tion. In particular, CISS is ranked first among all published
unsupervised domain adaptation methods on the public
ACDC leaderboard. Our method is also shown to general-
ize well to domains unseen during training, outperforming
competing domain adaptation approaches on BDD100K-
night and Nighttime Driving. Code is publicly available at
https://github.com/SysCV/CISS.

1. Introduction
Unsupervised domain adaptation (UDA) is a primary

instance of transfer learning, in which a labeled source
set and an unlabeled target set are given at training time
and the goal is to optimize performance on the domain of
the latter set. There is a large body of literature focus-

(a) Image (b) Ground-truth semantics

(c) HRDA [13] (d) CISS (ours)

Figure 1. The domain shift from normal to adverse conditions
presents challenges to top-performing state-of-the-art domain
adaptation methods for semantic segmentation (c) due to the large
resulting change in the appearance of classes. We propose a
method that encourages invariance of deep segmentation features
to visual conditions by comparing features of different views of
the same scene under the style of different domains, improving
segmentation especially for classes which undergo large shifts.

ing on UDA for semantic segmentation, which is of high
practical importance for central computer vision applica-
tions such as autonomous cars and robots, as these sys-
tems need to have a dense pixel-level parsing of their sur-
rounding scene, are bound to encounter data from differ-
ent domains than those annotated for training, and label-
ing large quantities of data for each new deployment do-
main is very time- and cost-intensive. The main direc-
tions of recent research on this task are adversarial learn-
ing for domain alignment [20, 22, 35, 37, 38] and training
with pseudolabels [34, 46, 48, 49], with methods primarily
focusing on the synthetic-to-real UDA setting [27, 28], i.e.,
GTA5→Cityscapes and SYNTHIA→Cityscapes. However,
the normal-to-adverse Cityscapes→ACDC UDA bench-
mark introduced in [31] showed that adversarial-learning-
based methods, which attempt to align domains at the level
of features, struggle with the domain shift from normal to
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adverse conditions. By contrast, Fourier domain adaptation
(FDA) [43] was shown in [31] to provide significant gains
in this normal-to-adverse setting, even with its simple non-
learned pixel-level domain alignment.

We recognize that the problem with adversarial ap-
proaches is that they discriminate between feature maps that
are extracted from different scenes, which does not allow
to disentangle the difference in the domain from the differ-
ence in the scene content. The key idea in this work is to
factor out the aforementioned difference in scene content
by aligning features that are extracted from two versions of
the same scene that belong to different domains with a fea-
ture invariance loss that penalizes differences between the
two feature maps. The intuition is that the encoder of the
semantic segmentation network should output features that
are invariant to the domain/style of the scene, so that the
decoder can subsequently produce identical outputs for the
different versions of the scene, as the ground-truth seman-
tics of these versions are also identical. To our knowledge,
we are the first to propose this cross-domain internal fea-
ture invariance in UDA for semantic segmentation, which
hinges on comparing features from different views of the
same scene rendered in different domains/styles.

A major challenge in implementing the feature invari-
ance loss is the generation of representative alternative
views of input source-domain or target-domain scenes. In-
stead of relying on learned models which add significant
complexity to the overall adaptation architecture or on sim-
ple photometric augmentations, we propose to leverage
shallow stylization methods, e.g. FDA [43] or simple color
transfer [26], to this end. In order to transfer each source-
domain image to the style of the target domain, we use the
corresponding target-domain image of the training mini-
batch and transfer its style to the source-domain image.
This allows a light-weight stylization that is simply imple-
mented as part of the data loading in training. The orig-
inal and stylized source-domain images are then both fed
to the segmentation network to compute the feature invari-
ance loss. The converse procedure is followed for each
target-domain image of each training mini-batch. As the
invariance of features is promoted across views of the scene
which are characterized by an identical structure of the
objects that are present, we term our method Condition-
Invariant Semantic Segmentation (CISS, pronounced kiss)
to signify that it is tailored for condition-level domain shifts
and not shifts involving structural changes of objects, as in
the synthetic-to-real setup, where the shape of objects may
change across domains. We note that CISS is not specific
to the particular stylization it uses and works well with dif-
ferent stylization techniques including [26, 43], as we will
review in Sec. 4.

In our experiments, we use the state-of-the-art
HRDA [13] architecture and implement CISS on top of

it. We show that our feature invariance loss improves
significantly upon the straightforward alternative of defin-
ing an extra cross-entropy loss on the stylized images.
Moreover, the separate feature invariance losses on source
and target images are shown to be synergistic, leading to
state-of-the-art results both on the Cityscapes→ACDC and
Cityscapes→Dark Zurich UDA benchmarks. For ACDC,
this regards both the complete test set including night, fog,
rain, and snow, and the individual test sets of three condi-
tions, namely night, rain, and snow. Both on the complete
test set and on the three aforementioned condition-specific
sets, CISS occupies the first place on the respective pub-
lic ACDC leaderboards among all published UDA meth-
ods. Last but not least, we evaluate the CISS model trained
for nighttime segmentation on Cityscapes→Dark Zurich in
a generalization setting using the BDD100K-night [30, 44]
and Nighttime Driving [6] sets and demonstrate the bene-
fit of condition invariance for generalization across diverse
nighttime data.

2. Related Work

Unsupervised domain adaptation works often utilize ad-
versarial domain adaptation to align the source and target
domains at the level of pixels, intermediate features, or out-
puts [4,10,11,16,22,32,35,36,37,38,45]. Other approaches
apply self-training with pseudolabels [8,19,48,49] or com-
bine self-training with adversarial adaptation [20]. Cy-
CADA [10] employs a semantic consistency loss with some
similarity to our feature invariance loss. This loss optimizes
the two generators in the CycleGAN architecture [47] to
translate images across the source and target domains in a
way which ensures that a fixed segmentation network pre-
dicts the same labels on the translated versions of the im-
ages as in the original images. Importantly, the weights of
this fixed segmentation network are not optimized jointly
with the rest of the networks that are involved in CyCADA,
but a separate segmentation network is rather learned for the
target domain, for which no semantic consistency loss is ap-
plied. On the contrary, we propose to learn a single segmen-
tation network both for the source and the target domain, the
intermediate feature representations of which are optimized
to be invariant to the input condition. FIFO [18] introduces
fog factors, which are intermediate global representations
of the characteristics of fog that is (or is not) present in
images. These representations are extracted with a sepa-
rate fog-pass filtering module, which accepts as input inter-
mediate features of the main segmentation network. How-
ever, the fog factors—the deviation of which is penalized
in [18]—do not always correspond to images with the same
content, thus penalizing their deviation does not necessarily
enforce condition invariance of the segmentation features.
Pixel-level adaptation via explicit transforms from source
to target is performed in [15, 43]; we build on the effec-
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Figure 2. Overview of our method. Two instances of a shallow stylization mapping g are fed with the source and target image, Is and
It, to produce versions stylized with the converse domain, Is→t and It→s. The four images are fed to a shared encoder ϕ, the features of
which are used to compute our feature invariance losses. The features of the original source and target images are further fed to a shared
decoder ω to compute softmax predictions and respective cross-entropy losses. Double lines indicate shared weights.

tiveness of FDA [43], but only use it as a building block in
CISS, which additionally performs feature-level adaptation.
Recent works upgrade the architecture and training strategy
for UDA [12] and operate at higher resolution [13], deliver-
ing significant performance gains; we implement CISS us-
ing these architectures and show the additional benefit of
condition invariance in this highly competitive setting.

Consistency regularization is used in PixMatch [24] in
the context of unsupervised domain adaptation on the tar-
get domain, by promoting invariance of the semantic pre-
dictions of the segmentation network to various perturba-
tions of the input target image, including changes in the
low-frequency part of the Fourier phase of the image and
in its style. However, the original target-domain semantic
predictions can be false as they constitute pseudolabels and
this may impact the learned representations negatively. By
contrast, our method promotes invariance of intermediate
features, which avoids reliance of consistency regulariza-
tion on potentially false pseudolabels. The idea of consis-
tent label predictions under input augmentations stems from
FixMatch [33], which considers a classification setting; we
instead promote consistency at the level of intermediate fea-
tures in a dense fashion, lifting the need for explicit pseu-
dolabels. Consistency under augmentations has also been

found to be important in semi-supervised semantic segmen-
tation [7]; instead of plain augmentations, we employ styl-
ization of the input images by exploiting pairs of source and
target images that are available at training to obtain better
cross-domain image views for promoting invariance. CISS
can be viewed as a contrastive learning method, using posi-
tive pairs to enforce feature invariance densely at each pixel.
Contrastive approaches are also proposed in [1, 14, 17, 41],
however, they contrast general pairs of pixels, while we con-
trast pairs of pixels that depict exactly the same point of
the scene, providing stronger positive pairs. A concurrent
work [40] with ours implements consistency training with
a consistency loss that is similar to our feature invariance
loss, however, that work focuses on the domain general-
ization setting simply using augmentations of input images
rather than on our UDA setting, for which stylization of the
images to the style of different domains is essential. More-
over, [40] also applies consistency to the penultimate layer
of the semantic segmentation network, i.e. at a late stage,
and not deeply at the encoder outputs, as CISS does. Our
strategy is motivated by the intuition that the encoder of the
semantic segmentation network should already output fea-
tures that are invariant to the domain/style of the scene, so
that the decoder can subsequently focus on parsing these



features and not on further abstracting from them.

3. CISS
We first provide a basic UDA setup for semantic segmen-

tation, with definitions of inputs, outputs and losses, and
then present our UDA method, CISS, which builds on this
setup. A visual overview of CISS is presented in Fig. 2.

3.1. A Basic UDA Setup

In modern UDA training pipelines, each training batch
contains an equal number B of source and target images.
We denote the source images by {Is,b}Bb=1 and the tar-
get images by {It,b}Bb=1. Moreover, the batch contains
pixel-level semantic labels of the source images and—in
self-training-based methods—of the target images, the lat-
ter constituting pseudolabels. We denote these labels by
{Ys,b}Bb=1 and {Ŷt,b}

B

b=1, respectively. For presenting our

method, we assume that the pseudolabels {Ŷt,b}
B

b=1 are
given, as our focus is not on improving pseudolabel gen-
eration, and we defer the details of this generation to Sec. 4.

For the sake of simplicity, we focus on the case where
B = 1, but our analysis extends straightforwardly to larger
B. Dropping the redundant subscripts, the training batch in
this case is (Is, It, Ys, Ŷt). The basic UDA setup we start
from involves training the semantic segmentation network
F using both the source-domain and the target-domain sam-
ple by applying cross-entropy losses on the outputs of F for
the two images. More specifically, if the semantic labels Y
are one-hot-encoded in a C×H×W tensor, then the cross-
entropy loss associated with the softmax output F (I) of the
network for I is defined as

LCE(F, I, Y ) = − 1

CHW

∑
c,h,w

Yc,h,w log
(
F (I)c,h,w

)
.

(1)
Thus, in the basic training setup we start from, the overall
loss can be expressed as

Lbasic = LCE(F, Is, Ys) + LCE(F, It, Ŷt). (2)

This training loss encourages the network to preserve its
knowledge on semantics from the source domain with high-
quality ground-truth labels while also adapting to the target
domain via pseudolabels.

3.2. Pixel-Level Adaptation with Stylized Views

In order to better align the source and target domain, we
can translate the input images to the style of the other do-
main. This is an alignment of the two domains at the level
of pixels and it is based on the preservation of the semantic
content of the input image after the stylization. Thus, the
semantic annotation of the original input image can be used

to supervise the prediction of the network for the stylized
image, as the semantics are preserved.

This type of pixel-level adaptation has been followed in
several previous works [20, 32] which attempt to learn the
stylization with a separate deep network. We argue that a
light-weight shallow mapping g for the stylization is more
flexible, as stylization can be performed on-the-fly during
the data loading stage of training and does not introduce
unnecessary additional complexity to the overall architec-
ture. The availability of pairs of source and target images
serves such a shallow stylization well, as one image can use
the other image as the reference style, so the mapping g is
not fixed for a given input image but has greater variabil-
ity. More formally, we can write the stylized source image
of our training batch from Sec. 3.1 which is computed with
this regime as

Is→t = g(Is, It) (3)

and the respective stylized target image as

It→s = g(It, Is). (4)

The stylization mapping g is the same in both cases, only
that the order of its arguments is flipped, as the output al-
ways has the content of the first argument and the style of
the second one. Such shallow stylizations have been pro-
posed in the color transfer work of Reinhard et al. [26] and
in FDA [43] and have been shown [43] to perform favor-
ably for UDA compared to stylization learned jointly with
semantic segmentation. Our method is agnostic to the exact
mapping g that is used for stylization. We have used both
FDA [43] and simple color transfer [26] in its implemen-
tation motivated by the compelling results of such shallow
stylization approaches, especially in the normal-to-adverse
UDA setting [31]. For the details of the simple color trans-
fer method of Reinhard et al., we refer the reader to the orig-
inal paper [26]. However, as FDA has a more complex for-
mulation, we review it here shortly for completeness. FDA
works with the discrete Fourier transform of the source and
target images and copies the low-frequency Fourier ampli-
tude of the reference style image to the input content image.
More formally, FDA implements (3) as

Is→t = F−1([M⊙FA(It)+(1−M)⊙FA(Is),FP (Is)]),
(5)

where M is an ideal low-pass filter, FA(·) denotes the
Fourier amplitude, FP (·) denotes the Fourier phase, and
F−1 denotes the inverse discrete Fourier transform. It→s

can be computed conversely based on (4).
Since Is→t is rendered at the style of the target domain

and is thus aligned to the latter, [43] proposes to modify the
basic setup of (2) and substitute the original source image
Is with the stylized source image Is→t in the cross-entropy
loss associated with the source domain, where the styliza-



tion can be performed with any shallow mapping:

LFDA = LCE(F, Is→t, Ys) + LCE(F, It, Ŷt). (6)

3.3. Feature Invariance Loss

However, by only applying cross-entropy losses on the
stylized source image Is→t and the target image It, the op-
timization (6) proposed in [43] neglects the fact that two
views are available for each input image thanks to styliza-
tion, one in the style of the source domain and the other
in the style of the target domain. In particular, (6) only
leverages the views that are characterized by the style of
the target domain and neglects Is and It→s, which are char-
acterized by the style of the source domain. Our key insight
is that by using both views of the images—each view cor-
responding to a different domain—in the training, we can
promote invariance of the features generated by the network
across domains and thus better align the two domains at the
level of features, which aids domain adaptation.

A straightforward way to attempt such an alignment is by
adding cross-entropy losses on the additional views which
are not included in (6), namely Is and It→s:

LCE,full = LCE(F, Is→t, Ys) + LCE(F, Is, Ys)

+ LCE(F, It, Ŷt) + LCE(F, It→s, Ŷt). (7)

Since the labels used to supervise the predictions of the
network for Is and Is→t (respectively It and It→s) in (7)
are the same, the two predictions are indirectly attracted to
the same point, which is expected to promote consistency
across domains.

Nevertheless, we argue that the shared semantic content
between Is and Is→t (respectively It and It→s) allows to
impose an even stronger constraint on the semantic segmen-
tation network F . More specifically, typical deep semantic
segmentation networks consist of an encoder and a decoder.
The bottleneck layer between the encoder and the decoder
produces high-level features which should ideally be invari-
ant to the specific style or visual condition of the input, al-
lowing the decoder to focus on parsing these features into
the output semantic classes and to not have to further ab-
stract from the specific style of the input. Thus, we can min-
imize the difference of features produced by the semantic
segmentation network F for views of the same scene under
different styles, which is exactly the setting we have been
examining. More formally, we can analyze F as a compo-
sition of an encoder ϕ and a decoder ω, F = ω ◦ϕ. For two
input images I and I ′ of the same dimensions, the features
generated by the encoder are ϕ(I), ϕ(I ′) ∈ RD×M×N . We
define our feature invariance loss as

Linv(F, I, I
′) =

1

DMN
∥ϕ(I)− ϕ(I ′)∥2F, (8)

where ∥ · ∥F is the Frobenius norm.

Coming back to our UDA setup, we propose to apply our
feature invariance loss on the pairs of views (Is, Is→t) and
(It, It→s) in order to align the features of the views from
each pair. The two resulting feature invariance losses are
combined with the cross-entropy losses of the basic setup
of (2) in our final formulation of CISS as

LCISS = LCE(F, Is, Ys) + LCE(F, It, Ŷt)

+ λsLinv(F, Is, Is→t) + λtLinv(F, It, It→s), (9)

where λs and λt are tunable hyperparameters. Note that
we use cross-entropy losses only on the original images Is
and It, as the cross-entropy losses on the stylized images
Is→t and It→s which are used in (7) are redundant due to
the inclusion of the feature invariance losses. In Sec. 4, we
thoroughly ablate the final formulation in (9) and compare
it to the basic formulation in (2) and the alternative formula-
tions in (6) and (7), demonstrating the benefit of introducing
feature invariance loss compared to training with the other
formulations.

4. Experiments

4.1. Experimental Setup

Implementation details. The default implementation
of CISS is based on HRDA [13]. Our semantic seg-
mentation network comprises an MiT-B5 encoder from
SegFormer [42] and a context-aware feature fusion de-
coder [12]. We also implement CISS with a DeepLabv2 [3]
architecture involving a ResNet-101 backbone [9], in or-
der to compare directly to several earlier UDA methods
which use this architecture. For the default HRDA-based
implementation, we follow the teacher-student self-training
framework of DAFormer [12] with confidence-weighted
pseudolabels, rare class sampling, and target data augmen-
tation following DACS [34], and we use the AdamW op-
timizer [21] with a learning rate of 6 × 10−5 for the en-
coder and 6 × 10−4 for the decoder, a linear learning rate
warm-up, and mini-batches of size B = 2. We follow the
default configuration and parameters of HRDA regarding
its multi-resolution setup. Unless otherwise stated, we use
FDA [43] by default for stylization. Alternatively and only
when explicitly stated, we use the color transfer of [26] for
stylization. In the application of FDA stylization, we use
β = 0.01 as the bandwidth parameter of the low-frequency
band of the Fourier spectrum. We set the default values of
the weights of the feature invariance losses in (9) for adap-
tation from Cityscapes to ACDC to λs = 50 and λt = 20
for the default HRDA-based implementation of CISS and to
λs = λt = 10 for the alternative DeepLabv2-based imple-
mentation. For adaptation from Cityscapes to Dark Zurich,
we set λs = 100 and λt = 50. We provide a study of these
weights in Sec. 4.3.



Table 1. Comparison of state-of-the-art unsupervised domain adaptation methods on Cityscapes→ACDC. Cityscapes serves as the
source domain and the entire ACDC including all four adverse conditions serves as the target domain. The first, second and third groups
of rows present methods trained externally on Cityscapes→Dark Zurich, DeepLabv2-based UDA methods and SegFormer-based UDA
methods, respectively. Results of DACS are taken from [2].
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MGCDA [30] 76.0 49.4 72.0 11.3 21.7 39.5 52.0 54.9 73.7 24.7 88.6 54.1 27.2 78.2 30.9 41.9 58.2 31.1 44.4 48.9
GCMA [29] 79.7 48.7 71.5 21.6 29.9 42.5 56.7 57.7 75.8 39.5 87.2 57.4 29.7 80.6 44.9 46.2 62.0 37.2 46.5 53.4

AdaptSegNet [35] 69.4 34.0 52.8 13.5 18.0 4.3 14.9 9.7 64.0 23.1 38.2 38.6 20.1 59.3 35.6 30.6 53.9 19.8 33.9 33.4
BDL [20] 56.0 32.5 68.1 20.1 17.4 15.8 30.2 28.7 59.9 25.3 37.7 28.7 25.5 70.2 39.6 40.5 52.7 29.2 38.4 37.7
CLAN [22] 79.1 29.5 45.9 18.1 21.3 22.1 35.3 40.7 67.4 29.4 32.8 42.7 18.5 73.6 42.0 31.6 55.7 25.4 30.7 39.0
CRST [48] 51.7 24.4 67.8 13.3 9.7 30.2 38.2 34.1 58.0 25.2 76.8 39.9 17.1 65.4 3.7 6.6 39.6 11.8 8.6 32.8
FDA [43] 73.2 34.7 59.0 24.8 29.5 28.6 43.3 44.9 70.1 28.2 54.7 47.0 28.5 74.6 44.8 52.3 63.3 28.3 39.5 45.7
SIM [38] 53.8 6.8 75.5 11.6 22.3 11.7 23.4 25.7 66.1 8.3 80.6 41.8 24.8 49.7 38.6 21.0 41.8 25.1 29.6 34.6
MRNet [46] 72.2 8.2 36.4 13.7 18.5 20.4 38.7 45.4 70.2 35.7 5.0 47.8 19.1 73.6 42.1 36.0 47.4 17.7 37.4 36.1
DACS [34] 58.5 34.7 76.4 20.9 22.6 31.7 32.7 46.8 58.7 39.0 36.3 43.7 20.5 72.3 39.6 34.8 51.1 24.6 38.2 41.2
CISS-DeepLabv2 70.5 36.7 67.0 29.4 30.2 31.6 45.6 48.9 70.4 24.7 65.5 48.2 31.1 76.6 45.7 47.0 62.8 26.8 38.9 47.2

DAFormer [12] 58.4 51.3 84.0 42.7 35.1 50.7 30.0 57.0 74.8 52.8 51.3 58.2 32.6 82.7 58.3 54.9 82.4 44.1 50.7 55.4
SePiCo [41] 61.3 48.6 84.9 39.6 40.3 54.2 48.9 60.6 74.8 54.3 57.2 65.2 38.3 84.8 66.2 60.4 85.5 44.5 53.1 59.1
HRDA [13] 88.3 57.9 88.1 55.2 36.7 56.3 62.9 65.3 74.2 57.7 85.9 68.8 45.6 88.5 76.4 82.4 87.7 52.7 60.4 68.0
CISS (ours) 91.9 69.3 89.3 57.0 40.0 55.4 67.2 67.2 75.2 59.6 86.4 69.7 47.2 89.0 72.9 78.3 87.1 55.7 61.8 69.5

Datasets. In our experiments, we focus on the setting of do-
main adaptation and generalization from normal to adverse
visual conditions, as our method is tailored for condition-
level domain shifts that affect the appearance and texture of
objects in the scene and not for structural-level shifts, as in
the synthetic-to-real scenario. We use Cityscapes [5] as the
labeled source-domain set in our experiments. Cityscapes is
a large dataset of urban driving scenes, captured in several
cities of central Europe under normal conditions and con-
taining high-quality pixel-level semantic annotations for a
set of 19 common classes in driving scenes. It consists of a
training set with 2975 images, a validation set with 500 im-
ages, and a test set with 1525 images. When training UDA
methods in our experiments, we sample source images
only from the training set of Cityscapes. In addition, we
use ACDC [31] and Dark Zurich [30] as unlabeled target-
domain sets, which model the adverse-condition domain for
normal-to-adverse UDA. ACDC consists of 4006 images of
driving scenes distributed evenly among four common ad-
verse conditions, i.e., night, fog, rain, and snow. Its train-
ing, validation and test set contain 1600, 406 and 2000 im-
ages respectively. Dark Zurich comprises 2617 nighttime
images of driving scenes, which are split into 2416 train-
ing, 50 validation, and 151 test images. Both ACDC and
Dark Zurich feature high-quality semantic annotations for
the same set of 19 classes as Cityscapes. In our experi-
ments, we use the training set of ACDC, resp. Dark Zurich,
as the unlabeled target training set, evaluate on the valida-
tion set for ablations and hyperparameter studies, and evalu-
ate only our final models against competing methods on the
test set, which has withheld annotations and thus serves as

a competitive public UDA benchmark. Finally, for models
adapted to nighttime segmentation on Dark Zurich, we use
BDD100K-night [30, 44] and Nighttime Driving [6] as tar-
get sets for generalization. BDD100K-night consists of 87
nighttime images with accurate segmentation labels and is a
subset of the BDD100K segmentation dataset [44]. Night-
time Driving contains 50 nighttime images with coarsely
annotated ground-truth.

4.2. Comparison to the State of the Art

We present the comparison of CISS to competing state-
of-the-art UDA methods on Cityscapes→ACDC adaptation
in Table 1. CISS significantly outperforms all competing
methods, with a margin of 1.5% in the main mIoU met-
ric from the second-best method. Moreover, our method
achieves the best IoU in 13 out of the 19 individual classes,
excelling in classes that are crucial for driving percep-
tion, such as road, sidewalk, traffic light, traffic sign, per-
son, rider, and car. Focusing on the methods that use a
DeepLabv2 architecture, CISS-DeepLabv2 also has the top
performance among them, showing that the benefit of our
method is general across different UDA architectures.

We provide a condition-specific comparison of CISS to
competing unsupervised domain adaptation methods on the
four adverse conditions of ACDC in Table 2. DANNet [39]
and CuDA-Net [23] are specifically designed for night and
fog respectively, so they only report results on those con-
ditions. For the rest of the methods in Table 2, a single
model is trained using the entire ACDC as the target set and
is then evaluated separately on each condition. CISS per-
forms favorably compared to other methods, both special-



Figure 3. Qualitative results on Cityscapes→ ACDC. From left to right: ACDC image, ground-truth annotation, HRDA [13], and CISS.
Best viewed on a screen and zoomed in.

Table 2. Comparison of state-of-the-art unsupervised domain
adaptation methods on Cityscapes→ACDC on individual con-
ditions. Training is performed on the entire Cityscapes and ACDC
including all four conditions, while the single trained model of
each method is evaluated separately on each condition, except for
the first group of rows, where a single condition of ACDC is used
both for training and evaluation. Results are reported using mIoU.

Method Night Fog Rain Snow

DANNet [39] 47.6 – – –
CuDA-Net [23] – 55.6 – –

GCMA [29] 42.9 52.4 58.0 53.8
MALL [25] 36.9 52.4 57.0 51.4
SePiCo [41] 50.5 58.5 66.1 57.9
HRDA [13] 53.1 69.9 73.6 69.5
CISS (ours) 58.1 68.8 74.1 69.7

ized and general ones. In particular, our method substan-
tially improves upon the second-best method by 5.0% in
mIoU on the challenging condition of night, which presents
very large domain shifts from normal conditions, due to the
much lower and more spatially-variant illumination com-
pared to the source, daytime domain. These results place
CISS in the first position of the public ACDC leaderboards1

for semantic segmentation on the complete ACDC test set
including all conditions as well as on the night, snow, and

1https://acdc.vision.ee.ethz.ch/benchmarks

rain test sets among published unsupervised domain adap-
tation methods.

Qualitative comparisons of CISS to the highest-
performing competing method on Cityscapes→ACDC, i.e.
HRDA [13], are presented in Fig. 3, showing segmentation
results on validation images of ACDC. On the top nighttime
image, our method successfully segments both the traffic
signs and most of the sidewalk, whereas HRDA mistakes
one of the traffic signs for a traffic light and most of the side-
walk for road, which would be detrimental for the safety of
the pedestrians standing on the sidewalk. On the nighttime
image in the second row, CISS accurately segments most of
the sidewalk on the right and also detects part of the terrain,
even though the latter appears very dark. On the bottom
rainy image, HRDA incorrectly segments a green reflection
of a traffic light on the road as traffic light, while CISS cor-
rectly assigns this reflection to road and also segments the
sidewalk on the right much more precisely.

In Table 3, we present the results of state-of-the-art
SegFormer-based UDA methods on the challenging normal-
to-adverse Cityscapes→Dark Zurich domain adaptation
benchmark. Overall, CISS outperforms the other meth-
ods by a wide margin, improving by 3.1% mIoU over the
second-best method, HRDA.

To further test the utility of CISS for condition-level
adaptation, we compare it in Table 4 to state-of-the-art

https://acdc.vision.ee.ethz.ch/benchmarks


Table 3. Comparison of state-of-the-art unsupervised domain adaptation methods on Cityscapes→Dark Zurich.
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DAFormer [12] 93.5 65.5 73.3 39.4 19.2 53.3 44.1 44.0 59.5 34.5 66.6 53.4 52.7 82.1 52.7 9.5 89.3 50.5 38.5 53.8
SePiCo [41] 93.2 68.1 73.7 32.8 16.3 54.6 49.5 48.1 74.2 31.0 86.3 57.9 50.9 82.4 52.2 1.3 83.8 43.9 29.8 54.2
HRDA [13] 90.4 56.3 72.0 39.5 19.5 57.8 52.7 43.1 59.3 29.1 70.5 60.0 58.6 84.0 75.5 11.2 90.5 51.6 40.9 55.9
CISS (ours) 93.5 68.0 80.9 47.5 16.3 59.8 36.8 55.2 72.7 38.0 84.2 61.1 57.4 86.3 69.6 10.8 90.8 53.3 38.4 59.0

Table 4. Comparison of state-of-the-art domain adaptation
methods on generalization to BDD100K-night and Nighttime
Driving. All methods are trained on Cityscapes→Dark Zurich.

Method BDD100K-night Nighttime Driving

GCMA [29] 33.2 45.6
MGCDA [30] 34.9 49.4
DANNet [39] 27.2 47.7
DAFormer [12] 33.8 54.1
SePiCo [41] 40.6 56.9
HRDA [13] 40.2 57.7
CISS (ours) 41.2 57.8

Table 5. Ablation study of CISS on Cityscapes→ACDC. Eval-
uation is performed on the validation set of ACDC. “CE”: cross-
entropy loss, “Inv”: feature invariance loss, “orig”: original im-
ages from respective domain, “stylized”: images from respective
domain stylized with FDA. Mean and standard deviation across
three runs are reported.

Source Target mIoU

CE orig CE stylized Inv CE orig CE stylized Inv

1 ✓ ✓ 64.1±2.0
2 ✓ ✓ 65.7±1.1
3 ✓ ✓ ✓ 65.1±0.7
4 ✓ ✓ ✓ 66.6±0.8

5 ✓ ✓ ✓ 66.9±0.5
6 ✓ ✓ ✓ ✓ 65.7±1.2
7 ✓ ✓ ✓ ✓ 68.2±0.4

domain adaptation methods on the challenging nighttime
BDD100K-night and Nighttime Driving sets for general-
ization. In particular, all compared methods are trained for
adaptation to nighttime using Dark Zurich [30] as their tar-
get domain. CISS outperforms all other methods, setting
the new state of the art on both BDD100K-night and Night-
time Driving, and showing that our method adapts robustly
to the target condition.

4.3. Ablation Studies

In Table 5, we conduct an ablation study of our method
w.r.t. the various loss terms that are included in our over-
all loss LCISS in (9) and the alternative loss terms that are
included in the baseline formulations of (2), (6), and (7).
The basic UDA formulation of (2), i.e., plain HRDA, cor-
responds to row 1. Switching to the FDA loss of (6) in

Table 6. Hyperparameter study of the weights of our feature in-
variance losses on Cityscapes→ACDC. Evaluation is performed
on the validation set of ACDC. Mean and standard deviation of
mIoU across three runs are reported.

λs 50 100 200 500 1000

CISS-source 65.8±1.6 65.6±0.8 66.6±0.8 65.7±0.9 65.9±0.5

λt 20 50 100 200 500

CISS-target 66.7±0.6 66.6±1.6 66.9±0.5 66.1±0.7 65.2±0.6

Table 7. Comparison of CISS using different stylization tech-
niques for applying feature invariance loss in the target do-
main for Cityscapes→ACDC adaptation. Evaluation is per-
formed on the validation set of ACDC. We compare the default
FDA [43] stylization and the stylization using the method by Rein-
hard et al. [26]. Mean and standard deviation across three runs are
reported.

Invariance Loss Mean IoU (%)

None 64.1±2.0
With FDA stylization (λt = 100) 66.9±0.5
With Reinhard stylization (λt = 2) 66.7±0.7

row 2, i.e., pixel-level adaptation, improves upon the ba-
sic formulation. However, applying cross-entropy loss both
for the original source images and their stylized versions
(row 3), in the direction of (7), does not provide any gain
over the FDA loss, evidencing that simultaneous output su-
pervision on different views of images alone is not sufficient
for aligning their features. On the contrary, applying the
feature invariance loss on the source domain alone (row 4)
improves upon the FDA setting of row 2, showing the util-
ity of feature-level adaptation achieved with CISS on top of
the pixel-level adaptation with FDA. In addition, the feature
invariance loss applied solely on the target domain (row 5)
also improves significantly upon the basic UDA setup of
row 1. While using stylized target images for applying an
additional cross-entropy loss on the target domain hurts per-
formance (cf. rows 4 and 6), combining the two feature in-
variance losses from the source and the target domain in the
complete formulation of CISS (9) (row 7) improves further
compared to applying each of the two losses alone (rows 4
and 5), showing that the two losses synergize and achieve
the best result.

Invariance loss weights. We examine the influence of the
value of the two hyperparameters of CISS, i.e., the weights



λs and λt, on performance in Table 6. In particular, we con-
sider the ablated versions of CISS in which either of the two
feature invariance losses is included, the source one (CISS-
source) or the target one (CISS-target), and vary the respec-
tive weight. The best performance is obtained at λs = 200
for CISS-source and at λt = 100 for CISS-target, however,
note that performance degrades gracefully as we move away
from these values, implying that our method is fairly insen-
sitive to the exact values of these hyperparameters.
Different stylization techniques. We test CISS in Table 7
with the color transfer technique in [26] for stylizing the
input images, in order to verify its generality with regard
to the stylization method that is used for imposing feature
invariance. In particular, we consider the case where fea-
ture invariance is applied in the target domain and test CISS
both with the default FDA stylization and with [26]. CISS
improves significantly upon the baseline that does not use
any feature invariance and it achieves similar performance
with both stylization methods, which evidences the gener-
ality of CISS with regard to the stylization method that it
employs.

5. Conclusion
We have presented CISS, a UDA method for seman-

tic segmentation tailored for condition-level domain shifts.
Our method promotes invariance of the features extracted
by the semantic segmentation network to visual conditions,
which are modeled through the style of the input, by pe-
nalizing the difference between features of the same image
viewed under the styles of the source and the target do-
main. We have performed a thorough experimental evalua-
tion of CISS and showed that it excels on normal-to-adverse
adaptation from Cityscapes to ACDC and Cityscapes to
Dark Zurich. Last but not least, our model which has
been adapted to Dark Zurich generalizes very well to
other unseen nighttime domains, i.e., BDD100K-night and
Nighttime Driving, demonstrating that condition invariance
makes it more robust to diverse inputs.
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Figure 4. Ablation of the point in the network where invariance
is applied on Cityscapes→ACDC. Evaluation is performed on
the validation set of ACDC. The x-axis is logarithmic and shows
the weight λs of the feature invariance loss, which is applied here
only on the source domain. Averages and standard deviations are
plotted over three runs for each configuration.

A. Ablation on the Point in the Network Where
Invariance Is Applied

We justify the choice of applying feature invariance to
the encoder outputs of the network in Fig. 4, which veri-
fies our intuition that invariance on encoder outputs works
better than on network outputs. In particular, using the fea-
ture invariance loss in the source domain, its application to
encoder outputs improves significantly upon not using the
invariance loss at all, while its application to network out-
puts, i.e. predictions, deteriorates performance compared to
not applying feature invariance at all.

B. Detailed Class-Level Quantitative Results
on Individual Conditions of ACDC

In Tables 8, 9, 10, and 11, we provide detailed class-level
IoU results on the condition-specific splits of the test set of
ACDC for all methods which are presented in Tables 1 and
2 of the main paper.

CISS dominates the challenging nighttime benchmark
of ACDC (cf. Table 8), scoring 5.0% higher on mean IoU
than the second-best method and delivering substantial im-
provements in IoU on several central driving-related classes
over the respective second-best method, such as on sidewalk
(9.7%), traffic light (6.8%), traffic sign (7.6%), motorcycle
(7.2%), and bicycle (4.3%). CISS achieves the best IoU
score on 14 out of the 19 classes and is significantly out-
performed only on two classes, namely vegetation and sky,
and in those cases only by methods trained specifically on
nighttime sets and using weak supervision [29, 30, 39].

Moreover, CISS achieves the best performance on the
rain benchmark of ACDC (cf. Table 10). It outperforms the
second-best method on this benchmark, HRDA [13], con-
sistently on 13 out of the 19 classes, it is on a par with the

latter on 2 classes, and it is slightly outperformed by the lat-
ter on classes with large instances (truck, bus, train), which
only appear rarely in the scenes of ACDC.

CISS is also the top-performing method on the snow
benchmark of ACDC (cf. Table 11). Even though it outper-
forms the second-best method, HRDA [13], only slightly
in mean IoU, it achieves significant improvements over the
latter on driving-related classes which exhibit large appear-
ance shifts with respect to the source, normal-condition
domain of Cityscapes due to snow cover on the ground,
namely road and sidewalk.

Finally, although CISS is slightly outperformed by
HRDA [13] in mean IoU on the fog benchmark of ACDC
(cf. Table 9), the two methods are on a par with regard
to class-level IoU scores. In particular, CISS outperforms
HRDA on 9 classes, HRDA outperforms CISS on 9 classes,
and the two methods obtain equal IoU scores on one class.
CISS is better on several safety-critical classes, such as
road, sidewalk, person, and rider, and the higher mean IoU
score of HRDA is largely due to the large difference in the
IoUs of the two methods on bus, which is a very rare class
in ACDC.

C. Detailed Class-Level Quantitative Results
on Generalization on BDD100K-night and
Nighttime Driving

In Tables 12 and 13, we provide detailed class-level
IoU results on the generalization performance of models
adapted from Cityscapes to Dark Zurich on BDD100K-
night and Nighttime Driving, respectively. CISS is con-
sistently among the two top-performing methods on 7 out
of the 8 dynamic classes on BDD100K-night and scores
the top mean IoU result among competing state-of-the-art
methods in this generalization experiment. Moreover, CISS
achieves the best generalization performance on Night-
time Driving among state-of-the-art domain adaptation ap-
proaches. Note that despite the fact that CISS is only
slightly better in terms of mean IoU performance on Night-
time Driving than the second-best method, HRDA, a head-
to-head class-level comparison of the two methods reveals
that CISS outperforms HRDA in 15 out of the 19 classes
(in most of which significantly) and is outperformed only in
2, while the two methods are on a par in 2 classes. HRDA
is favored by the fact that it has much higher performance
on the truck class, which however is very rare in Nighttime
Driving.



Table 8. Comparison of state-of-the-art unsupervised domain adaptation methods on Cityscapes→ACDC for nighttime. The first,
second, third and fourth groups of rows present methods trained externally on Cityscapes→Dark Zurich, DeepLabv2-based UDA methods,
a DeepLabv3+-based UDA method, and SegFormer-based UDA methods, respectively.
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GCMA [29] 78.6 45.9 58.5 17.7 18.6 37.5 43.6 43.5 58.7 39.2 22.4 57.9 29.9 72.1 21.5 56.2 41.8 35.7 35.4 42.9
MGCDA [30] 74.5 52.5 69.4 7.7 10.8 38.4 40.2 43.3 61.5 36.3 37.6 55.3 25.6 71.2 10.9 46.4 32.6 27.3 33.8 40.8
DANNet [39] 90.7 61.1 75.5 35.9 28.8 26.6 31.4 30.6 70.8 39.4 78.7 49.9 28.8 65.9 24.7 44.1 61.1 25.9 34.5 47.6

AdaptSegNet [35] 84.9 39.9 66.8 17.2 17.7 13.4 17.6 16.4 39.6 16.1 5.7 42.8 21.4 44.8 11.9 13.0 39.1 27.5 28.4 29.7
BDL [20] 87.1 49.6 68.8 20.2 17.5 16.7 19.9 24.1 39.1 23.7 0.2 42.0 20.4 63.7 18.0 27.0 45.6 27.8 31.3 33.8
CLAN [22] 82.3 28.8 65.9 15.1 9.3 22.1 16.1 26.5 39.2 23.4 0.4 45.9 25.4 63.6 9.5 24.2 39.8 31.5 31.1 31.6
CRST [48] 43.9 10.0 57.3 10.0 5.1 29.3 27.0 18.6 6.9 8.2 0.3 36.9 17.9 48.5 4.9 1.8 29.4 7.3 8.8 19.6
FDA [43] 82.7 39.4 57.0 14.7 7.6 26.1 37.8 30.5 53.2 14.0 15.3 48.0 28.8 62.6 26.6 47.5 51.5 27.0 35.0 37.1
SIM [38] 87.0 48.4 42.1 6.3 8.3 15.8 8.4 17.6 21.7 22.8 0.1 39.3 22.1 60.3 8.7 18.2 42.3 30.1 32.9 28.0
MRNet [46] 83.6 36.3 65.6 8.1 8.2 21.5 30.0 23.7 39.4 24.2 0.0 44.1 26.0 64.9 0.8 3.6 7.6 10.3 31.8 27.9
DACS [34] 84.8 52.5 64.8 17.5 16.0 30.5 25.1 33.9 38.4 10.7 2.7 40.7 21.2 63.9 16.4 36.6 45.4 19.5 23.4 33.9

MALL [25] 78.9 26.8 62.2 25.3 19.9 32.3 32.6 31.4 49.9 27.9 13.5 47.3 19.6 61.0 19.2 35.4 56.0 29.7 31.4 36.9

DAFormer [12] 92.3 64.6 70.1 28.7 18.5 45.8 11.3 41.5 42.7 41.9 0.0 55.4 29.8 74.3 40.3 45.8 81.3 39.4 47.0 45.8
SePiCo [41] 89.9 56.8 75.6 35.3 28.4 49.5 24.7 50.1 43.4 44.5 4.8 61.1 34.1 77.3 62.0 52.9 79.5 41.2 48.3 50.5
HRDA [13] 87.2 46.9 79.1 46.2 18.0 51.4 41.0 48.5 41.8 46.7 0.0 63.2 36.9 81.0 65.2 77.7 83.6 46.0 49.0 53.1
CISS (ours) 94.7 74.3 81.3 48.1 28.0 52.0 50.4 57.7 43.1 53.3 2.4 65.5 38.0 83.9 63.0 75.8 86.6 53.2 53.3 58.1

Table 9. Comparison of state-of-the-art unsupervised domain adaptation methods on Cityscapes→ACDC for fog. The first, second,
third, fourth and fifth groups of rows present methods trained externally on Cityscapes→Dark Zurich, a method trained externally on
Cityscapes→Foggy Zurich, DeepLabv2-based UDA methods, a DeepLabv3+-based UDA method, and SegFormer-based UDA methods,
respectively.
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MGCDA [30] 71.7 47.3 65.7 18.2 15.3 34.4 48.6 59.9 64.9 24.7 95.4 44.8 23.8 73.3 36.1 45.4 63.9 23.9 15.4 45.9
GCMA [29] 80.8 53.5 70.1 29.2 20.7 38.4 53.0 60.9 70.2 46.5 95.4 44.2 38.0 76.6 52.4 49.7 56.8 41.0 17.6 52.4

CuDA-Net [23] 83.2 45.9 81.7 35.5 22.7 40.7 55.5 55.6 81.1 63.8 95.6 45.2 24.9 78.7 41.1 48.3 77.8 52.0 27.1 55.6

AdaptSegNet [35] 35.4 45.9 35.4 25.6 17.5 9.0 32.5 23.1 70.5 47.4 11.6 22.3 28.2 44.4 43.9 35.0 46.0 15.6 15.0 31.8
BDL [20] 36.9 37.8 47.0 28.2 21.6 13.7 37.2 34.5 67.2 49.4 27.6 29.1 51.3 58.5 49.4 51.8 30.3 21.4 22.5 37.7
CLAN [22] 48.8 41.3 29.6 27.2 21.0 16.1 41.1 39.6 67.7 50.2 15.4 36.2 30.8 72.2 52.2 54.4 47.2 27.1 22.6 39.0
CRST [48] 59.7 29.6 70.9 11.3 11.4 29.9 41.4 38.6 61.7 31.6 96.6 36.0 7.9 62.4 19.7 4.6 49.4 9.0 7.6 35.8
FDA [43] 68.8 37.3 27.1 27.6 19.8 21.6 37.5 43.3 74.9 43.7 33.1 35.0 21.5 65.7 44.6 45.3 47.1 41.5 15.8 39.5
SIM [38] 76.7 43.1 23.5 23.6 17.9 10.9 32.1 15.3 70.4 50.5 21.4 34.8 44.3 58.4 50.5 55.2 34.7 23.0 8.8 36.6
MRNet [46] 78.6 26.1 19.6 29.0 13.5 12.0 41.9 49.0 78.2 59.0 6.6 39.8 26.1 72.5 44.8 37.9 59.6 19.1 24.1 38.8
DACS [34] 34.9 51.8 79.0 22.8 24.8 22.9 20.0 46.6 50.5 50.8 19.7 38.2 25.9 69.5 44.1 48.5 29.9 28.8 16.0 38.1

MALL [25] 63.7 54.3 79.8 34.8 27.4 37.9 49.1 52.6 74.9 59.6 92.9 40.2 39.0 75.4 53.0 36.4 76.4 26.8 21.5 52.4

DAFormer [12] 38.9 42.4 86.8 52.5 26.8 46.7 45.6 57.3 86.4 64.7 56.5 37.6 53.3 76.2 60.8 32.4 64.0 52.1 29.6 53.2
SePiCo [41] 42.6 51.5 87.6 51.2 31.2 52.4 51.0 59.0 85.3 65.9 61.3 51.4 62.2 78.0 64.5 42.3 83.5 58.0 32.6 58.5
HRDA [13] 93.0 73.5 89.1 56.4 27.3 51.2 62.2 69.5 86.5 70.3 98.0 53.4 61.9 85.6 77.1 88.3 84.9 64.1 36.6 69.9
CISS (ours) 94.0 76.2 89.9 55.3 29.1 49.3 61.4 66.0 87.0 71.8 98.0 54.2 63.5 83.8 75.8 62.6 84.2 61.8 42.3 68.7



Table 10. Comparison of state-of-the-art unsupervised domain adaptation methods on Cityscapes→ACDC for rain. The first, second,
third and fourth groups of rows present methods trained externally on Cityscapes→Dark Zurich, DeepLabv2-based UDA methods, a
DeepLabv3+-based UDA method, and SegFormer-based UDA methods, respectively.
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GCMA [29] 81.1 48.0 84.8 25.0 37.3 49.8 66.5 66.2 92.1 43.5 97.6 54.5 20.4 85.5 47.3 34.6 71.3 40.3 56.7 58.0
MGCDA [30] 80.5 46.5 79.9 16.0 28.8 44.9 60.0 61.5 90.3 44.8 97.1 51.1 23.1 82.3 33.4 30.2 69.1 36.5 53.8 54.2

AdaptSegNet [35] 81.2 43.2 83.3 27.3 31.4 23.0 41.4 40.5 87.2 35.0 93.1 40.2 15.5 73.9 45.7 34.9 57.0 27.1 49.1 49.0
BDL [20] 79.1 39.0 82.8 30.0 34.5 28.1 40.1 47.3 87.0 28.7 91.8 40.6 17.8 74.6 46.3 36.7 60.4 33.2 46.3 49.7
CLAN [22] 77.5 40.0 46.8 24.9 30.3 28.1 37.7 48.3 83.8 37.0 6.6 45.7 17.4 79.7 43.7 42.9 63.7 35.0 46.1 44.0
CRST [48] 58.8 26.4 77.1 20.0 12.1 32.8 45.3 41.7 78.6 38.4 95.7 40.5 12.8 74.7 25.6 5.5 51.8 23.7 10.9 40.6
FDA [43] 76.6 45.0 82.9 37.0 35.6 34.8 49.8 52.0 88.7 37.8 88.8 43.6 17.4 76.8 46.5 53.6 64.8 34.5 45.5 53.3
SIM [38] 76.6 29.6 85.7 20.4 28.7 21.3 37.4 34.2 87.3 34.8 94.0 29.4 16.6 73.2 46.1 22.3 46.2 21.8 39.3 44.5
MRNet [46] 70.5 9.9 46.5 35.6 36.1 36.5 56.4 56.2 90.2 41.3 4.3 53.0 23.5 81.6 39.3 26.7 57.8 43.6 54.5 45.4
DACS [34] 69.3 41.8 84.3 30.1 20.6 38.4 38.3 54.8 83.5 38.9 82.8 41.5 14.6 76.3 47.4 30.7 53.7 30.4 49.6 48.8

MALL [25] 75.9 38.1 87.6 35.9 38.6 45.9 60.7 60.1 88.8 38.7 96.6 48.9 14.2 84.8 56.4 63.8 71.7 27.7 47.8 57.0

DAFormer [12] 73.1 46.7 92.2 55.9 40.5 54.9 65.6 64.9 93.1 40.8 89.8 58.5 20.6 86.1 63.5 66.4 83.0 46.6 53.4 62.9
SePiCo [41] 80.1 47.3 90.1 48.9 48.2 57.0 70.4 66.5 93.2 43.2 93.8 67.3 26.4 89.0 68.1 71.5 88.8 49.6 57.0 66.1
HRDA [13] 92.4 73.6 93.8 67.0 46.3 63.0 74.5 74.2 93.7 46.1 97.6 69.4 32.5 91.7 79.9 90.5 89.0 57.8 66.0 73.6
CISS (ours) 92.4 74.2 94.8 70.1 48.7 61.0 74.7 74.4 94.0 48.0 98.3 69.9 37.7 92.1 74.7 89.8 88.0 59.0 66.0 74.1

Table 11. Comparison of state-of-the-art unsupervised domain adaptation methods on Cityscapes→ACDC for snow. The first,
second, third and fourth groups of rows present methods trained externally on Cityscapes→Dark Zurich, DeepLabv2-based UDA methods,
a DeepLabv3+-based UDA method, and SegFormer-based UDA methods, respectively.
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GCMA [29] 79.7 49.5 75.3 17.5 37.9 43.2 59.0 61.9 78.8 2.2 95.5 62.5 33.6 83.2 42.5 43.4 72.1 32.2 51.1 53.7
MGCDA [30] 80.1 49.5 70.2 6.1 27.8 39.6 55.4 58.0 76.0 0.3 95.5 57.5 35.7 81.0 28.6 48.9 70.3 27.8 50.5 50.5

AdaptSegNet [35] 51.3 32.5 47.3 21.5 31.5 13.2 37.8 23.2 76.0 2.6 4.5 49.9 23.1 68.7 38.3 31.8 51.5 21.7 45.0 35.3
BDL [20] 42.3 36.4 60.2 15.7 30.4 15.1 41.4 30.4 71.3 1.7 11.2 46.8 27.8 57.7 38.6 34.1 59.2 28.1 43.7 36.4
CLAN [22] 71.8 26.0 37.3 12.5 27.0 21.1 32.0 41.1 78.5 1.9 0.9 50.9 23.9 82.4 43.2 39.5 61.6 25.2 39.4 37.7
CRST [48] 63.5 38.2 66.8 12.8 9.2 29.0 44.8 40.3 68.5 0.8 65.1 44.6 23.8 70.0 1.2 19.0 39.1 11.4 6.0 34.4
FDA [43] 74.6 30.9 56.1 20.5 34.8 28.7 53.9 47.8 80.5 1.1 55.9 53.1 37.9 79.7 40.5 51.9 67.4 34.3 41.8 46.9
SIM [38] 72.1 26.7 39.4 13.3 29.5 15.3 26.4 17.9 76.4 4.8 5.1 45.9 32.0 76.2 29.8 26.6 48.3 23.2 24.2 33.3
MRNet [46] 67.7 3.5 36.8 8.3 24.8 18.0 52.6 55.4 82.4 0.5 0.1 62.2 30.2 79.2 32.1 59.3 58.4 29.1 35.8 38.7
DACS [34] 52.4 13.7 77.7 14.2 24.7 33.2 40.3 50.6 78.8 0.8 34.2 51.7 22.2 75.0 30.8 30.6 58.4 19.8 43.9 39.6

MALL [25] 78.2 40.9 78.8 19.1 36.6 39.7 60.9 51.6 80.9 6.8 90.5 54.8 28.1 82.9 40.3 58.6 68.4 13.4 46.6 51.4

DAFormer [12] 38.1 41.3 88.3 42.1 47.2 54.2 71.1 64.2 91.2 4.5 32.8 66.0 36.4 88.0 54.4 71.3 84.5 46.0 54.8 56.7
SePiCo [41] 40.5 33.7 87.1 29.2 50.0 57.6 76.1 66.1 90.4 4.2 42.8 71.9 41.5 89.3 66.4 69.7 88.6 37.2 57.8 57.9
HRDA [13] 82.5 45.5 90.4 55.3 49.9 58.9 77.7 71.9 91.3 6.0 96.2 79.6 62.8 92.0 73.8 73.1 90.4 52.0 70.7 69.5
CISS (ours) 84.0 50.7 91.0 58.0 49.9 57.7 77.3 70.7 91.4 4.8 96.8 78.6 60.9 91.5 70.8 79.2 87.1 52.0 71.2 69.7

Table 12. Comparison of state-of-the-art domain adaptation methods on generalization to BDD100K-night. All methods are trained
on Cityscapes→Dark Zurich. Best results in bold, second-best underlined.
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GCMA [29] 85.8 48.1 64.1 1.4 16.3 30.4 23.7 34.9 43.1 6.8 5.9 65.4 76.8 78.8 15.3 29.8 0.0 0.0 3.8 33.2
MGCDA [30] 83.9 45.8 74.1 0.4 17.0 30.4 23.6 33.8 42.1 10.8 49.9 65.7 65.9 79.7 10.3 26.5 0.0 0.0 3.7 34.9
DANNet [39] 74.1 39.9 68.3 2.6 6.1 21.3 10.6 30.6 36.3 13.4 51.8 56.0 18.7 66.6 17.6 3.0 0.0 0.0 0.8 27.2
SePiCo [41] 87.3 48.3 80.2 3.3 12.2 37.9 20.1 51.4 47.6 20.5 65.5 67.6 67.1 83.7 29.9 46.3 0.0 0.0 1.9 40.6
HRDA [13] 84.8 49.6 77.0 4.5 26.9 35.7 21.7 47.3 35.4 12.3 60.4 66.9 27.6 81.4 53.1 65.2 0.0 0.0 13.9 40.2
CISS (ours) 85.1 44.8 80.5 6.3 25.7 37.2 20.9 45.6 42.7 12.5 69.6 69.7 74.1 83.5 47.8 23.8 0.0 0.0 13.3 41.2



Table 13. Comparison of state-of-the-art domain adaptation methods on generalization to Nighttime Driving. All methods are trained
on Cityscapes→Dark Zurich.
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GCMA [29] 86.0 47.0 82.2 10.7 0.0 49.4 69.5 72.1 69.0 0.0 20.3 65.1 36.0 71.1 0.0 75.8 69.8 0.0 42.9 45.6
MGCDA [30] 87.9 57.3 83.8 6.8 0.0 48.5 70.3 77.5 65.9 0.0 66.2 64.8 29.1 75.9 0.0 87.0 76.2 0.0 42.1 49.4
DANNet [39] 90.1 68.1 88.2 48.9 0.0 35.1 59.2 71.6 59.7 0.0 47.0 60.4 31.2 72.3 8.6 55.6 72.0 0.0 37.7 47.7
SePiCo [41] 93.0 73.7 90.5 54.8 0.1 67.5 80.5 82.2 67.2 0.0 58.5 62.2 36.0 75.0 18.3 94.6 92.8 0.0 34.5 56.9
HRDA [13] 87.6 52.6 85.7 70.3 0.0 69.0 78.7 82.2 46.3 0.0 44.4 67.0 34.6 76.2 69.8 93.4 93.1 0.0 46.2 57.7
CISS (ours) 93.0 73.6 89.8 75.0 0.1 70.4 83.2 86.0 59.2 0.0 54.4 64.1 35.0 76.9 0.0 96.1 93.9 0.0 48.2 57.8


