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Abstract

Adaptation of semantic segmentation networks to differ-
ent visual conditions from those for which ground-truth an-
notations are available at training is vital for robust per-
ception in autonomous cars and robots. However, pre-
vious work has shown that most feature-level adaptation
methods, which employ adversarial training and are val-
idated on synthetic-to-real adaptation, provide marginal
gains in normal-to-adverse condition-level adaptation, be-
ing outperformed by simple pixel-level adaptation via styl-
ization. Motivated by these findings, we propose to leverage
stylization in performing feature-level adaptation by align-
ing the deep features extracted by the encoder of the net-
work from the original and the stylized view of each in-
put image with a novel feature invariance loss. In this
way, we encourage the encoder to extract features that
are invariant to the style of the input, allowing the de-
coder to focus on parsing these features and not on fur-
ther abstracting from the specific style of the input. We
implement our method, named Condition-Invariant Seman-
tic Segmentation (CISS), on the top-performing domain
adaptation architecture and demonstrate a significant im-
provement over previous state-of-the-art methods both on
Cityscapes—ACDC and Cityscapes— Dark Zurich adapta-
tion. In particular, CISS is ranked first among all published
unsupervised domain adaptation methods on the public
ACDC leaderboard. Our method is also shown to general-
ize well to domains unseen during training, outperforming
competing domain adaptation approaches on BDDI100K-
night and Nighttime Driving. Code is publicly available at
https://github.com/SysCV/CISS.

1. Introduction

Unsupervised domain adaptation (UDA) is a primary
instance of transfer learning, in which a labeled source
set and an unlabeled target set are given at training time
and the goal is to optimize performance on the domain of
the latter set. There is a large body of literature focus-
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Figure 1. The domain shift from normal to adverse conditions
presents challenges to top-performing state-of-the-art domain
adaptation methods for semantic segmentation (c) due to the large

resulting change in the appearance of classes. We propose a
method that encourages invariance of deep segmentation features
to visual conditions by comparing features of different views of
the same scene under the style of different domains, improving
segmentation especially for classes which undergo large shifts.

ing on UDA for semantic segmentation, which is of high
practical importance for central computer vision applica-
tions such as autonomous cars and robots, as these sys-
tems need to have a dense pixel-level parsing of their sur-
rounding scene, are bound to encounter data from differ-
ent domains than those annotated for training, and label-
ing large quantities of data for each new deployment do-
main is very time- and cost-intensive. The main direc-
tions of recent research on this task are adversarial learn-
ing for domain alignment [20, 22, 35,37, 38] and training
with pseudolabels [34, 46,48, 49], with methods primarily
focusing on the synthetic-to-real UDA setting [27, 28], i.e.,
GTAS5—Cityscapes and SYNTHIA —Cityscapes. However,
the normal-to-adverse Cityscapes—ACDC UDA bench-
mark introduced in [31] showed that adversarial-learning-
based methods, which attempt to align domains at the level
of features, struggle with the domain shift from normal to
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adverse conditions. By contrast, Fourier domain adaptation
(FDA) [43] was shown in [31] to provide significant gains
in this normal-to-adverse setting, even with its simple non-
learned pixel-level domain alignment.

We recognize that the problem with adversarial ap-
proaches is that they discriminate between feature maps that
are extracted from different scenes, which does not allow
to disentangle the difference in the domain from the differ-
ence in the scene content. The key idea in this work is to
factor out the aforementioned difference in scene content
by aligning features that are extracted from two versions of
the same scene that belong to different domains with a fea-
ture invariance loss that penalizes differences between the
two feature maps. The intuition is that the encoder of the
semantic segmentation network should output features that
are invariant to the domain/style of the scene, so that the
decoder can subsequently produce identical outputs for the
different versions of the scene, as the ground-truth seman-
tics of these versions are also identical. To our knowledge,
we are the first to propose this cross-domain internal fea-
ture invariance in UDA for semantic segmentation, which
hinges on comparing features from different views of the
same scene rendered in different domains/styles.

A major challenge in implementing the feature invari-
ance loss is the generation of representative alternative
views of input source-domain or target-domain scenes. In-
stead of relying on learned models which add significant
complexity to the overall adaptation architecture or on sim-
ple photometric augmentations, we propose to leverage
shallow stylization methods, e.g. FDA [43] or simple color
transfer [26], to this end. In order to transfer each source-
domain image to the style of the target domain, we use the
corresponding target-domain image of the training mini-
batch and transfer its style to the source-domain image.
This allows a light-weight stylization that is simply imple-
mented as part of the data loading in training. The orig-
inal and stylized source-domain images are then both fed
to the segmentation network to compute the feature invari-
ance loss. The converse procedure is followed for each
target-domain image of each training mini-batch. As the
invariance of features is promoted across views of the scene
which are characterized by an identical structure of the
objects that are present, we term our method Condition-
Invariant Semantic Segmentation (CISS, pronounced kiss)
to signify that it is tailored for condition-level domain shifts
and not shifts involving structural changes of objects, as in
the synthetic-to-real setup, where the shape of objects may
change across domains. We note that CISS is not specific
to the particular stylization it uses and works well with dif-
ferent stylization techniques including [26, 43], as we will
review in Sec. 4.

In our experiments, we use the state-of-the-art
HRDA [13] architecture and implement CISS on top of

it. We show that our feature invariance loss improves
significantly upon the straightforward alternative of defin-
ing an extra cross-entropy loss on the stylized images.
Moreover, the separate feature invariance losses on source
and target images are shown to be synergistic, leading to
state-of-the-art results both on the Cityscapes—ACDC and
Cityscapes—Dark Zurich UDA benchmarks. For ACDC,
this regards both the complete test set including night, fog,
rain, and snow, and the individual test sets of three condi-
tions, namely night, rain, and snow. Both on the complete
test set and on the three aforementioned condition-specific
sets, CISS occupies the first place on the respective pub-
lic ACDC leaderboards among all published UDA meth-
ods. Last but not least, we evaluate the CISS model trained
for nighttime segmentation on Cityscapes—Dark Zurich in
a generalization setting using the BDD100K-night [30, 44]
and Nighttime Driving [6] sets and demonstrate the bene-
fit of condition invariance for generalization across diverse
nighttime data.

2. Related Work

Unsupervised domain adaptation works often utilize ad-
versarial domain adaptation to align the source and target
domains at the level of pixels, intermediate features, or out-
puts [4,10,11,16,22,32,35,36,37,38,45]. Other approaches
apply self-training with pseudolabels [8, 19,48,49] or com-
bine self-training with adversarial adaptation [20]. Cy-
CADA [10] employs a semantic consistency loss with some
similarity to our feature invariance loss. This loss optimizes
the two generators in the CycleGAN architecture [47] to
translate images across the source and target domains in a
way which ensures that a fixed segmentation network pre-
dicts the same labels on the translated versions of the im-
ages as in the original images. Importantly, the weights of
this fixed segmentation network are not optimized jointly
with the rest of the networks that are involved in CyCADA,
but a separate segmentation network is rather learned for the
target domain, for which no semantic consistency loss is ap-
plied. On the contrary, we propose to learn a single segmen-
tation network both for the source and the target domain, the
intermediate feature representations of which are optimized
to be invariant to the input condition. FIFO [ 18] introduces
fog factors, which are intermediate global representations
of the characteristics of fog that is (or is not) present in
images. These representations are extracted with a sepa-
rate fog-pass filtering module, which accepts as input inter-
mediate features of the main segmentation network. How-
ever, the fog factors—the deviation of which is penalized
in [18]—do not always correspond to images with the same
content, thus penalizing their deviation does not necessarily
enforce condition invariance of the segmentation features.
Pixel-level adaptation via explicit transforms from source
to target is performed in [15, 43]; we build on the effec-
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Figure 2. Overview of our method. Two instances of a shallow stylization mapping g are fed with the source and target image, Is and
I, to produce versions stylized with the converse domain, I, and I; . The four images are fed to a shared encoder ¢, the features of
which are used to compute our feature invariance losses. The features of the original source and target images are further fed to a shared
decoder w to compute softmax predictions and respective cross-entropy losses. Double lines indicate shared weights.

tiveness of FDA [43], but only use it as a building block in
CISS, which additionally performs feature-level adaptation.
Recent works upgrade the architecture and training strategy
for UDA [12] and operate at higher resolution [13], deliver-
ing significant performance gains; we implement CISS us-
ing these architectures and show the additional benefit of
condition invariance in this highly competitive setting.

Consistency regularization is used in PixMatch [24] in
the context of unsupervised domain adaptation on the tar-
get domain, by promoting invariance of the semantic pre-
dictions of the segmentation network to various perturba-
tions of the input target image, including changes in the
low-frequency part of the Fourier phase of the image and
in its style. However, the original target-domain semantic
predictions can be false as they constitute pseudolabels and
this may impact the learned representations negatively. By
contrast, our method promotes invariance of intermediate
features, which avoids reliance of consistency regulariza-
tion on potentially false pseudolabels. The idea of consis-
tent label predictions under input augmentations stems from
FixMatch [33], which considers a classification setting; we
instead promote consistency at the level of intermediate fea-
tures in a dense fashion, lifting the need for explicit pseu-
dolabels. Consistency under augmentations has also been

found to be important in semi-supervised semantic segmen-
tation [7]; instead of plain augmentations, we employ styl-
ization of the input images by exploiting pairs of source and
target images that are available at training to obtain better
cross-domain image views for promoting invariance. CISS
can be viewed as a contrastive learning method, using posi-
tive pairs to enforce feature invariance densely at each pixel.
Contrastive approaches are also proposed in [1, 14, 17,41],
however, they contrast general pairs of pixels, while we con-
trast pairs of pixels that depict exactly the same point of
the scene, providing stronger positive pairs. A concurrent
work [40] with ours implements consistency training with
a consistency loss that is similar to our feature invariance
loss, however, that work focuses on the domain general-
ization setting simply using augmentations of input images
rather than on our UDA setting, for which stylization of the
images to the style of different domains is essential. More-
over, [40] also applies consistency to the penultimate layer
of the semantic segmentation network, i.e. at a late stage,
and not deeply at the encoder outputs, as CISS does. Our
strategy is motivated by the intuition that the encoder of the
semantic segmentation network should already output fea-
tures that are invariant to the domain/style of the scene, so
that the decoder can subsequently focus on parsing these



features and not on further abstracting from them.

3. CISS

We first provide a basic UDA setup for semantic segmen-
tation, with definitions of inputs, outputs and losses, and
then present our UDA method, CISS, which builds on this
setup. A visual overview of CISS is presented in Fig. 2.

3.1. A Basic UDA Setup

In modern UDA training pipelines, each training batch
contains an equal number B of source and target images.
We denote the source images by {Is,b}f:1 and the tar-

get images by {It,b}le- Moreover, the batch contains
pixel-level semantic labels of the source images and—in
self-training-based methods—of the target images, the lat-
ter constituting pseudolabels. We denote these labels by

B . B : .
{Ysp},—, and {Y; 1}, _,, respectively. For presenting our

method, we assume that the pseudolabels {an}f:l are
given, as our focus is not on improving pseudolabel gen-
eration, and we defer the details of this generation to Sec. 4.

For the sake of simplicity, we focus on the case where
B = 1, but our analysis extends straightforwardly to larger
B. Dropping the redundant subscripts, the training batch in
this case is (s, Iy, Ys, Yt) The basic UDA setup we start
from involves training the semantic segmentation network
F using both the source-domain and the target-domain sam-
ple by applying cross-entropy losses on the outputs of F' for
the two images. More specifically, if the semantic labels Y
are one-hot-encoded in a C x H x W tensor, then the cross-
entropy loss associated with the softmax output F'(I) of the
network for I is defined as

ECE(ijaY) = 7CI§W Z YCyh,w log (F(I)c,h,,w) :

c,h,w
(D
Thus, in the basic training setup we start from, the overall
loss can be expressed as

Loasic = Lce(F, Lo, Yy) + Log(F, 1, Yz). )

This training loss encourages the network to preserve its
knowledge on semantics from the source domain with high-
quality ground-truth labels while also adapting to the target
domain via pseudolabels.

3.2. Pixel-Level Adaptation with Stylized Views

In order to better align the source and target domain, we
can translate the input images to the style of the other do-
main. This is an alignment of the two domains at the level
of pixels and it is based on the preservation of the semantic
content of the input image after the stylization. Thus, the
semantic annotation of the original input image can be used

to supervise the prediction of the network for the stylized
image, as the semantics are preserved.

This type of pixel-level adaptation has been followed in
several previous works [20, 32] which attempt to learn the
stylization with a separate deep network. We argue that a
light-weight shallow mapping g for the stylization is more
flexible, as stylization can be performed on-the-fly during
the data loading stage of training and does not introduce
unnecessary additional complexity to the overall architec-
ture. The availability of pairs of source and target images
serves such a shallow stylization well, as one image can use
the other image as the reference style, so the mapping g is
not fixed for a given input image but has greater variabil-
ity. More formally, we can write the stylized source image
of our training batch from Sec. 3.1 which is computed with
this regime as

Is—>t :g(IsaIt) (3)

and the respective stylized target image as
It—)s :g(ItaIs)- (4)

The stylization mapping g is the same in both cases, only
that the order of its arguments is flipped, as the output al-
ways has the content of the first argument and the style of
the second one. Such shallow stylizations have been pro-
posed in the color transfer work of Reinhard et al. [26] and
in FDA [43] and have been shown [43] to perform favor-
ably for UDA compared to stylization learned jointly with
semantic segmentation. Our method is agnostic to the exact
mapping g that is used for stylization. We have used both
FDA [43] and simple color transfer [26] in its implemen-
tation motivated by the compelling results of such shallow
stylization approaches, especially in the normal-to-adverse
UDA setting [31]. For the details of the simple color trans-
fer method of Reinhard et al., we refer the reader to the orig-
inal paper [26]. However, as FDA has a more complex for-
mulation, we review it here shortly for completeness. FDA
works with the discrete Fourier transform of the source and
target images and copies the low-frequency Fourier ampli-
tude of the reference style image to the input content image.
More formally, FDA implements (3) as

Iy = F Y(MoFs(l)+(1-M)0Fa(l), Fp(ly)]),

)
where M is an ideal low-pass filter, F4(-) denotes the
Fourier amplitude, Fp(-) denotes the Fourier phase, and
F~! denotes the inverse discrete Fourier transform. I;_,,
can be computed conversely based on (4).

Since I,_,; is rendered at the style of the target domain
and is thus aligned to the latter, [43] proposes to modify the
basic setup of (2) and substitute the original source image
I, with the stylized source image Is_,; in the cross-entropy
loss associated with the source domain, where the styliza-



tion can be performed with any shallow mapping:
Lrpa = Lop(F, I, Ys) + Lop(F 1, Y:). (6)
3.3. Feature Invariance Loss

However, by only applying cross-entropy losses on the
stylized source image I_,; and the target image I;, the op-
timization (6) proposed in [43] neglects the fact that two
views are available for each input image thanks to styliza-
tion, one in the style of the source domain and the other
in the style of the target domain. In particular, (6) only
leverages the views that are characterized by the style of
the target domain and neglects I and I;_, s, which are char-
acterized by the style of the source domain. Our key insight
is that by using both views of the images—each view cor-
responding to a different domain—in the training, we can
promote invariance of the features generated by the network
across domains and thus better align the two domains at the
level of features, which aids domain adaptation.

A straightforward way to attempt such an alignment is by
adding cross-entropy losses on the additional views which
are not included in (6), namely [ and I;_,:

Legsn = Lee(Fy Is—t,Ys) + Leg(F, I, Ys)
+ Lep(F, I, V) + Leg(F Lss, Ye). (D)

Since the labels used to supervise the predictions of the
network for I and I,_,; (respectively I; and I;_) in (7)
are the same, the two predictions are indirectly attracted to
the same point, which is expected to promote consistency
across domains.

Nevertheless, we argue that the shared semantic content
between I, and I,_,; (respectively I; and I;_, ) allows to
impose an even stronger constraint on the semantic segmen-
tation network F'. More specifically, typical deep semantic
segmentation networks consist of an encoder and a decoder.
The bottleneck layer between the encoder and the decoder
produces high-level features which should ideally be invari-
ant to the specific style or visual condition of the input, al-
lowing the decoder to focus on parsing these features into
the output semantic classes and to not have to further ab-
stract from the specific style of the input. Thus, we can min-
imize the difference of features produced by the semantic
segmentation network F’ for views of the same scene under
different styles, which is exactly the setting we have been
examining. More formally, we can analyze F' as a compo-
sition of an encoder ¢ and a decoder w, F' = w o ¢. For two
input images I and I’ of the same dimensions, the features
generated by the encoder are ¢(I), p(I') € RP*MXN we
define our feature invariance loss as

Lon(F. LT = —

/ 2
= o) - s)F.  ®

where || - || is the Frobenius norm.

Coming back to our UDA setup, we propose to apply our
feature invariance loss on the pairs of views (5, Is—+) and
(It, I, ) in order to align the features of the views from
each pair. The two resulting feature invariance losses are
combined with the cross-entropy losses of the basic setup
of (2) in our final formulation of CISS as

Laiss = Lop(F 1y, Ys) + Leg(F, I, V)
+ )\s‘cinV(Fa Is, Is—)t) + )\tﬁinv(Fa Ita It—)s), (9)

where A; and \; are tunable hyperparameters. Note that
we use cross-entropy losses only on the original images I
and [y, as the cross-entropy losses on the stylized images
Is_; and I;_,, which are used in (7) are redundant due to
the inclusion of the feature invariance losses. In Sec. 4, we
thoroughly ablate the final formulation in (9) and compare
it to the basic formulation in (2) and the alternative formula-
tions in (6) and (7), demonstrating the benefit of introducing
feature invariance loss compared to training with the other
formulations.

4. Experiments
4.1. Experimental Setup

Implementation details. The default implementation
of CISS is based on HRDA [I3]. Our semantic seg-
mentation network comprises an MiT-B5 encoder from
SegFormer [42] and a context-aware feature fusion de-
coder [12]. We also implement CISS with a DeepLabv2 [3]
architecture involving a ResNet-101 backbone [9], in or-
der to compare directly to several earlier UDA methods
which use this architecture. For the default HRDA-based
implementation, we follow the teacher-student self-training
framework of DAFormer [12] with confidence-weighted
pseudolabels, rare class sampling, and target data augmen-
tation following DACS [34], and we use the AdamW op-
timizer [21] with a learning rate of 6 x 1075 for the en-
coder and 6 x 10~* for the decoder, a linear learning rate
warm-up, and mini-batches of size B = 2. We follow the
default configuration and parameters of HRDA regarding
its multi-resolution setup. Unless otherwise stated, we use
FDA [43] by default for stylization. Alternatively and only
when explicitly stated, we use the color transfer of [26] for
stylization. In the application of FDA stylization, we use
B = 0.01 as the bandwidth parameter of the low-frequency
band of the Fourier spectrum. We set the default values of
the weights of the feature invariance losses in (9) for adap-
tation from Cityscapes to ACDC to Ay = 50 and \; = 20
for the default HRDA-based implementation of CISS and to
As = A¢ = 10 for the alternative DeepLabv2-based imple-
mentation. For adaptation from Cityscapes to Dark Zurich,
we set A\; = 100 and A\; = 50. We provide a study of these
weights in Sec. 4.3.



Table 1. Comparison of state-of-the-art unsupervised domain adaptation methods on Cityscapes—ACDC. Cityscapes serves as the
source domain and the entire ACDC including all four adverse conditions serves as the target domain. The first, second and third groups
of rows present methods trained externally on Cityscapes—Dark Zurich, DeepLabv2-based UDA methods and SegFormer-based UDA

methods, respectively. Results of DACS are taken from [2].

3 j = Q o o £ = . v - = ) 2

Method é é E g E é Eo gﬂ go % ,AE‘ % ;é) § § 2 'g é é» mloU
MGCDA [30] 76.0 494 72.0 11.3 21.7 39.5 52.0 549 737 247 88.6 54.1 272 782 309 419 582 31.1 444 489
GCMA [29] 79.7 487 71.5 21.6 299 425 567 57.7 758 395 872 574 29.7 80.6 449 462 62.0 372 465 534
AdaptSegNet [35] 69.4 340 528 135 18.0 43 149 97 640 23.1 382 386 20.1 593 356 30.6 539 19.8 339 334
BDL [20] 56.0 325 68.1 20.1 174 158 302 287 599 253 377 287 255 702 39.6 40.5 527 292 384 377
CLAN [22] 79.1 29.5 459 18.1 21.3 22.1 353 40.7 674 294 328 427 185 73.6 420 31.6 557 254 30.7 39.0
CRST [48] 517 244 678 133 9.7 302 382 34.1 580 252 76.8 399 17.1 654 37 6.6 39.6 11.8 8.6 328
FDA [43] 732 347 59.0 24.8 29.5 28.6 433 449 70.1 282 547 47.0 285 746 448 523 633 283 395 457
SIM [38] 538 6.8 755 116 223 11.7 234 257 66.1 83 80.6 41.8 24.8 49.7 38.6 21.0 41.8 25.1 29.6 34.6
MRNet [46] 722 82 364 137 18.5 204 38.7 454 702 357 50 478 19.1 73.6 421 36.0 474 177 374 36.1

DACS [34] 585 347 764 209 226 31.7 327 46.8 58.7 39.0 36.3 43.7 20.5 723 39.6 34.8 51.1 24.6 382 412
CISS-DeepLabv2 70.5 36.7 67.0 294 30.2 31.6 45.6 489 704 247 655 482 31.1 76.6 457 47.0 628 26.8 389 472
DAFormer [12] 584 513 84.0 427 351 507 300 57.0 74.8 52.8 51.3 582 32.6 827 583 549 824 44.1 50.7 554
SePiCo [41] 61.3 486 849 39.6 403 542 489 60.6 748 543 572 652 383 848 662 604 855 445 53.1 59.1

HRDA [13] 88.3 579 88.1 552 367 563 629 653 742 577 859 68.8 456 88.5 764 824 87.7 5277 604 68.0
CISS (ours) 919 693 893 57.0 40.0 554 67.2 67.2 752 59.6 864 69.7 47.2 89.0 729 783 87.1 557 61.8 69.5

Datasets. In our experiments, we focus on the setting of do-
main adaptation and generalization from normal to adverse
visual conditions, as our method is tailored for condition-
level domain shifts that affect the appearance and texture of
objects in the scene and not for structural-level shifts, as in
the synthetic-to-real scenario. We use Cityscapes [5] as the
labeled source-domain set in our experiments. Cityscapes is
a large dataset of urban driving scenes, captured in several
cities of central Europe under normal conditions and con-
taining high-quality pixel-level semantic annotations for a
set of 19 common classes in driving scenes. It consists of a
training set with 2975 images, a validation set with 500 im-
ages, and a test set with 1525 images. When training UDA
methods in our experiments, we sample source images
only from the training set of Cityscapes. In addition, we
use ACDC [31] and Dark Zurich [30] as unlabeled target-
domain sets, which model the adverse-condition domain for
normal-to-adverse UDA. ACDC consists of 4006 images of
driving scenes distributed evenly among four common ad-
verse conditions, i.e., night, fog, rain, and snow. Its train-
ing, validation and test set contain 1600, 406 and 2000 im-
ages respectively. Dark Zurich comprises 2617 nighttime
images of driving scenes, which are split into 2416 train-
ing, 50 validation, and 151 test images. Both ACDC and
Dark Zurich feature high-quality semantic annotations for
the same set of 19 classes as Cityscapes. In our experi-
ments, we use the training set of ACDC, resp. Dark Zurich,
as the unlabeled target training set, evaluate on the valida-
tion set for ablations and hyperparameter studies, and evalu-
ate only our final models against competing methods on the
test set, which has withheld annotations and thus serves as

a competitive public UDA benchmark. Finally, for models
adapted to nighttime segmentation on Dark Zurich, we use
BDD100K-night [30,44] and Nighttime Driving [6] as tar-
get sets for generalization. BDD100K-night consists of 87
nighttime images with accurate segmentation labels and is a
subset of the BDD100K segmentation dataset [44]. Night-
time Driving contains 50 nighttime images with coarsely
annotated ground-truth.

4.2. Comparison to the State of the Art

We present the comparison of CISS to competing state-
of-the-art UDA methods on Cityscapes—ACDC adaptation
in Table 1. CISS significantly outperforms all competing
methods, with a margin of 1.5% in the main mloU met-
ric from the second-best method. Moreover, our method
achieves the best IoU in 13 out of the 19 individual classes,
excelling in classes that are crucial for driving percep-
tion, such as road, sidewalk, traffic light, traffic sign, per-
son, rider, and car. Focusing on the methods that use a
DeepLabv2 architecture, CISS-DeepLabv2 also has the top
performance among them, showing that the benefit of our
method is general across different UDA architectures.

We provide a condition-specific comparison of CISS to
competing unsupervised domain adaptation methods on the
four adverse conditions of ACDC in Table 2. DANNet [39]
and CuDA-Net [23] are specifically designed for night and
fog respectively, so they only report results on those con-
ditions. For the rest of the methods in Table 2, a single
model is trained using the entire ACDC as the target set and
is then evaluated separately on each condition. CISS per-
forms favorably compared to other methods, both special-



Figure 3. Qualitative results on Cityscapes— ACDC. From left to right: ACDC image, ground-truth annotation, HRDA [13], and CISS.
Best viewed on a screen and zoomed in.

Table 2. Comparison of state-of-the-art unsupervised domain
adaptation methods on Cityscapes—ACDC on individual con-
ditions. Training is performed on the entire Cityscapes and ACDC
including all four conditions, while the single trained model of
each method is evaluated separately on each condition, except for
the first group of rows, where a single condition of ACDC is used
both for training and evaluation. Results are reported using mloU.

Method Night Fog Rain Snow
DANNet [39] 47.6 - - -

CuDA-Net [23] - 55.6 - -

GCMA [29] 429 52.4 58.0 53.8
MALL [25] 36.9 524 57.0 514
SePiCo [41] 50.5 58.5 66.1 57.9
HRDA [13] 53.1 69.9 73.6 69.5
CISS (ours) 58.1 68.8 74.1 69.7

ized and general ones. In particular, our method substan-
tially improves upon the second-best method by 5.0% in
mloU on the challenging condition of night, which presents
very large domain shifts from normal conditions, due to the
much lower and more spatially-variant illumination com-
pared to the source, daytime domain. These results place
CISS in the first position of the public ACDC leaderboards'
for semantic segmentation on the complete ACDC test set
including all conditions as well as on the night, snow, and

Inttps://acdc.vision.ee.ethz.ch/benchmarks

rain test sets among published unsupervised domain adap-
tation methods.

Qualitative comparisons of CISS to the highest-
performing competing method on Cityscapes—ACDC, i.e.
HRDA [13], are presented in Fig. 3, showing segmentation
results on validation images of ACDC. On the top nighttime
image, our method successfully segments both the traffic
signs and most of the sidewalk, whereas HRDA mistakes
one of the traffic signs for a traffic light and most of the side-
walk for road, which would be detrimental for the safety of
the pedestrians standing on the sidewalk. On the nighttime
image in the second row, CISS accurately segments most of
the sidewalk on the right and also detects part of the terrain,
even though the latter appears very dark. On the bottom
rainy image, HRDA incorrectly segments a green reflection
of a traffic light on the road as traffic light, while CISS cor-
rectly assigns this reflection to road and also segments the
sidewalk on the right much more precisely.

In Table 3, we present the results of state-of-the-art
SegFormer-based UDA methods on the challenging normal-
to-adverse Cityscapes—Dark Zurich domain adaptation
benchmark. Overall, CISS outperforms the other meth-
ods by a wide margin, improving by 3.1% mloU over the
second-best method, HRDA.

To further test the utility of CISS for condition-level
adaptation, we compare it in Table 4 to state-of-the-art
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Table 3. Comparison of state-of-the-art unsupervised domain adaptation methods on Cityscapes—Dark Zurich.
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DAFormer [12] 93.5 65.5 73.3 394 19.2 533 44.1 440 595 345 66.6 534 527 821 527 95 893 505 385 538
SePiCo [41] 93.2 68.1 73.7 328 163 54.6 49.5 48.1 742 31.0 863 579 509 824 522 1.3 838 439 29.8 542
HRDA [13] 904 563 72.0 39.5 19.5 57.8 52.7 43.1 593 29.1 705 60.0 58.6 840 755 112 905 51.6 409 559
CISS (ours) 93.5 68.0 80.9 475 163 598 36.8 552 727 38.0 842 61.1 574 863 69.6 10.8 90.8 533 384 59.0

Table 4. Comparison of state-of-the-art domain adaptation
methods on generalization to BDD100K-night and Nighttime
Driving. All methods are trained on Cityscapes—Dark Zurich.

Method BDD100K-night Nighttime Driving
GCMA [29] 332 45.6
MGCDA [30] 349 494
DANNet [39] 27.2 47.7
DAFormer [12] 33.8 54.1
SePiCo [41] 40.6 56.9
HRDA [13] 40.2 57.7
CISS (ours) 41.2 57.8

Table 5. Ablation study of CISS on Cityscapes—ACDC. Eval-
uation is performed on the validation set of ACDC. “CE”: cross-
entropy loss, “Inv”: feature invariance loss, “orig”: original im-
ages from respective domain, “stylized”: images from respective
domain stylized with FDA. Mean and standard deviation across
three runs are reported.

Source Target mloU
CE orig CE stylized Inv CE orig CE stylized Inv
1 v v 64.1£2.0
2 v v 65.7%1.1
3 v v v 65.1£0.7
4 v v v 66.61+0.8
5 v v v 66.91+0.5
6 v v v v 65.7+1.2
7 v v v v 682104

domain adaptation methods on the challenging nighttime
BDDI100K-night and Nighttime Driving sets for general-
ization. In particular, all compared methods are trained for
adaptation to nighttime using Dark Zurich [30] as their tar-
get domain. CISS outperforms all other methods, setting
the new state of the art on both BDD100K-night and Night-
time Driving, and showing that our method adapts robustly
to the target condition.

4.3. Ablation Studies

In Table 5, we conduct an ablation study of our method
w.r.t. the various loss terms that are included in our over-
all loss Lcss in (9) and the alternative loss terms that are
included in the baseline formulations of (2), (6), and (7).
The basic UDA formulation of (2), i.e., plain HRDA, cor-
responds to row 1. Switching to the FDA loss of (6) in

Table 6. Hyperparameter study of the weights of our feature in-
variance losses on Cityscapes—ACDC. Evaluation is performed
on the validation set of ACDC. Mean and standard deviation of
mloU across three runs are reported.

As 50 100 200 500 1000

CISS-source 65.8+1.6 65.6+0.8 66.6+0.8 65.7+0.9 65.94+0.5

At 20 50 100 200 500

CISS-target 66.7+0.6 66.6+1.6 66.9+£0.5 66.1£0.7 65240.6

Table 7. Comparison of CISS using different stylization tech-
niques for applying feature invariance loss in the target do-
main for Cityscapes—ACDC adaptation. Evaluation is per-
formed on the validation set of ACDC. We compare the default

FDA [43] stylization and the stylization using the method by Rein-
hard et al. [26]. Mean and standard deviation across three runs are
reported.

Invariance Loss Mean IoU (%)

None 64.1+2.0

With FDA stylization (A = 100) 66.940.5

With Reinhard stylization (A\; = 2)  66.7£0.7

row 2, i.e., pixel-level adaptation, improves upon the ba-
sic formulation. However, applying cross-entropy loss both
for the original source images and their stylized versions
(row 3), in the direction of (7), does not provide any gain
over the FDA loss, evidencing that simultaneous output su-
pervision on different views of images alone is not sufficient
for aligning their features. On the contrary, applying the
feature invariance loss on the source domain alone (row 4)
improves upon the FDA setting of row 2, showing the util-
ity of feature-level adaptation achieved with CISS on top of
the pixel-level adaptation with FDA. In addition, the feature
invariance loss applied solely on the target domain (row 5)
also improves significantly upon the basic UDA setup of
row 1. While using stylized target images for applying an
additional cross-entropy loss on the target domain hurts per-
formance (cf. rows 4 and 6), combining the two feature in-
variance losses from the source and the target domain in the
complete formulation of CISS (9) (row 7) improves further
compared to applying each of the two losses alone (rows 4
and 5), showing that the two losses synergize and achieve
the best result.

Invariance loss weights. We examine the influence of the
value of the two hyperparameters of CISS, i.e., the weights



As and A, on performance in Table 6. In particular, we con-
sider the ablated versions of CISS in which either of the two
feature invariance losses is included, the source one (CISS-
source) or the target one (CISS-target), and vary the respec-
tive weight. The best performance is obtained at A; = 200
for CISS-source and at A\; = 100 for CISS-target, however,
note that performance degrades gracefully as we move away
from these values, implying that our method is fairly insen-
sitive to the exact values of these hyperparameters.

Different stylization techniques. We test CISS in Table 7
with the color transfer technique in [26] for stylizing the
input images, in order to verify its generality with regard
to the stylization method that is used for imposing feature
invariance. In particular, we consider the case where fea-
ture invariance is applied in the target domain and test CISS
both with the default FDA stylization and with [26]. CISS
improves significantly upon the baseline that does not use
any feature invariance and it achieves similar performance
with both stylization methods, which evidences the gener-
ality of CISS with regard to the stylization method that it
employs.

5. Conclusion

We have presented CISS, a UDA method for seman-
tic segmentation tailored for condition-level domain shifts.
Our method promotes invariance of the features extracted
by the semantic segmentation network to visual conditions,
which are modeled through the style of the input, by pe-
nalizing the difference between features of the same image
viewed under the styles of the source and the target do-
main. We have performed a thorough experimental evalua-
tion of CISS and showed that it excels on normal-to-adverse
adaptation from Cityscapes to ACDC and Cityscapes to
Dark Zurich. Last but not least, our model which has
been adapted to Dark Zurich generalizes very well to
other unseen nighttime domains, i.e., BDD100K-night and
Nighttime Driving, demonstrating that condition invariance
makes it more robust to diverse inputs.

References

[1] Iiigo Alonso, Alberto Sabater, David Ferstl, Luis Monte-
sano, and Ana C. Murillo. Semi-supervised semantic seg-
mentation with pixel-level contrastive learning from a class-
wise memory bank. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV), 2021. 3

[2] David Bruggemann, Christos Sakaridis, Prune Truong, and
Luc Van Gool. Refign: Align and refine for adaptation of
semantic segmentation to adverse conditions. In Proceed-
ings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), 2023. 6

[3] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L. Yuille. DeepLab: Semantic im-
age segmentation with deep convolutional nets, atrous con-

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

(13]

[14]

[15]

volution, and fully connected CRFs. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 40(4):834-848,
2018. 5

Yuhua Chen, Wen Li, and Luc Van Gool. ROAD: Reality ori-
ented adaptation for semantic segmentation of urban scenes.
In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018. 2

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The Cityscapes
dataset for semantic urban scene understanding. In The
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2016. 6

Dengxin Dai and Luc Van Gool. Dark model adaptation:
Semantic image segmentation from daytime to nighttime.
In 2018 21st International Conference on Intelligent Trans-
portation Systems (ITSC), pages 3819-3824. IEEE, 2018. 2,
6

Geoff French, Samuli Laine, Timo Aila, Michal Mackiewicz,
and Graham Finlayson. Semi-supervised semantic segmen-
tation needs strong, varied perturbations. In Proceedings of
the British Machine Vision Conference (BMVC), 2020. 3

Xiaoqing Guo, Jie Liu, Tongliang Liu, and Yixuan Yuan.
SimT: Handling open-set noise for domain adaptive semantic
segmentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2022.
2

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016. 5

Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu,
Phillip Isola, Kate Saenko, Alexei Efros, and Trevor Darrell.
CyCADA: Cycle-consistent adversarial domain adaptation.
In International Conference on Machine Learning, 2018. 2

Judy Hoffman, Dequan Wang, Fisher Yu, and Trevor Dar-
rell. FCNs in the wild: Pixel-level adversarial and constraint-
based adaptation. arXiv e-prints, abs/1612.02649, December
2016. 2

Lukas Hoyer, Dengxin Dai, and Luc Van Gool. DAFormer:
Improving network architectures and training strategies for
domain-adaptive semantic segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2022. 3, 5, 6, 8, 13, 14

Lukas Hoyer, Dengxin Dai, and Luc Van Gool. HRDA:
Context-aware high-resolution domain-adaptive semantic
segmentation. In The European Conference on Computer
Vision (ECCV),2022. 1,2,3,5,6,7,8,12,13, 14, 15
Zhengkai Jiang, Yuxi Li, Ceyuan Yang, Peng Gao, Yabiao
Wang, Ying Tai, and Chengjie Wang. Prototypical contrast
adaptation for domain adaptive semantic segmentation. In
European Conference on Computer Vision (ECCV), 2022. 3

Myeongjin Kim and Hyeran Byun. Learning texture invari-
ant representation for domain adaptation of semantic seg-
mentation. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), June 2020. 2



[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

(29]

Xin Lai, Zhuotao Tian, Xiaogang Xu, Yingcong Chen, Shu
Liu, Hengshuang Zhao, Liwei Wang, and Jiaya Jia. Decou-
pleNet: Decoupled network for domain adaptive semantic
segmentation. In European Conference on Computer Vision
(ECCV),2022. 2

Geon Lee, Chanho Eom, Wonkyung Lee, Hyekang Park, and
Bumsub Ham. Bi-directional contrastive learning for domain
adaptive semantic segmentation. In European Conference on
Computer Vision (ECCV), 2022. 3

Sohyun Lee, Taeyoung Son, and Suha Kwak. FIFO: Learn-
ing fog-invariant features for foggy scene segmentation,
2022. 2

Ruihuang Li, Shuai Li, Chenhang He, Yabin Zhang, Xu Jia,
and Lei Zhang. Class-balanced pixel-level self-labeling for
domain adaptive semantic segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2022. 2

Yunsheng Li, Lu Yuan, and Nuno Vasconcelos. Bidirectional
learning for domain adaptation of semantic segmentation.
In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019. 1,2,4,6, 13, 14

Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In /CLR, 2018. 5

Yawei Luo, Liang Zheng, Tao Guan, Junqing Yu, and Yi
Yang. Taking a closer look at domain shift: Category-
level adversaries for semantics consistent domain adaptation.
In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019. 1, 2,6, 13, 14

Xianzheng Ma, Zhixiang Wang, Yacheng Zhan, Yingiang
Zheng, Zheng Wang, Dengxin Dai, and Chia-Wen Lin. Both
style and fog matter: Cumulative domain adaptation for
semantic foggy scene understanding. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2022. 6,7, 13

Luke Melas-Kyriazi and Arjun K. Manrai. PixMatch: Unsu-
pervised domain adaptation via pixelwise consistency train-
ing. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2021. 3
Nikhil Reddy, Abhinav Singhal, Abhishek Kumar, Mahsa
Baktashmotlagh, and Chetan Arora. Master of all: Simulta-
neous generalization of urban-scene segmentation to all ad-
verse weather conditions. In European Conference on Com-
puter Vision (ECCV), 2022. 7, 13, 14

Erik Reinhard, Michael Adhikhmin, Bruce Gooch, and Peter
Shirley. Color transfer between images. IEEE Computer
graphics and applications, 21(5):34-41, 2001. 2,4, 5, 8,9
Stephan R. Richter, Vibhav Vineet, Stefan Roth, and Vladlen
Koltun. Playing for data: Ground truth from computer
games. In European Conference on Computer Vision.
Springer, 2016. 1

German Ros, Laura Sellart, Joanna Materzynska, David
Vazquez, and Antonio M. Lopez. The SYNTHIA dataset:
A large collection of synthetic images for semantic segmen-
tation of urban scenes. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016. 1
Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Guided
curriculum model adaptation and uncertainty-aware evalu-
ation for semantic nighttime image segmentation. In The

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

IEEE International Conference on Computer Vision (ICCV),
2019. 6,7,8, 12,13, 14, 15

Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Map-
guided curriculum domain adaptation and uncertainty-aware
evaluation for semantic nighttime image segmentation. /EEE
Transactions on Pattern Analysis and Machine Intelligence,
2020. 2,6, 8,12, 13, 14, 15

Christos Sakaridis, Dengxin Dai, and Luc Van Gool. ACDC:
The Adverse Conditions Dataset with Correspondences for
semantic driving scene understanding. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV),2021. 1,2,4,6

Swami Sankaranarayanan, Yogesh Balaji, Arpit Jain, Ser
Nam Lim, and Rama Chellappa. Learning from synthetic
data: Addressing domain shift for semantic segmentation. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2018. 2, 4

Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao
Zhang, Han Zhang, Colin A. Raffel, Ekin Dogus Cubuk,
Alexey Kurakin, and Chun-Liang Li. FixMatch: Simpli-
fying semi-supervised learning with consistency and confi-
dence. In Advances in Neural Information Processing Sys-
tems, 2020. 3

Wilhelm Tranheden, Viktor Olsson, Juliano Pinto, and
Lennart Svensson. DACS: Domain adaptation via cross-
domain mixed sampling. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision
(WACV),2021. 1, 5,6, 13, 14

Yi-Hsuan Tsai, Wei-Chih Hung, Samuel Schulter, Kihyuk
Sohn, Ming-Hsuan Yang, and Mammohan Chandraker.
Learning to adapt structured output space for semantic seg-
mentation. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018. 1,2, 6, 13, 14
Yi-Hsuan Tsai, Kihyuk Sohn, Samuel Schulter, and Manmo-
han Chandraker. Domain adaptation for structured output
via discriminative patch representations. In IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), October
2019. 2

Tuan-Hung Vu, Himalaya Jain, Maxime Bucher, Matthieu
Cord, and Patrick Perez. ADVENT: Adversarial entropy
minimization for domain adaptation in semantic segmenta-
tion. In The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2019. 1,2

Zhonghao Wang, Mo Yu, Yunchao Wei, Rogerio Feris, Jin-
jun Xiong, Wen-mei Hwu, Thomas S. Huang, and Honghui
Shi. Differential treatment for stuff and things: A simple un-
supervised domain adaptation method for semantic segmen-
tation. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020. 1, 2, 6, 13, 14
Xinyi Wu, Zhenyao Wu, Hao Guo, Lili Ju, and Song Wang.
DANNet: A one-stage domain adaption network for unsu-
pervised nighttime semantic segmentation. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2021. 6,7, 8, 12, 13, 14, 15

Zhenyao Wu, Xinyi Wu, Xiaoping Zhang, Lili Ju, and Song
Wang. SiamDoGe: Domain generalizable semantic segmen-
tation using siamese network. In European Conference on
Computer Vision (ECCV), 2022. 3



[41]

(42]

[43]

[44]

[45]

[46]

[47]

(48]

(49]

Binhui Xie, Shuang Li, Mingjia Li, Chi Harold Liu, Gao
Huang, and Guoren Wang. SePiCo: Semantic-guided pixel
contrast for domain adaptive semantic segmentation. CoRR,
abs/2204.08808, 2022. 3,6, 7, 8, 13, 14, 15

Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
Jose M Alvarez, and Ping Luo. SegFormer: Simple and effi-
cient design for semantic segmentation with transformers. In
Advances in Neural Information Processing Systems, 2021.
5

Yanchao Yang and Stefano Soatto. FDA: Fourier domain
adaptation for semantic segmentation. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2020. 2,3, 4,5, 6,8, 13, 14

Fisher Yu, Haofeng Chen, Xin Wang, Wengqi Xian, Yingying
Chen, Fangchen Liu, Vashisht Madhavan, and Trevor Dar-
rell. BDD100K: A diverse driving dataset for heterogeneous
multitask learning. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2020. 2, 6
Yiheng Zhang, Zhaofan Qiu, Ting Yao, Dong Liu, and Tao
Mei. Fully convolutional adaptation networks for semantic
segmentation. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2018. 2

Zhedong Zheng and Yi Yang. Rectifying pseudo label learn-
ing via uncertainty estimation for domain adaptive seman-
tic segmentation. International Journal of Computer Vision,
2021. 1,6, 13, 14

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A.
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In The IEEE International
Conference on Computer Vision (ICCV), 2017. 2

Yang Zou, Zhiding Yu, Xiaofeng Liu, B.V.K. Vijaya Kumar,
and Jinsong Wang. Confidence regularized self-training.
In IEEE/CVF International Conference on Computer Vision
(ICCV), October 2019. 1,2, 6, 13, 14

Yang Zou, Zhiding Yu, B.V.K. Vijaya Kumar, and Jinsong
Wang. Unsupervised domain adaptation for semantic seg-
mentation via class-balanced self-training. In The European
Conference on Computer Vision (ECCV),2018. 1,2



Mean loU (%)
T T

10
68
66 .

64 —

62

60 [ -

58 =

56 -

54 q

52

50 L L T I L
0 0.0010.002 0.0050.01 002 005 01 02 05 1 2 5 10 20 50 100 200 500 1000

Figure 4. Ablation of the point in the network where invariance
is applied on Cityscapes—ACDC. Evaluation is performed on
the validation set of ACDC. The x-axis is logarithmic and shows
the weight A of the feature invariance loss, which is applied here
only on the source domain. Averages and standard deviations are
plotted over three runs for each configuration.

A. Ablation on the Point in the Network Where
Invariance Is Applied

We justify the choice of applying feature invariance to
the encoder outputs of the network in Fig. 4, which veri-
fies our intuition that invariance on encoder outputs works
better than on network outputs. In particular, using the fea-
ture invariance loss in the source domain, its application to
encoder outputs improves significantly upon not using the
invariance loss at all, while its application to network out-
puts, i.e. predictions, deteriorates performance compared to
not applying feature invariance at all.

B. Detailed Class-Level Quantitative Results
on Individual Conditions of ACDC

In Tables 8, 9, 10, and 11, we provide detailed class-level
IoU results on the condition-specific splits of the test set of
ACDC for all methods which are presented in Tables 1 and
2 of the main paper.

CISS dominates the challenging nighttime benchmark
of ACDC (cf. Table 8), scoring 5.0% higher on mean IoU
than the second-best method and delivering substantial im-
provements in IoU on several central driving-related classes
over the respective second-best method, such as on sidewalk
(9.7%), traffic light (6.8%), traffic sign (7.6%), motorcycle
(7.2%), and bicycle (4.3%). CISS achieves the best loU
score on 14 out of the 19 classes and is significantly out-
performed only on two classes, namely vegetation and sky,
and in those cases only by methods trained specifically on
nighttime sets and using weak supervision [29, 30, 39].

Moreover, CISS achieves the best performance on the
rain benchmark of ACDC (cf. Table 10). It outperforms the
second-best method on this benchmark, HRDA [13], con-
sistently on 13 out of the 19 classes, it is on a par with the

latter on 2 classes, and it is slightly outperformed by the lat-
ter on classes with large instances (truck, bus, train), which
only appear rarely in the scenes of ACDC.

CISS is also the top-performing method on the snow
benchmark of ACDC (cf. Table 11). Even though it outper-
forms the second-best method, HRDA [!3], only slightly
in mean IoU, it achieves significant improvements over the
latter on driving-related classes which exhibit large appear-
ance shifts with respect to the source, normal-condition
domain of Cityscapes due to snow cover on the ground,
namely road and sidewalk.

Finally, although CISS is slightly outperformed by
HRDA [13] in mean IoU on the fog benchmark of ACDC
(cf. Table 9), the two methods are on a par with regard
to class-level IoU scores. In particular, CISS outperforms
HRDA on 9 classes, HRDA outperforms CISS on 9 classes,
and the two methods obtain equal IoU scores on one class.
CISS is better on several safety-critical classes, such as
road, sidewalk, person, and rider, and the higher mean IoU
score of HRDA is largely due to the large difference in the
IoUs of the two methods on bus, which is a very rare class
in ACDC.

C. Detailed Class-Level Quantitative Results
on Generalization on BDD100K-night and
Nighttime Driving

In Tables 12 and 13, we provide detailed class-level
IoU results on the generalization performance of models
adapted from Cityscapes to Dark Zurich on BDD100K-
night and Nighttime Driving, respectively. CISS is con-
sistently among the two top-performing methods on 7 out
of the 8 dynamic classes on BDD100K-night and scores
the top mean IoU result among competing state-of-the-art
methods in this generalization experiment. Moreover, CISS
achieves the best generalization performance on Night-
time Driving among state-of-the-art domain adaptation ap-
proaches. Note that despite the fact that CISS is only
slightly better in terms of mean IoU performance on Night-
time Driving than the second-best method, HRDA, a head-
to-head class-level comparison of the two methods reveals
that CISS outperforms HRDA in 15 out of the 19 classes
(in most of which significantly) and is outperformed only in
2, while the two methods are on a par in 2 classes. HRDA
is favored by the fact that it has much higher performance
on the truck class, which however is very rare in Nighttime
Driving.



Table 8. Comparison of state-of-the-art unsupervised domain adaptation methods on Cityscapes—ACDC for nighttime. The first,
second, third and fourth groups of rows present methods trained externally on Cityscapes—Dark Zurich, DeepLabv2-based UDA methods,
a DeepLabv3+-based UDA method, and SegFormer-based UDA methods, respectively.
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GCMA [29] 78.6 459 585 177 18.6 375 43.6 435 587 392 224 579 299 721 215 562 418 357 354 429
MGCDA [30] 745 525 694 7.7 10.8 384 402 433 615 363 376 553 256 712 109 464 32.6 273 33.8 408
DANNet [39] 90.7 61.1 755 359 28.8 266 314 30.6 70.8 394 787 499 288 659 247 441 6l1.1 259 345 476
AdaptSegNet [35] 849 399 668 172 17.7 134 17.6 164 39.6 16.1 57 428 214 448 119 13.0 39.1 275 284 29.7
BDL [20] 87.1 49.6 68.8 202 17.5 16.7 199 241 39.1 237 02 420 204 637 18.0 270 456 278 313 338
CLAN [22] 823 288 659 151 93 2211 16.1 265 392 234 04 459 254 636 95 242 398 315 31.1 31.6
CRST [48] 439 100 573 100 5.1 293 270 186 69 82 03 369 179 485 49 18 294 73 88 19.6
FDA [43] 82.7 394 570 147 7.6 26.1 378 305 532 140 153 480 288 62.6 26.6 475 515 270 350 37.1
SIM [38] 87.0 484 421 63 83 158 84 17.6 21.7 228 0.1 393 2211 603 87 182 423 30.1 329 28.0
MRNet [46] 83.6 363 656 81 82 215 300 237 394 242 0.0 441 260 649 08 36 76 103 318 279
DACS [34] 84.8 525 648 175 160 30.5 251 339 384 10.7 27 407 212 639 164 366 454 195 234 339
MALL [25] 789 26.8 622 253 199 323 32,6 314 499 279 135 473 196 61.0 192 354 56.0 29.7 314 369
DAFormer [12] 923 64.6 70.1 28.7 185 458 11.3 415 427 419 0.0 554 29.8 743 403 458 813 394 470 458
SePiCo [41] 89.9 56.8 75.6 353 284 495 247 50.1 434 445 48 61.1 341 773 62.0 529 795 412 483 50.5
HRDA [13] 87.2 469 79.1 46.2 18.0 514 41.0 485 418 467 00 632 369 810 652 77.7 83.6 460 49.0 53.1
CISS (ours) 94.7 743 813 48.1 28.0 52.0 504 57.7 431 533 24 655 38.0 839 630 758 86.6 53.2 533 58.1

Table 9. Comparison of state-of-the-art unsupervised domain adaptation methods on Cityscapes—ACDC for fog. The first, second,
third, fourth and fifth groups of rows present methods trained externally on Cityscapes—Dark Zurich, a method trained externally on
Cityscapes—Foggy Zurich, DeepLabv2-based UDA methods, a DeepLabv3+-based UDA method, and SegFormer-based UDA methods,

respectively.
= £ © =z 8 o = = = £ g 5 % o, = £ 2
< 5} = = — = o < > 2 ) = Q = S Q

Method g = E g § s = P ?5’0 E = E g s £ B g 2 g mloU
MGCDA [30] 71.7 473 657 182 153 344 486 599 649 247 954 448 238 733 36.1 454 639 239 154 459
GCMA [29] 80.8 53.5 70.1 29.2 20.7 384 53.0 609 702 465 954 442 38.0 76.6 524 49.7 568 41.0 17.6 524
CuDA-Net [23] 832 459 81.7 355 227 40.7 555 556 81.1 63.8 956 452 249 787 41.1 483 778 520 271 556
AdaptSegNet [35] 354 459 354 256 175 9.0 325 23.1 705 474 11.6 223 282 444 439 350 46.0 156 150 318
BDL [20] 369 37.8 47.0 282 21.6 13.7 372 345 672 494 276 29.1 513 585 494 518 303 214 225 377
CLAN [22] 48.8 413 296 272 210 161 41.1 39.6 67.7 502 154 362 30.8 722 522 544 472 271 226 39.0
CRST [48] 597 296 709 113 114 299 414 386 61.7 31.6 96.6 360 79 624 197 46 494 90 76 358
FDA [43] 68.8 373 27.1 276 198 21.6 375 433 749 437 331 350 215 657 446 453 47.1 415 158 395
SIM [38] 76.7 43.1 235 23.6 179 109 321 153 704 505 214 348 443 584 505 552 347 230 88 36.6
MRNet [46] 786 26.1 19.6 29.0 135 120 419 49.0 782 59.0 6.6 39.8 26.1 725 448 379 596 19.1 24.1 388
DACS [34] 349 518 79.0 228 248 229 20.0 46.6 50.5 50.8 19.7 382 259 69.5 44.1 485 299 288 160 38.1
MALL [25] 63.7 543 798 348 274 379 49.1 526 749 59.6 929 402 39.0 754 53.0 364 764 268 21.5 524
DAFormer [12] 389 424 86.8 525 268 467 456 573 864 647 565 37.6 533 762 608 324 640 521 296 532
SePiCo [41] 426 515 87.6 512 312 524 510 59.0 853 659 613 514 622 780 645 423 835 58.0 326 585
HRDA [13] 930 735 89.1 56.4 273 512 622 69.5 865 703 98.0 534 619 856 77.1 883 849 64.1 36.6 69.9
CISS (ours) 94.0 76.2 89.9 553 29.1 493 614 660 87.0 71.8 98.0 542 63.5 83.8 758 626 842 61.8 423 687




Table 10. Comparison of state-of-the-art unsupervised domain adaptation methods on Cityscapes— ACDC for rain. The first, second,
third and fourth groups of rows present methods trained externally on Cityscapes—Dark Zurich, DeepLabv2-based UDA methods, a
DeepLabv3+-based UDA method, and SegFormer-based UDA methods, respectively.

7T ¢ 3 =z 8 =2 = g % § = 5§ 5 . % & = £ 3
Method g .-“.; 5§ 5 & B2 2 gﬂ E 4 §_ = § 2 E é g mloU
GCMA [29] 81.1 48.0 84.8 250 373 49.8 66.5 662 92.1 435 97.6 545 204 855 473 346 713 403 567 58.0
MGCDA [30] 80.5 46,5 799 160 288 449 60.0 615 903 448 97.1 51.1 23.1 823 334 302 69.1 365 538 542
AdaptSegNet [35] 81.2 432 833 273 314 230 414 405 872 350 93.1 402 155 739 457 349 57.0 27.1 49.1 49.0
BDL [20] 79.1 39.0 82.8 30.0 345 281 40.1 473 87.0 287 91.8 40.6 17.8 74.6 463 36.7 604 332 463 497
CLAN [22] 775 400 46.8 249 303 281 37.7 483 838 37.0 6.6 457 174 797 4377 429 637 350 46.1 44.0
CRST [48] 58.8 264 77.1 200 12.1 32.8 453 417 78.6 384 957 405 128 747 256 55 51.8 237 109 40.6
FDA [43] 76.6 450 829 37.0 356 348 49.8 520 88.7 37.8 88.8 436 174 768 465 53.6 648 345 455 533
SIM [38] 76.6 29.6 857 204 28.7 213 374 342 873 348 940 294 166 732 46.1 223 462 21.8 393 445
MRNet [46] 705 99 465 356 36.1 365 564 562 902 413 43 530 235 81.6 393 267 57.8 43.6 545 454
DACS [34] 69.3 41.8 843 30.1 20.6 384 383 548 835 389 828 415 146 763 474 30.7 53.7 304 49.6 488
MALL [25] 759 38.1 87.6 359 38.6 459 60.7 60.1 88.8 38.7 96.6 489 142 848 56.4 638 71.7 2777 478 57.0
DAFormer [12]  73.1 46.7 922 559 405 549 656 649 93.1 408 89.8 585 206 86.1 635 664 83.0 46.6 534 629
SePiCo [41] 80.1 473 90.1 489 482 57.0 704 665 932 432 938 673 2064 89.0 68.1 715 88.8 49.6 57.0 66.1
HRDA [13] 924 736 938 67.0 463 63.0 745 742 937 46.1 97.6 694 325 91.7 79.9 90.5 89.0 57.8 66.0 73.6
CISS (ours) 924 742 948 70.1 48.7 61.0 74.7 744 940 48.0 983 69.9 377 921 747 89.8 88.0 59.0 66.0 74.1

Table 11. Comparison of state-of-the-art unsupervised domain adaptation methods on Cityscapes—ACDC for snow. The first,
second, third and fourth groups of rows present methods trained externally on Cityscapes— Dark Zurich, DeepLabv2-based UDA methods,
a DeepLabv3+-based UDA method, and SegFormer-based UDA methods, respectively.

T 2 s = ¢ 2 z g5 § 5 2 5 5 5 3% 2z £ £ 3
Method § é’ g g E S g go E Z i = g é 2 g é g mloU
GCMA [29] 79.7 495 753 17,5 379 432 590 619 788 22 955 625 33.6 832 425 434 721 322 51.1 537
MGCDA [30] 80.1 49.5 70.2 6.1 27.8 39.6 554 580 76.0 03 955 575 357 81.0 28.6 489 703 27.8 505 50.5
AdaptSegNet [35] 51.3 325 473 21.5 315 132 37.8 232 760 2.6 45 499 231 687 383 31.8 515 21.7 450 353
BDL [20] 423 364 602 157 304 15.1 414 304 713 1.7 112 46.8 27.8 577 386 34.1 59.2 28.1 437 364
CLAN [22] 71.8 26.0 373 125 27.0 21.1 320 41.1 785 19 09 509 239 824 432 395 61.6 252 394 37.7
CRST [48] 63.5 382 668 128 92 29.0 448 403 685 08 651 446 238 700 12 190 39.1 114 6.0 344
FDA [43] 74.6 309 56.1 20.5 348 287 539 47.8 805 1.1 559 531 379 79.7 405 519 674 343 418 469
SIM [38] 72.1 267 394 133 295 153 264 179 764 48 51 459 320 762 298 26.6 483 232 242 333
MRNet [46] 67.7 35 368 83 248 180 526 554 824 05 0.1 622 302 792 321 593 584 29.1 358 38.7
DACS [34] 524 137 777 142 247 332 403 50.6 788 0.8 342 51.7 222 750 308 30.6 584 198 439 39.6
MALL [25] 782 409 788 19.1 36.6 39.7 609 51.6 809 6.8 90.5 548 28.1 829 403 58.6 684 134 46,6 514
DAFormer [12]  38.1 41.3 883 42.1 472 542 71.1 642 912 45 328 660 364 88.0 544 713 845 460 548 56.7
SePiCo [41] 40.5 337 87.1 292 50.0 576 76.1 66.1 904 42 428 719 41.5 893 664 69.7 88.6 372 578 579
HRDA [13] 82.5 455 904 553 499 589 77.7 719 913 6.0 962 79.6 62.8 92.0 73.8 73.1 904 52.0 70.7 69.5
CISS (ours) 84.0 50.7 91.0 58.0 499 577 773 70.7 914 48 968 786 609 915 708 79.2 87.1 52.0 71.2 69.7

Table 12. Comparison of state-of-the-art domain adaptation methods on

on Cityscapes—Dark Zurich. Best results in bold, second-best underlined.

generalization to BDD100K-night. All methods are trained

: S = 3 = o g g 5 ~ g 2
Methodg%%ggéﬁoégﬂg%‘%éﬁéé'géimIoU
GCMA[29] 858 481 641 14 163 304 237 349 431 68 59 654 768 788 153 298 00 00 38 332
MGCDA [30] 83.9 458 741 04 170 304 23.6 338 421 108 499 657 659 797 103 265 00 00 37 349
DANNet[39] 74.1 399 683 2.6 61 213 106 306 363 134 518 560 187 666 176 30 00 00 08 27.2
SePiCo[41] 87.3 483 802 33 122 379 20.1 514 47.6 205 655 67.6 67.1 837 299 463 00 00 19 406
HRDA[13] 848 49.6 77.0 45 269 357 217 473 354 123 604 669 276 8l4 531 652 00 00 139 402
CISS (ours) 851 448 805 63 257 372 209 456 427 125 69.6 69.7 741 835 478 238 00 00 133 412




Table 13. Comparison of state-of-the-art domain adaptation methods on generalization to Nighttime Driving. All methods are trained
on Cityscapes—Dark Zurich.

Method

road
sidew.
build
wall
fence
pole
light
sign
veget
terrain
sky

mloU

person
rider
car
truck
bus
train
motorc
icycle

GCMA [29] 86.0 47.0 822 107 00 494 695 721 690 00 203 651 360 71.1 00 758 698 0.0 429 456
MGCDA [30] 879 573 838 6.8 00 485 703 775 659 0.0 662 648 291 759 0.0 87.0 762 0.0 42.1 494
DANNet [39] 90.1 68.1 882 489 00 351 592 716 597 00 470 604 312 723 86 556 720 00 377 477
SePiCo [41] 93.0 73.7 905 548 0.1 675 805 822 672 00 585 622 36.0 750 183 946 928 0.0 345 569
HRDA [13] 87.6 52,6 857 703 0.0 690 787 822 463 0.0 444 67.0 346 762 69.8 934 931 00 462 577
CISS (ours) 93.0 736 89.8 750 0.1 704 832 860 592 00 544 641 350 769 00 961 939 00 482 578




