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Advances in
Deep Concealed Scene Understanding

Deng-Ping Fan, Ge-Peng Ji, Peng Xu, Ming-Ming Cheng, Christos Sakaridis, Luc Van Gool

Abstract—Concealed scene understanding (CSU) is a hot computer vision topic aiming to perceive objects exhibiting camouflage. The
current boom in terms of techniques and applications warrants an up-to-date survey. This can help researchers to better understand the
global CSU field, including both current achievements and remaining challenges. This paper makes four contributions: (1) For the first
time, we present a comprehensive survey of deep learning techniques aimed at CSU, including a taxonomy, task-specific challenges, and
ongoing developments. (2) To allow for an authoritative quantification of the state-of-the-art, we offer the largest and latest benchmark
for concealed object segmentation (COS). (3) To evaluate the generalizability of deep CSU in practical scenarios, we collect the largest
concealed defect segmentation dataset termed CDS2K with the hard cases from diversified industrial scenarios, on which we construct
a comprehensive benchmark. (4) We discuss open problems and potential research directions for CSU. Our code and datasets are
available at https://github.com/DengPingFan/CSU, which will be updated continuously to watch and summarize the advancements in
this rapidly evolving field.

Index Terms—Concealed Scene Understanding Segmentation Detection Survey Introductory Taxonomy Deep Learning Machine
Learning
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1 INTRODUCTION

C ONCEALED scene understanding (CSU) aims to recognize
objects that exhibit forms of camouflage. By its very nature,

CSU clearly is a challenging problem compared with conventional
object detection [1], [2]. It has numerous real-world applica-
tions, including search-and-rescue work, rare species discovery,
healthcare (e.g., automatic diagnosis for colorectal polyps [3]
and lung lesions [4]), agriculture (e.g., pest identification [5] and
fruit ripeness assessment [6]), content creation (e.g., recreational
art [7]), etc. In the past decade, both academia and industry
have widely studied CSU, and various types of images with
camouflaged objects have been handled with traditional com-
puter vision and pattern recognition techniques, including hand-
engineered patterns (e.g., motion cues [8], [9], optical flow [10],
[11]), heuristic priors (e.g., color [12], texture [13], intensity [14],
[15]) and combination techniques [16], [17], [18].

In recent years, thanks to benchmarks becoming available
(e.g., COD10K [19], [22] and NC4K [23]) ánd the rapid devel-
opment of deep learning, this field has made important strides
forward. In 2020, Fan et al. [19] released the first large-scale
public dataset - COD10K - geared towards the advancement of
perception tasks having to deal with concealment. This has also
inspired other related disciplines. For instance, Mei et al. [24],
[25] proposed a distraction-aware framework for the segmentation
of camouflaged objects, which can be extended to the identifica-
tion of transparent materials in natural scenes [26]. In 2023, Ji et
al. [27] developed an efficient model that learns textures from
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(a) Crab (b) Caterpillar (c) Frogmouth

(d) Toad (e) Human (f) “Lion”

Fig. 1. Sample gallery of concealed scenarios. (a-d) show natural an-
imals selected from [19]. (e) depicts a concealed human in art from [20].
(f) features a synthesized “lion” by [21].

object-level gradients, and its generalizability has been verified
through diverse downstream applications, e.g., medical polyp
segmentation and road crack detection.

Although multiple research teams have addressed tasks con-
cerned with concealed objects, we believe that stronger interac-
tions between the ongoing efforts would be beneficial. Thus, we
mainly review the state and recent deep learning-based advances
of CSU. Meanwhile, we contribute a large-scale concealed defect
segmentation dataset termed CDS2K. This dataset consists of hard
cases from diverse industrial scenarios, thus providing an effective
benchmark for CSU.

Previous Surveys and Scope. To the best of our knowledge,
only a few survey papers were published in the CSU commu-
nity, which [28], [29] mainly review non-deep techniques. There
are some benchmarks [30], [31] with narrow scopes, such as
image-level segmentation, where only a few deep methods were
evaluated. In this paper, we present a comprehensive survey of
deep learning CSU techniques, thus widening the scope. We also
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Fig. 2. Illustration of the representative CSU tasks. Five of these are image-level tasks: (a) concealed object segmentation (COS), (b) concealed
object localization (COL), (c) concealed instance ranking (CIR), (d) concealed instance segmentation (CIS), and (e) concealed object counting
(COC). The remaining two are video-level tasks: (f) video concealed object detection (VCOD) and (g) video concealed object segmentation (VCOS).
Each task has its own corresponding annotation visualization, which is explained in detail in §2.1.

offer more extensive benchmarks with a more comprehensive
comparison and with an application-oriented evaluation.

Contributions. Our contributions are summarized as follows:
(1) We represent the initial effort to examine deep learning
techniques tailored towards CSU thoroughly. This includes an
overview of its classification and specific obstacles, as well as an
assessment of its advancements during the era of deep learning,
achieved through an examination of existing datasets and tech-
niques. (2) To provide a quantitative evaluation of the current state-
of-the-art, we have created a new benchmark for Concealed Object
Segmentation (COS), which is a crucial and highly successful
area within CSU. This benchmark is the most up-to-date and
comprehensive available. (3) To assess the applicability of deep
CSU in real-world scenarios, we have restructured the CDS2K
dataset – the largest dataset for concealed defect segmentation
– to include challenging cases from various industrial settings.
We have utilized this updated dataset to create a comprehensive
benchmark for evaluation. (4) Our discussion delves into the
present obstacles, available prospects, and future research areas
for the CSU community.

2 BACKGROUND

2.1 Task Taxonomy and Formulation
2.1.1 Image-level CSU
In this section, we introduce five commonly used image-level CSU
tasks, which can be formulated as a mapping function F : X 7→ Y
that converts the input space X into the target space Y.
• Concealed Object Segmentation (COS) [22], [27] is a class-
agnostic dense prediction task, segmenting concealed regions or
objects with unknown categories. As presented in Fig. 2 (a), the
model FCOS : X 7→ Y is supervised by a binary mask Y to predict
a probability p ∈ [0,1] for each pixel x of image X, which is the
confidence level that the model determines whether x belongs to
the concealed region.

Concealed Object Localization (COL) [23], [32] aims to identify
the most noticeable region of concealed objects, which is in line
with human perception psychology [32]. This task is to learn a
dense mapping FCOL : X 7→ Y. The output Y is a non-binary
fixation map captured by an eye tracker device, as illustrated
in Fig. 2 (b). Essentially, the probability prediction p ∈ [0,1] for a
pixel x indicates how conspicuous its camouflage is.

Concealed Instance Ranking (CIR) [23], [32] is to rank different
instances in a concealed scene based on their detectability. The
level of camouflage is used as the basis for this ranking. The
objective of the CIR task is to learn a dense mapping FCIR : X 7→Y
between the input space X and the camouflage ranking space Y,
where Y represents per-pixel annotations for each instance with
corresponding rank levels. For example, in Fig. 2 (c), there are
three toads with different camouflage levels, and their ranking
labels are from [23]. To perform this task, one can replace
the category ID for each instance with rank labels in instance
segmentation models like Mask R-CNN [33].

Concealed Instance Segmentation (CIS) [34], [35] is a technique
that aims to identify instances in concealed scenarios based on
their semantic characteristics. Unlike general instance segmenta-
tion [36], [37], where each instance is assigned a category label,
CIS recognizes the attributes of concealed objects to distinguish
between different entities more effectively. To achieve this, CIS
employs a mapping function FCIS : X 7→ Y, where Y is a scalar set
comprising various entities used to parse each pixel. This concept
is illustrated in Fig. 2 (d).

Concealed Object Counting (COC) [38] is a newly emerging
topic in CSU that aims to estimate the number of instances
concealed within their surroundings. As illustrated in Fig. 2 (e), the
COC is to estimate center coordinates for each instance and gener-
ate their counts. Its formulation can be defined as FCOC : X 7→ Y,
where X is the input image and Y represents the output density
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map that indicates the concealed instances in scenes.
Overall, the image-level CSU tasks can be categorized into

two groups based on their semantics: object-level (COS and COL)
and instance-level (CIR, COC, and CIS). Object-level tasks focus
on perceiving objects while instance-level ones aim to recognize
semantics to distinguish different entities. Additionally, COC is
regarded as a sparse prediction task based on its output form,
whereas the others belong to dense prediction tasks. Among
the literature reviewed in Table 1, COS has been extensively
researched while research on the other three tasks is gradually
increasing.

2.1.2 Video-level CSU
Given a video clip {Xt}T

t=1 containing T concealed frames,
video-level CSU can be formulated as a mapping function F :
{Xt}T

t=1 7→ {Yt}T
t=1 for parsing dense spatial-temporal correspon-

dences, where Yt is the label of frame Xt .

Video Concealed Object Detection (VCOD) [39] is similar to
video object detection [40]. This task aims to identify and locate
concealed objects within a video by learning a spatial-temporal
mapping function FVCOD : {Xt}T

t=1 7→ {Yt}T
t=1 that predicts the

location Yt of an object for each frame Xt . The location label Yt
is provided as a bounding box (See Fig. 2 (f)) consisting of four
numbers (x,y,w,h) indicating the target’s location. Here, (x,y)
represents its top-left coordinate, while w and h denote its width
and height, respectively.

Video Concealed Object Segmentation (VCOS) [41] originated
from the task of camouflaged object discovery [39]. Its goal is
to segment concealed objects within a video. This task usually
utilizes spatial-temporal cues to drive the models to learn the
mapping FVCOS : {Xt}T

t=1 7→ {Yt}T
t=1 between input frames Xt

and corresponding segmentation mask labels Yt . Fig. 2 (g) shows
an example of its segmentation mask.

In general, compared to image-level CSU, video-level CSU
is developing relatively slowly. Because collecting and annotating
video data is labor-intensive and time-consuming. However, with
the establishment of the first large-scale VCOS benchmark on
MoCA-Mask [41], this field has made fundamental progress while
still having ample room for exploration.

2.1.3 Task Relationship
Among image-level CSU tasks, the CIR task requires the highest
level of understanding as it may not only involve four subtasks,
e.g., segmenting pixel-level regions (i.e., COS), counting (i.e.,
COC), or distinguishing different instances (i.e., CIS), but also
ranking these instances according to their fixation probabilities
(i.e., COL) under different difficulty levels. Additionally, regarding
two video-level tasks, VCOS is a downstream task for VCOD
since the segmentation task requires the model to provide pixel-
level classification probabilities.

2.2 Related Topics
Next, we will briefly introduce salient object detection (SOD),
which, like COS, requires extracting properties of target objects,
but one focuses on saliency while the other on the concealed
attribute.

Image-level SOD aims to identify the most attractive objects
in an image and extract their pixel-accurate silhouettes [42].
Various network architectures have been explored in deep SOD

models, e.g., multi-layer perceptron [43], [44], [45], [46], fully
convolutional [47], [48], [49], [50], [51], capsule-based [52], [53],
[54], transformer-based [55], and hybrid [56], [57] networks.
Meanwhile, different learning strategies are also studied in SOD
models, including data-efficient methods (e.g., weakly-supervised
with categorical tags [58], [59], [60], [61], [62] and unsupervised
with pseudo masks [63], [64], [65]), multi-task paradigms (e.g.,
object subitizing [66], [67], fixation prediction [68], [69], semantic
segmentation [70], [71], edge detection [72], [73], [74], [75],
[76], image captioning [77]), instance-level paradigms [78], [79],
[80], [81], etc. To learn more about this field comprehensively,
readers can refer to popular surveys or representative studies
on visual attention [82], saliency prediction [83], co-saliency
detection [84], [85], [86], RGB SOD [1], [87], [88], [89], RGB-D
(depth) SOD [90], [91], RGB-T (thermal) SOD [92], [93], and
light-field SOD [94].

Video-level SOD. The early development of video salient object
detection (VSOD) originated from introducing attention mecha-
nisms in video object segmentation (VOS) tasks. At that stage,
the task scenes were relatively simple, containing only one object
moving in the video. As moving objects tend to attract visual
attention, VOS and VSOD were equivalent tasks. For instance,
Wang et al. [95] used a fully convolutional neural network to
address the VSOD task. With the development of VOS techniques,
researchers introduced more complex scenes (e.g., with com-
plex backgrounds, object movements, and two objects), but the
two tasks remained equivalent. Thus, later works have exploited
semantic-level spatial-temporal features [96], [97], [98], [99],
recurrent neural networks [100], [101], or offline motion cues
such as optical flow [100], [102], [103], [104]. However, with the
introduction of more challenging video scenes (containing three
or more objects, simultaneous camera, and object movements),
VOS and VSOD were no longer equivalent. Yet, researchers
continued to approach the two tasks as equivalent, ignoring the
issue of visual attention allocation in multi-object movement in
video scenes, which seriously hindered the development of the
field. To address this issue, in 2019, Fan et al. introduced
eye trackers to mark the changes in visual attention in multi-
object movement scenarios, for the first time posing the scientific
problem of attention shift [105] in VSOD asks, and constructed
the first large-scale VSOD benchmark – DAVSOD1, as well as the
baseline model SSAV, which propelled VSOD into a new stage of
development.

Remarks. COS and SOD are distinct tasks, but they can mu-
tually benefit via the CamDiff approach [106]. This has been
demonstrated through adversarial learning [107], leading to joint
research efforts such as the recently proposed dichotomous image
segmentation [108]. In §6, we will explore potential directions for
future research in these areas.

3 DEEP CSU MODELS

This section systematically reviews deep CSU approaches based
on task definitions and data types. We have also created a GitHub
base2 as a comprehensive collection to provide the latest informa-
tion in this field.

1. https://github.com/DengPingFan/DAVSOD
2. https://github.com/GewelsJI/SINet-V2/blob/main/AWESOME COD

LIST.md

https://github.com/DengPingFan/DAVSOD
https://github.com/GewelsJI/SINet-V2/blob/main/AWESOME_COD_LIST.md
https://github.com/GewelsJI/SINet-V2/blob/main/AWESOME_COD_LIST.md
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TABLE 1
Essential characteristics of reviewed image-based methods. This summary outlines the key characteristics, including: Architecture Design

(Arc.): The framework used, which can be multi-stream (MSF), bottom-up & top-down (BTF), or branched (BF) frameworks. Multiple Cues (M.C.):
Whether an auxiliary cue is supplied. Supervision Level (S.L.): Whether fully-supervised (⋆) or weakly-supervised (♢) learning is used. Task

Level (T.L.): The specific tasks addressed by the method, including COS (•), CIS (◦), COC (□), and multi-task learning (■). N/A indicates that the
source code is not available. For more detailed descriptions of these characteristics, please refer to §3.1 on image-level CSU models.

# Model Pub. Core Component Arc. M.C. S.L. T.L. Code
1 ANet [20] CVIU19 classification & segmentation streams BF ✓ ⋆ • Link
2 SINet [19] CVPR20 search and identification modules BTF - ⋆ • Link
3 MirrorNet [109] Access21 fuse input and mirror data streams MSF - ⋆ • Link
4 DCE [110] arXiv21 depth contribution exploration, confidence-aware loss BF ✓ ⋆ • Link
5 D2CNet [111] TIE21 dual-branch, dual-guidance & cross-refine BTF - ⋆ • Link
6 C2FNet [112] IJCAI21 context-aware cross-level fusion BTF - ⋆ • Link
7 UR-COD [113] MMAsia21 uncertainty of pseudo-edge labels MSF - ⋆ • Link
8 TINet [114] AAAI21 texture perception & feature interaction guidance BF ✓ ⋆ • N/A
9 JSCOD [107] CVPR21 uncertainty-aware adversarial learning MSF - ⋆ • Link
10 LSR [23] CVPR21 localize, segment, & rank objects simultaneously BF ✓ ⋆ ■ Link
11 MGL [115] CVPR21 mutual graph learning BF ✓ ⋆ • Link
12 PFNet [24] CVPR21 distraction mining, positioning and focus modules BTF - ⋆ • Link
13 UGTR [116] ICCV21 uncertainty-guided transformer reasoning BF ✓ ⋆ • Link
14 BAS [117] arXiv22 residual refinement module, hybrid loss BTF - ⋆ • Link
15 OSFormer [34] ECCV22 location-sensing transformer, coarse-to-fine fusion BF ✓ ⋆ ◦ Link
16 CFL [35] TIP22 camouflage fusion learning BF ✓ ⋆ ◦ Link
17 NCHIT [118] CVIU22 neighbor connection, hierarchical information transfer BTF - ⋆ • N/A
18 DTC-Net [119] TMM22 local bilinear & spatial coherence organization BTF - ⋆ • N/A
19 C2FNet-V2 [120] TCSVT22 context-aware cross-level fusion BTF - ⋆ • Link
20 CubeNet [121] PR22 encoder-decoder framework with X-connection BF ✓ ⋆ • Link
21 ERRNet [122] PR22 selective edge aggregation, reversible re-calibration BF ✓ ⋆ • Link
22 TPRNet [123] TVCJ22 transformer-induced progressive refinement BTF - ⋆ • Link
23 ANSA-Net [124] IJCNN22 attention-based neighbor selective aggregation BF ✓ ⋆ • N/A
24 BSANet [125] AAAI22 boundary-guided separated attention BF ✓ ⋆ • Link
25 FAPNet [126] TIP22 boundary guidance, feature aggregation & propagation BF ✓ ⋆ • Link
26 FindNet [127] TIP22 boundary-and-texture cues (extension of [125]) BF ✓ ⋆ • N/A
27 PINet [128] ICME22 cascaded decamouflage module, label reweighting BTF - ⋆ • N/A
28 OCENet [129] WACV22 online confidence estimation, dynamic uncertainty loss BF ✓ ⋆ • Link
29 BGNet [130] IJCAI22 edge-guidance feature & context aggregation modules BF ✓ ⋆ • Link
30 PreyNet [131] MM22 bidirectional bridging interaction, predator learning BF ✓ ⋆ • Link
31 DTINet [132] ICPR22 dual-task interactive transformer BF ✓ ⋆ • Link
32 ZoomNet [133] CVPR22 scale integration & hierarchical mixed-scale units MSF - ⋆ • Link
33 FDNet [134] CVPR22 frequency enhancement & high-order relation modules MSF - ⋆ • N/A
34 SegMaR [135] CVPR22 segment, magnify, reiterate in a iterative manner BTF - ⋆ • Link
35 SINetV2 [22] TPAMI22 neighbor connection decoder, group-reversal attention BTF - ⋆ • Link
36 MGL-V2 [136] TIP23 multi-source attention recovery (extension of [115]) BF ✓ ⋆ • Link
37 FBNet [137] TMCCA23 frequency-aware context aggregation & attention BTF - ⋆ • N/A
38 TANet [138] TCSVT23 texture-aware refinement, boundary-consistency loss BTF - ⋆ • N/A
39 LSR+ [32] TCSVT23 triple task learning (extension of [23]) BF ✓ ⋆ ■ Link
40 SARNet [139] TCSVT23 triple-stage refinement (search-amplify-recognize) BTF - ⋆ • Link
41 MFFN [140] WACV23 co-attention of multi-view, channel fusion unit MSF - ⋆ • Link
42 CRNet [141] AAAI23 feature-guided and consistency losses MSF - ♢ • Link
43 HitNet [142] AAAI23 high-resolution iterative feedback BTF - ⋆ • Link
44 DGNet [27] MIR23 gradient-based texture learning, efficient network BF ✓ ⋆ • Link
45 FSPNet [143] CVPR23 feature shrinkage pyramid with transformer BTF - ⋆ • Link
46 FEDER [144] CVPR23 deep wavelet-like decomposition BTF - ⋆ • Link
47 DCNet [145] CVPR23 pixel-level decoupling, instance-level suppression BF ✓ ⋆ ◦ Link
48 IOCFormer [38] CVPR23 unify density- and regression-based strategies BF ✓ ⋆ □ Link
49 PFNet+ [25] SCIS23 extension of PFNet [24] BTF - ⋆ • Link
50 DQnet [146] arXiv23 cross-model detail querying, relation-based querying MSF - ⋆ • Link
51 CamoFormer [147] arXiv23 masked separable attention BTF - ⋆ • Link
52 PopNet [148] arXiv23 source-free depth, object pop-out prior MSF - ⋆ • Link

3.1 Image-level CSU Models

We review the existing four image-level CSU tasks: concealed
object segmentation (COS), concealed object localization (COL),
concealed instance ranking (CIR), and concealed instance seg-
mentation (CIS). Table 1 summarizes the key features of these
reviewed approaches.

3.1.1 Concealed Object Segmentation
This section discusses previous solutions for camouflage object
segmentation (COS) from two perspectives: network architecture
and learning paradigm.

Network Architecture. Generally, fully convolutional networks
(FCNs [149]) are the standard solution for image segmenta-
tion as they can receive input of a flexible size and undergo
a single feed-forward propagation. As expected, FCN-shaped

frameworks dominate the primary solutions for COS, which
fall into three categories: a) Multi-stream framework, shown
in Fig. 3 (a), contains multiple input streams to learn multi-
source representations explicitly. MirrorNet [109] was the first
attempt to add an extra data stream as a bio-inspired attack,
which can break the camouflaged state. Several recent works
have adopted a multi-stream approach to improve their results,
such as supplying pseudo-depth generation [148], pseudo-edge
uncertainty [113], adversarial learning paradigm [107], frequency
enhancement stream [134], multi-scale [133] or multi-view [140]
inputs, and multiple backbones [146]. Unlike other supervised
settings, CRNet [141] is the only weakly-supervised framework
that uses scribble labels as supervision. This approach helps
to alleviate overfitting problems on limited annotated data. b)
Bottom-up and top-down framework, as shown in Fig. 3 (b),
uses deeper features to enhance shallower ones gradually in a

https://sites.google.com/view/ltnghia/research/camo
https://github.com/DengPingFan/SINet
https://sites.google.com/view/ltnghia/research/camo
https://github.com/JingZhang617/RGBD-COD
https://github.com/MS-KangWang/COD-D2Net
https://github.com/thograce/C2FNet
https://github.com/nobukatsu-kajiura/UR-COD
https://github.com/JingZhang617/Joint_COD_SOD
https://github.com/JingZhang617/COD-Rank-Localize-and-Segment
https://github.com/fanyang587/MGL
https://mhaiyang.github.io/CVPR2021_PFNet/index
https://github.com/fanyang587/UGTR
https://github.com/xuebinqin/BASNet
https://github.com/PJLallen/OSFormer
https://sites.google.com/view/ltnghia/research/camo_plus_plus
https://github.com/Ben57882/C2FNet-TSCVT
https://github.com/mczhuge/CubeNet
https://github.com/GewelsJI/ERRNet
https://github.com/zhangqiao970914/TPRNet
https://github.com/zhuhongwei1999/BSA-Net
https://github.com/taozh2017/FAPNet
https://github.com/Carlisle-Liu/OCENet
https://github.com/thograce/BGNet
https://github.com/sxu1997/PreyNet
https://github.com/liuzywen/COD
https://github.com/lartpang/ZoomNet
https://github.com/dlut-dimt/SegMaR
https://github.com/GewelsJI/SINet-V2
https://github.com/fanyang587/MGL
https://github.com/JingZhang617/COD-Rank-Localize-and-Segment
https://github.com/Haozhe-Xing/SARNet
https://github.com/dwardzheng/MFFN_COD
https://github.com/dddraxxx/Weakly-Supervised-Camouflaged-Object-Detection-with-Scribble-Annotations
https://github.com/HUuxiaobin/HitNet
https://github.com/GewelsJI/DGNet
https://github.com/ZhouHuang23/FSPNet
https://github.com/ChunmingHe/FEDER
https://github.com/USTCL/DCNet
https://github.com/GuoleiSun/Indiscernible-Object-Counting
https://github.com/Mhaiyang/PFNet_Plus
https://github.com/CVPR23/DQnet
https://github.com/HVision-NKU/CamoFormer
https://github.com/Zongwei97/PopNet
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Fig. 3. Network architectures for COS at a glance. We present four types of frameworks from left to right: (a) multi-stream framework, (b) bottom-
up/top-down framework and its variant with deep supervision (optional), and (c) branched framework. See §3.1.1 for more details.

single feed-forward pass. For example, C2FNet [112] adopts this
design to improve concealed features from coarse-to-fine levels. In
addition, SegMaR [135] employs an iterative refinement network
with a sub-network based on this strategy. Furthermore, other
studies [19], [22], [24], [25], [111], [117], [118], [119], [120],
[123], [124], [128], [137], [138], [139], [142], [143], [144], [147]
utilized a deeply-supervised strategy [150], [151] on various inter-
mediate feature hierarchies using this framework. This practical,
also utilized by the feature pyramid network [152], combines more
comprehensive multi-context features through dense top-down and
bottom-up propagation and introduces additional supervision sig-
nals before final prediction to provide more dependable guidance
for deeper layers. c) Branched framework, shown in Fig. 3 (c),
is a single-input-multiple-output architecture, consisting of both
segmentation and auxiliary task branches. It should be noted that
the segmentation part of this branched framework may have some
overlap with previous frameworks, such as single-stream [20]
and bottom-up & top-down [23], [27], [32], [107], [110], [114],
[115], [116], [121], [122], [124], [125], [126], [127], [129], [130],
[131], [132], [136] frameworks. For instance, ERRNet [122] and
FAPNet [126] are typical examples of jointly learning concealed
objects and their boundaries. Since these branched frameworks
are closely related to the multi-task learning paradigm, we will
provide further details.

Learning Paradigm. We discuss two common types of learning
paradigms for COS tasks: single-task and multi-task. a) Single-
task learning is the most commonly used paradigm in COS,
which involves only a segmentation task for concealed targets.
Based on this paradigm, most current works [19], [22], [120]
focus on developing attention modules to identify target regions.
b) Multi-task learning introduces an auxiliary task to coordinate
or complement the segmentation task, leading to robust COS
learning. These multi-task frameworks can be implemented by
conducting confidence estimation [107], [116], [129], [131], lo-
calization/ranking [23], [32], category prediction [20] tasks and
learning depth [110], [148], boundary [115], [121], [122], [125],
[126], [130], and texture [27], [114] cues of camouflaged object.

3.1.2 Concealed Instance Ranking

There has been limited research conducted on this topic. Lv et
al. [23] observed for the first time existing COS approaches
could not quantify the difficulty level of camouflage. Regarding
this issue, they used an eye tracker to create a new dataset, called

CAM-LDR [32], that contains instance segmentation masks, fix-
ation labels, and ranking labels. They also proposed two unified
frameworks, LSR [23] and its extension LSR+ [32], to simultane-
ously learn triple tasks, i.e., localizing, segmenting, and ranking
camouflaged objects. The insight behind it is that discriminative
localization regions could guide the segmentation of the full scope
of camouflaged objects, and then, the detectability of different
camouflaged objects could be inferred by the ranking task.

3.1.3 Concealed Instance Segmentation

This task advances the COS task from the regional to the instance
level, a relatively new field compared with the COS. Then,
Le et al. [35] build a new CIS benchmark, CAMO++, via
extending on previous CAMO [20] dataset. They also proposed a
camouflage fusion learning strategy to fine-tune existing instance
segmentation models (e.g., Mask R-CNN [33]) by learning image
contexts. Based on instance benchmarks as in COD10K [19]
and NC4K [23], the first one-stage transformer framework, OS-
Former [34], was proposed for this field by introducing two core
designs: location-sensing transformer and coarse-to-fine fusion.
Recently, Luo et al. [145] proposed to segment camouflaged
instances with two designs: a pixel-level camouflage decoupling
module and an instance-level camouflage suppression module.

3.1.4 Concealed Object Counting

Sun et al. [38] recently introduced a new challenge for the
community called indiscernible object counting (IOC), which
involves counting objects that are difficult to distinguish from their
surroundings. They created IOCfish5K, a large-scale dataset con-
taining high-resolution images of underwater scenes with many
indiscernible objects (focus on fish) and dense annotations to
address the lack of appropriate datasets for this challenge. They
also proposed a baseline model called IOCFormer by integrating
density-based and regression-based methods in a unified frame-
work.

Based on the above summaries, the COS task is experiencing
a rapid development period, resulting in numerous contemporary
publications each year. However, very few proposed solutions are
still proposed for the COL, CIR, and CIS tasks. This suggests that
these fields remain under-explored and offer significant room for
further research. Notably, many previous studies are available as
references (such as saliency prediction [83], salient object subitiz-
ing [67], and salient instance segmentation [81]), providing a
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TABLE 2
Essential characteristics of reviewed video-level methods. Optical flow (O.F.): whether pre-generating optical flow map. Supervision level
(S.L.): fully-supervision with real data (⋆) or synthetic data (♣), and self-supervision (♡). Task level (T.L.): video camouflaged object detection

(△) and segmentation (▲). For further details, refer to §3.2.

# Model Pub. Core Components O.F. S.L. T.L. Project
1 FMC [153] CVPR19 pixel trajectory recurrent neural network and clustering ✓ ⋆ ▲ N/A
2 VRS [39] ACCV20 video registration and motion segmentation network ✓ ⋆ △ Link
3 SIMO [154] BMVC21 dual-head architecture, synthetic dataset ✓ ♣ △ Link
4 MG [155] ICCV21 self-supervised motion grouping ✓ ♡ △ Link
5 RCF [156] arXiv22 rotation-compensated flow, camera motion estimation ✓ ⋆ △ N/A
6 OCLR [157] NeurIPS22 object-centric layered representation, synthetic dataset ✓ ♣ △ N/A
7 OFS [158] TPAMI22 expectation-maximization method, motion augmentation ✓ ♡ △ Link
8 QSDI [159] CVPR22 quantifying the static and dynamic biases ✓ ⋆ △ Link
9 SLTNet [41] CVPR22 implicit motion handling, short- and long-term modules - ⋆ ▲ Link

solid foundation for understanding these tasks from a camouflaged
perspective.

3.2 Video-level CSU Models

There are two branches for the video-level CSU task, including
detecting and segmenting camouflaged objects from videos. Re-
fer Table 2 for details.

3.2.1 Video Concealed Object Detection

Most works [155], [157] formulated this topic as the degradation
problem of the segmentation task since the scarcity of pixel-
wise annotations. They, as usual, trained on segmentation datasets
(e.g., DAVIS [160], FBMS [161]) but evaluated the generalizabil-
ity performance on video camouflaged object detection dataset,
MoCA [39]. These methods consistently opt to extract offline
optical flow as motion guidance for the segmentation task, but
diversifying over the learning strategies, such as fully-supervised
learning with real [39], [156], [159] or synthetic [154], [157] data
and self-supervised learning [155], [158].

3.2.2 Video Concealed Object Segmentation

Xie et al. [153] proposed the first work on camouflaged object
discovery in videos. They used a pixel-trajectory recurrent neural
network to cluster foreground motion for segmentation. However,
this work is limited to a small-scale dataset, CAD [162]. Recently,
based upon localization-level dataset MoCA [39] with bounding
box labels, Cheng et al. [41] extended this field by creating
a large-scale VCOS benchmark MoCA-Mask with pixel-level
masks. They also introduced a two-stage baseline SLTNet to
implicitly utilize motion information.

From what we have reviewed above, the current approaches
for VCOS tasks are still in a nascent state of development.
Several concurrent works in well-established video segmentation
fields (e.g., self-supervised correspondence learning [163], [164],
[165], [166], [167], unified framework for different motion-based
tasks [168], [169], [170]) points the way to further explore.
Besides, considering high-level semantic understanding has a
research gap that merits being supplied, such as semantic seg-
mentation and instance segmentation in the camouflaged scenes.

4 CSU DATASETS

In recent years, various datasets have been collected for both
image- and video-level CSU tasks. In Table 3, we summarize the
features of the representative datasets.

4.1 Image-level Datasets

• CAMO-COCO [20] is tailor-made for COS tasks with 2,500
image samples across eight categories, divided into two sub-
datasets, i.e., CAMO with camouflaged objects and MS-COCO
with non-camouflaged objects. Both CAMO and MS-COCO con-
tain 1,250 images with a split of 1,000 for training and 250 for
testing.

NC4K [23] is currently the largest testing set for evaluating COS
models. NC4K consists of 4,121 camouflaged images sourced
from the Internet and can be divided into two primary categories:
natural scenes and artificial scenes. In addition to the images, this
dataset also provides localization labels that include both object-
level segmentation and instance-level masks, making it a valuable
resource for researchers working in this field. In a recent study
by Lv et al. [23], an eye tracker was utilized to collect fixation
information for each image. As a result, a CAM-FR dataset of
2,280 images was created, with 2,000 images used for training
and 280 for testing. The dataset was annotated with three types of
labels: localization, ranking, and instance labels.

CAMO++ [35] is a newly released dataset that contains 5,500
samples, all of which have undergone hierarchical pixel-wise
annotation. The dataset is divided into two parts: camouflaged
samples (1,700 images for training and 1,000 for testing) and non-
camouflaged samples (1,800 images for training and 1,000 for
testing).

COD10K [19], [22] is currently the largest-scale dataset, featuring
a wide range of camouflaged scenes. The dataset contains 10,000
images from multiple open-access photography websites, covering
ten super-classes and 78 sub-classes. Out of these images, 5,066
are camouflaged, 1,934 are non-camouflaged pictures and 3,000
are background images. The camouflaged subset of COD10K is
annotated using different labels such as category labels, bounding
boxes, object-level masks, and instance-level masks, providing a
diverse set of annotations.

CAM-LDR [32] comprises of 4,040 training and 2,026 testing
samples. These samples were selected from commonly-used hy-
brid training datasets (i.e., CAMO with 1,000 training samples
and COD10K with 3,040 training samples), along with the testing
dataset (i.e., COD10K with 2,026 testing samples). CAM-LDR
is an extension of NC4K [23] that includes four types of annota-
tions: localization labels, ranking labels, object-level segmentation
masks, and instance-level segmentation masks. The ranking labels
are categorized into six difficulty levels – background, easy,
medium1, medium2, medium3, and hard.

https://github.com/hlamdouar/MoCA/
https://www.robots.ox.ac.uk/~vgg/research/simo/
https://github.com/charigyang/motiongrouping
https://github.com/Etienne-Meunier-Inria/EM-Flow-Segmentation
https://yorkucvil.github.io/Static-Dynamic-Interpretability/
https://github.com/XuelianCheng/SLT-Net
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TABLE 3
Essential characteristics for CSU datasets. Train/Test: number of samples for training/testing (e.g., images for image dataset or frames for
video dataset) Task: data type of dataset. N.Cam.: whether collecting non-camouflaged samples. Cls.: whether providing classification labels.

B.Box: whether providing bounding box labels for the detection task. Obj./Ins.: whether providing object- or instance-level segmentation masks for
segmentation tasks. Rank: whether providing ranking labels for instances. Scr.: whether providing weak labels in scribbled form. Cou.: whether

providing dense object counting labels. See §4.1 and §4.2 for more descriptions.

# Dataset Year Pub. Train Test Task N.Cam. Cls. B.Box Obj. Ins. Fix. Rank Scr. Cou. Website
1 CAD [162] 2016 ECCV 0 836 Video - ✓ - ✓ - - - - - Link
2 CAMO-COCO [20] 2019 CVIU 2000 500 Image ✓ - - ✓ - - - - - Link
3 MoCA [39] 2020 ACCV 0 37,250 Video - ✓ ✓ - - - - - - Link
4 NC4K [23] 2021 CVPR 0 4,121 Image - - ✓ ✓ ✓ - - - - Link
5 MoCA-Mask [41] 2022 CVPR 19,313 3,626 Video - ✓ - ✓ - - - - - Link
6 CAMO++ [35] 2022 TIP 3,500 2,000 Image ✓ - ✓ ✓ ✓ - - - - Link
7 COD10K [19], [22] 2022 TPAMI 6,000 4,000 Image ✓ ✓ ✓ ✓ ✓ - - - - Link
8 CAM-LDR [32] 2023 TCSVT 4,040 2,026 Image - - - ✓ ✓ ✓ ✓ - - Link
9 S-COD [141] 2023 AAAI 4,040 0 Image - - - - - - - ✓ - Link
10 Camfish5K [38] 2023 CVPR 3,637 2,000 Image - ✓ - - - - - - ✓ Link

S-COD [141] is the first dataset designed specifically for the
COS task under the weakly-supervised setting. The dataset in-
cludes 4,040 training samples, with 3,040 samples selected from
COD10K and 1,000 from CAMO. These samples were re-labeled
using scribble annotations that provide a rough outline of the
primary structure based on first impressions, without pixel-wise
ground-truth information.

IOCfish5K [38] is a distinct dataset that focuses on count-
ing instances of fish in camouflaged scenes. This COC dataset
comprises 5,637 high-resolution images collected from YouTube,
with 659,024 center points annotated. The dataset is divided into
three subsets, with 3,137 images allocated for training, 500 for
validation, and 2,000 for testing.

Remarks. In summary, three datasets (CAMO, COD10K, and
NC4K) are commonly used as benchmarks to evaluate camouflage
object segmentation (COS) approaches, with the experimental
protocols typically described in §5.2. For the concealed instance
segmentation (CIS) task, two datasets (COD10K and NC4K)
containing instance-level segmentation masks can be utilized. The
CAM-LDR dataset, which provides fixation information and three
types of annotations collected from a physical eye tracker device,
is suitable for various brain-inspired explorations in computer vi-
sion. Additionally, there are two new datasets from CSU: S-COD,
designed for weakly-supervised COS, and IOCfish5K, focused on
counting objects within camouflaged scenes.

4.2 Video-level Datasets

• CAD [162] is a small dataset comprising nine short video
clips and 836 frames. The annotation strategy used in this dataset
is sparse, with camouflaged objects being annotated every five
frames. As a result, there are 191 segmentation masks available in
the dataset.

MoCA [39] is a comprehensive video database from YouTube
that aims to detect moving camouflaged animals. It consists of
141 video clips featuring 67 categories and comprises 37,250
high-resolution frames with corresponding bounding box labels
for 7,617 instances.

MoCA-Mask [41], an extension of MoCA dataset [39], provides
human-annotated segmentation masks every five frames based on
MoCA dataset [39]. MoCA-Mask is divided into two parts: a
training set consisting of 71 short clips (19,313 frames with 3,946
segmentation masks) and an evaluation set containing 16 short

clips (3,626 frames with 745 segmentation masks). To label those
unlabeled frames, pseudo-segmentation labels were synthesized
using a bidirectional optical flow-based strategy [171].

Remarks. The MoCA dataset is currently the largest collection of
videos with concealed objects, while it only offers detection labels.
As a result, researchers in the community [155], [157] typically
assess the performance of well-trained segmentation models by
converting segmentation masks into detection bounding boxes.
Recently, there has been a shift towards video segmentation in
concealed scenes with the introduction of MoCA-Mask. Despite
these advancements, the quantity and quality of data annotations
remain insufficient for constructing a reliable video model that can
effectively handle complex concealed scenarios.

5 CSU BENCHMARKS

In this investigation, our benchmarking is built on COS tasks since
this topic is relatively well-established and offers a variety of
competing approaches. The following sections will detail the eval-
uation metrics (§5.1), benchmarking protocols (§5.2), quantitative
analyses (§5.3, §5.4, §5.5), and qualitative comparisons (§5.6).

5.1 Evaluation Metrics
As suggested in [22], there are five commonly used metrics3

available for COS evaluation. We compare a prediction mask P
with its corresponding ground-truth mask G at the same image
resolution.

MAE (mean absolute error, M) is a conventional pixel-wise
measure, which is defined as:

M =
1

W ×H

W

∑
x

H

∑
y
|P(x,y)−G(x,y)|, (1)

where W and H are the width and height of G, and (x,y) are pixel
coordinates in G.

F-measure could be defined as:

Fβ =
(1+β 2)Precision×Recall

β 2 Precision+Recall
, (2)

where β 2 = 0.3 is used to emphasize precision value over recall
value, as recommended in [89]. Other two metrics are derived
from:

Precision =
|P(T )∩G|
|P(T )| , Recall =

|P(T )∩G|
|G| , (3)

3. https://github.com/DengPingFan/CSU/tree/main/cos eval toolbox

http://vis-www.cs.umass.edu/motionSegmentation/
https://sites.google.com/view/ltnghia/research/camo
https://www.robots.ox.ac.uk/~vgg/data/MoCA/
https://github.com/JingZhang617/COD-Rank-Localize-and-Segment
https://xueliancheng.github.io/SLT-Net-project/
https://sites.google.com/view/ltnghia/research/camo_plus_plus
https://dengpingfan.github.io/pages/COD.html
https://github.com/JingZhang617/COD-Rank-Localize-and-Segment
https://github.com/dddraxxx/Weakly-Supervised-Camouflaged-Object-Detection-with-Scribble-Annotations
https://github.com/GuoleiSun/Indiscernible-Object-Counting
https://github.com/DengPingFan/CSU/tree/main/cos_eval_toolbox
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TABLE 4
Quantitative comparison on CAMO [20] testing set. We classify the competing approaches based on two aspects: those using

convolution-based backbones such as ResNet [174], Res2Net [175], EffNet [176], and ConvNext [177]; and those using transformer-based
backbones such as MiT [178], PVTv2 [179], and Swin [180]. We test two efficiency metrics, model parameters (Para) and multiply-accumulate

operations (MACs), in accordance with the preset input resolution in the original paper. Besides, nine evaluation metrics are reported, and the best
three scores are highlighted in red, green, and blue, respectively, with ↑/↓ indicating that higher/lower scores are better. If the results are

unavailable since the code has not been public, we use a hyphen (-) to denote it. We will follow these notations in subsequent tables unless
otherwise specified.

Model Pub/Year Backbone Input Para. MACs Sα ↑ Fw
β
↑ M ↓ Ead

φ
↑ Emn

φ
↑ Emx

φ
↑ Fad

β
↑ Fmn

β
↑ Fmx

β
↑

• Convolution-based Backbone
SINet [19] CVPR20 ResNet-50 3522 48.95M 19.42G 0.745 0.644 0.092 0.825 0.804 0.829 0.712 0.702 0.708

D2CNet [111] TIE21 Res2Net-50 3202 - - 0.774 0.683 0.087 0.844 0.818 0.838 0.747 0.735 0.743
C2FNet [112] IJCAI21 Res2Net-50 3522 28.41M 13.12G 0.796 0.719 0.080 0.865 0.854 0.864 0.764 0.762 0.771

TINet [114] AAAI21 ResNet-50 3522 28.56M 8.58G 0.781 0.678 0.087 0.847 0.836 0.848 0.729 0.728 0.745
JSCOD [107] CVPR21 ResNet-50 3522 121.63M 25.20G 0.800 0.728 0.073 0.872 0.859 0.873 0.779 0.772 0.779

LSR [23] CVPR21 ResNet-50 3522 57.90M 25.21G 0.787 0.696 0.080 0.859 0.838 0.854 0.756 0.744 0.753
R-MGL [115] CVPR21 ResNet-50 4732 67.64M 249.89G 0.775 0.673 0.088 0.848 0.812 0.842 0.738 0.726 0.740
S-MGL [115] CVPR21 ResNet-50 4732 63.60M 236.60G 0.772 0.664 0.089 0.850 0.807 0.842 0.733 0.721 0.739

PFNet [24] CVPR21 ResNet-50 4162 46.50M 26.54G 0.782 0.695 0.085 0.855 0.841 0.855 0.751 0.746 0.758
UGTR [116] ICCV21 ResNet-50 4732 48.87M 127.12G 0.785 0.686 0.086 0.861 0.823 0.854 0.749 0.738 0.754

BAS [117] arXiv21 ResNet-34 2882 87.06M 161.19G 0.749 0.646 0.096 0.808 0.796 0.808 0.696 0.692 0.703
NCHIT [118] CVIU22 ResNet-50 2882 - - 0.784 0.652 0.088 0.841 0.805 0.840 0.723 0.707 0.739

C2FNet-V2 [120] TCSVT22 Res2Net-50 3522 44.94M 18.10G 0.799 0.730 0.077 0.869 0.859 0.869 0.777 0.770 0.779
CubeNet [121] PR22 ResNet-50 3522 - - 0.788 0.682 0.085 0.852 0.838 0.860 0.734 0.732 0.750
ERRNet [122] PR22 ResNet-50 3522 69.76M 20.05G 0.779 0.679 0.085 0.855 0.842 0.858 0.731 0.729 0.742
TPRNet [123] TVCJ22 Res2Net-50 3522 32.95M 12.98G 0.807 0.725 0.074 0.880 0.861 0.883 0.777 0.772 0.785
FAPNet [126] TIP22 Res2Net-50 3522 29.52M 29.69G 0.815 0.734 0.076 0.877 0.865 0.880 0.776 0.776 0.792
BSANet [125] AAAI22 Res2Net-50 3842 32.58M 29.70G 0.794 0.717 0.079 0.866 0.851 0.867 0.768 0.763 0.770
OCENet [129] WACV22 ResNet-50 4802 60.31M 59.70G 0.802 0.723 0.080 0.866 0.852 0.865 0.776 0.766 0.777

BGNet [130] IJCAI22 Res2Net-50 4162 79.85M 58.45G 0.812 0.749 0.073 0.876 0.870 0.882 0.786 0.789 0.799
PreyNet [131] MM22 ResNet-50 4482 38.53M 58.10G 0.790 0.708 0.077 0.856 0.842 0.857 0.763 0.757 0.765

ZoomNet [133] CVPR22 ResNet-50 3842 32.38M 95.50G 0.820 0.752 0.066 0.883 0.877 0.892 0.792 0.794 0.805
FDNet [134] CVPR22 Res2Net-50 4162 - - 0.841 0.775 0.063 0.901 0.895 0.908 0.803 0.807 0.826

SegMaR [135] CVPR22 ResNet-50 3522 56.21M 33.63G 0.815 0.753 0.071 0.881 0.874 0.884 0.795 0.795 0.803
SINetV2 [22] TPAMI22 Res2Net-50 3522 26.98M 12.28G 0.820 0.743 0.070 0.884 0.882 0.895 0.779 0.782 0.801

CamoFormer-C [147] arXiv23 ConvNeXt-B 3842 96.69M 50.77G 0.859 0.812 0.050 0.919 0.913 0.920 0.842 0.842 0.855
CamoFormer-R [147] arXiv23 ResNet-50 3842 54.25M 78.85G 0.816 0.712 0.076 0.863 0.874 0.916 0.735 0.745 0.813

PopNet [148] arXiv23 Res2Net-50 5122 188.05M 154.88G 0.808 0.744 0.077 0.871 0.859 0.874 0.790 0.784 0.792
CRNet [141] AAAI23 ResNet-50 3202 32.65M 11.83G 0.735 0.641 0.092 0.829 0.815 0.830 0.709 0.701 0.707
PFNet+ [25] SCIS23 ResNet-50 4802 - - 0.791 0.713 0.080 0.862 0.850 0.865 0.764 0.761 0.770

DGNet-S [27] MIR23 EffNet-B1 3522 7.02M 2.77G 0.826 0.754 0.063 0.896 0.893 0.907 0.786 0.792 0.810
DGNet [27] MIR23 EffNet-B4 3522 19.22M 1.20G 0.839 0.769 0.057 0.906 0.901 0.915 0.804 0.806 0.822

• Transformer-based Backbone
DTINet [132] ICPR22 MiT-B5 2562 266.33M 144.68G 0.856 0.796 0.050 0.918 0.916 0.927 0.821 0.823 0.843

CamoFormer-S [147] arXiv23 Swin-B 3842 97.27M 64.13G 0.876 0.832 0.043 0.935 0.930 0.938 0.856 0.856 0.871
CamoFormer-P [147] arXiv23 PVTv2-B4 3842 71.40M 39.74G 0.872 0.831 0.046 0.931 0.929 0.938 0.853 0.854 0.868

HitNet [142] AAAI23 PVTv2-B2 7042 25.73M 55.95G 0.849 0.809 0.055 0.910 0.906 0.910 0.833 0.831 0.838

where P(T ) is a binary mask obtained by thresholding the non-
binary predicted map P with a threshold value T ∈ [0,255]. The
symbol | · | calculates the total area of the mask inside the map.
Therefore, it is possible to convert a non-binary prediction mask
into a series of binary masks with threshold values ranging from 0
to 255. By iterating over all thresholds, three metrics are obtained
with maximum (Fmx

β
), mean (Fmn

β
), and adaptive (Fad

β
) values of

F-measure.

Enhanced-alignment measure (Eφ ) [172], [173] is a recently
proposed binary foreground evaluation metric, which considers
the both local and global similarity between two binary maps. Its
formulation is defined as:

Eφ =
1

W ×H

W

∑
x

H

∑
y

φ [P(x,y),G(x,y)] , (4)

where φ is the enhanced-alignment matrix. Similar to Fβ , this
metric also includes three values computed over all the thresholds,
i.e., maximum (Emx

φ
), mean (Emn

φ
), and adaptive (Ead

φ
) values.

Structure measure (Sα ) [181], [182] is used to measure the
structural similarity between a non-binary prediction map and a

ground-truth mask:

Sα = (1−α)So(P,G)+αSr(P,G), (5)

where α balances the object-aware similarity So and region-aware
similarity Sr. As in the original paper, we use the default setting
for α = 0.5.

5.2 Experimental Protocols

Suggested by Fan et al. [22], all competing approaches in the
benchmarking were trained on a hybrid dataset comprising the
training portions of COD10K [19] and CAMO [20] datasets,
totaling 4,040 samples. The models were then evaluated on three
popular used benchmarks: COD10K’s testing portion with 2,026
samples [19], CAMO with 250 samples [20], and NC4K with
4,121 samples [23].

5.3 Quantitative Analysis on CAMO

As reported in Table 4, we evaluated 36 deep-based approaches
on the CAMO testing dataset [20] using various metrics. These
models were classified into two groups based on the backbones
they used: 32 convolutional-based and four transformer-based. As
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TABLE 5
Quantitative comparison on NC4K [23] testing dataset.

Model Pub/Year Backbone Sα ↑ Fw
β
↑ M ↓ Ead

φ
↑ Emn

φ
↑ Emx

φ
↑ Fad

β
↑ Fmn

β
↑ Fmx

β
↑

• Convolution-based Backbone
SINet [19] CVPR20 ResNet-50 0.808 0.723 0.058 0.883 0.871 0.883 0.768 0.769 0.775

C2FNet [112] IJCAI21 Res2Net-50 0.838 0.762 0.049 0.901 0.897 0.904 0.788 0.795 0.810
TINet [114] AAAI21 ResNet-50 0.829 0.734 0.055 0.882 0.879 0.890 0.766 0.773 0.793

JSCOD [107] CVPR20 ResNet-50 0.842 0.771 0.047 0.906 0.898 0.907 0.803 0.806 0.816
LSR [23] CVPR21 ResNet-50 0.840 0.766 0.048 0.904 0.895 0.907 0.802 0.804 0.815

R-MGL [115] CVPR21 ResNet-50 0.833 0.740 0.052 0.890 0.867 0.893 0.778 0.782 0.800
S-MGL [115] CVPR21 ResNet-50 0.829 0.731 0.055 0.885 0.863 0.893 0.771 0.777 0.797

PFNet [24] CVPR21 ResNet-50 0.829 0.745 0.053 0.894 0.887 0.898 0.779 0.784 0.799
UGTR [116] ICCV21 ResNet-50 0.839 0.747 0.052 0.889 0.874 0.899 0.779 0.787 0.807

BAS [117] arXiv21 ResNet-34 0.817 0.732 0.058 0.868 0.859 0.872 0.767 0.772 0.782
NCHIT [118] CVIU22 ResNet-50 0.830 0.710 0.058 0.872 0.851 0.894 0.751 0.758 0.792

C2FNet-V2 [120] TCSVT22 Res2Net-50 0.840 0.770 0.048 0.900 0.896 0.904 0.799 0.802 0.814
ERRNet [122] PR22 ResNet-50 0.827 0.737 0.054 0.892 0.887 0.901 0.769 0.778 0.794
TPRNet [123] TVCJ22 Res2Net-50 0.846 0.768 0.048 0.901 0.898 0.911 0.798 0.805 0.820
FAPNet [126] TIP22 Res2Net-50 0.851 0.775 0.047 0.903 0.899 0.910 0.804 0.810 0.826
BSANet [125] AAAI22 Res2Net-50 0.841 0.771 0.048 0.906 0.897 0.907 0.805 0.808 0.817
OCENet [129] WACV22 ResNet-50 0.853 0.785 0.045 0.908 0.902 0.913 0.812 0.818 0.831

BGNet [130] IJCAI22 Res2Net-50 0.851 0.788 0.044 0.911 0.907 0.916 0.813 0.820 0.833
PreyNet [131] MM22 ResNet-50 0.834 0.763 0.050 0.899 0.887 0.899 0.805 0.803 0.811

ZoomNet [133] CVPR22 ResNet-50 0.853 0.784 0.043 0.907 0.896 0.912 0.814 0.818 0.828
FDNet [134] CVPR22 Res2Net-50 0.834 0.750 0.052 0.895 0.893 0.905 0.774 0.784 0.804

SegMaR [135] CVPR22 ResNet-50 0.841 0.781 0.046 0.905 0.896 0.907 0.821 0.821 0.826
SINetV2 [22] TPAMI22 Res2Net-50 0.847 0.770 0.048 0.901 0.903 0.914 0.792 0.805 0.823

CamoFormer-C [147] arXiv23 ConvNeXt-B 0.883 0.834 0.032 0.937 0.933 0.940 0.851 0.857 0.870
CamoFormer-R [147] arXiv23 ResNet-50 0.855 0.788 0.042 0.913 0.900 0.914 0.820 0.821 0.830

PopNet [148] arXiv23 Res2Net-50 0.861 0.802 0.042 0.915 0.909 0.919 0.830 0.833 0.843
DGNet-S [27] MIR23 EfficientNet-B1 0.845 0.764 0.047 0.902 0.902 0.913 0.789 0.799 0.819

DGNet [27] MIR23 EfficientNet-B4 0.857 0.784 0.042 0.910 0.911 0.922 0.803 0.814 0.833
• Transformer-based Backbone

DTINet [132] ICPR22 MiT-B5 0.863 0.792 0.041 0.914 0.917 0.926 0.809 0.818 0.836
CamoFormer-S [147] arXiv23 Swin-B 0.888 0.840 0.031 0.941 0.937 0.946 0.857 0.863 0.877
CamoFormer-P [147] arXiv23 PVTv2-B4 0.892 0.847 0.030 0.941 0.939 0.946 0.863 0.868 0.880

HitNet [142] AAAI23 PVTv2-B2 0.875 0.834 0.037 0.928 0.926 0.929 0.854 0.853 0.863

for those models using convolutional-based backbones, several
interesting findings are observed:
• CamoFormer-C [147] achieved the best performance on CAMO
with the ConvNeXt [177] based backbone, even surpassing some
metrics produced by transformer-based methods, such as Sα

value: 0.859 (CamoFormer-C) vs. 0.856 (DTINet [132]) vs. 0.849
(HitNet [142]). However, CamoFormer-R [147] with ResNet-50
backbone was unable to outperform competitors with the same
backbone, such as using multi-scale zooming (ZoomNet [133])
and iterative refinement (SegMaR [135]) strategies.
• As for those Res2Net-based models, FDNet [134] achieves the
top performance on CAMO with high-resolution input of 4162.
Besides, SINetV2 [22] and FAPNet [126] also achieve satisfactory
results using the same backbone but with a small input size of
3522.
• DGNet [27], is an efficient model that stands out with
its top#3 performance compared to heavier models like JS-
COD [107] (121.63M) and PopNet [148] (181.05M), despite
having only 19.22M parameters and 1.20G computation costs. Its
performance-efficiency balance makes it a promising architecture
for further exploration of its potential capabilities.
• Interestingly, CRNet [141] – a weakly-supervised model – com-
petes favorably with early fully-supervised model SINet [19]. It
suggests that there is room for developing models to bridge the gap
toward better data-efficient learning, e.g., self-/semi-supervised
learning.

Furthermore, transformer-based methods significantly improve
performance due to their superior long-range modeling capabili-
ties. We here test four transformer-based models on the CAMO
testing dataset, yielding three noteworthy findings:
• CamoFormer-S [147], utilizes a Swin transformer design to

enhance the hierarchical modeling ability on concealed content,
resulting in superior performance across the entire CAMO bench-
mark. We also observed that the PVT-based variant CamoFormer-
P [147] achieves comparable results but with fewer parameters,
i.e., 71.40M (CamoFormer-P) vs. 97.27M (CamoFormer-R).
• DTINet [132] is a dual-branch network that utilizes the MiT-B5
semantic segmentation model from SegFormer [178] as backbone.
Despite having 266.33M parameters, it has not delivered impres-
sive performance due to the challenges of balancing such two
heavy branches. Nevertheless, this attempt defies our preconcep-
tions and inspires us to investigate the generalizability of semantic
segmentation models in concealed scenarios.
• We also investigate the impact of input resolution on the per-
formance of different models. HitNet [142] uses a high-resolution
image of 7042, which can improve the detection of small targets,
but at the expense of increased computation costs. Similarly,
convolutional-based approaches like ZoomNet [133] achieved im-
pressive results by taking multiple inputs with different resolutions
(the largest being 5762) to enhance segmentation performance.
However, not all models benefit from this approach. For instance,
PopNet [148] with a resolution of 4802 fails to outperform
SINetV2 [22] with 3522 in all metrics. This observation raises
two critical questions: should high-resolution be used in concealed
scenarios, and how can we develop an effective strategy for
detecting concealed objects of varying sizes? We will propose
potential solutions to these questions and present an interesting
analysis of the COD10K in §5.5.

5.4 Quantitative Analysis on NC4K
Compared to the CAMO dataset, the NC4K [23] dataset has a
larger data scale and sample diversity, indicating subtle changes
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TABLE 6
Quantitative comparison on COD10K [19] testing set.

Model Pub/Year Backbone Sα ↑ Fw
β
↑ M ↓ Ead

φ
↑ Emn

φ
↑ Emx

φ
↑ Fad

β
↑ Fmn

β
↑ Fmx

β
↑

• Convolution-based Backbone
SINet [19] CVPR20 ResNet-50 0.776 0.631 0.043 0.867 0.864 0.874 0.667 0.679 0.691

D2CNet [111] TIE21 ResNet-50 0.807 0.680 0.037 0.879 0.876 0.887 0.702 0.720 0.736
C2FNet [112] IJCAI21 Res2Net-50 0.813 0.686 0.036 0.886 0.890 0.900 0.703 0.723 0.743

TINet [114] AAAI21 ResNet-50 0.793 0.635 0.042 0.848 0.861 0.878 0.652 0.679 0.712
JSCOD [107] CVPR20 ResNet-50 0.809 0.684 0.035 0.882 0.884 0.891 0.705 0.721 0.738

LSR [23] CVPR21 ResNet-50 0.804 0.673 0.037 0.883 0.880 0.892 0.699 0.715 0.732
R-MGL [115] CVPR21 ResNet-50 0.814 0.666 0.035 0.865 0.852 0.890 0.681 0.711 0.738
S-MGL [115] CVPR21 ResNet-50 0.811 0.655 0.037 0.851 0.845 0.889 0.667 0.702 0.733

PFNet [24] CVPR21 ResNet-50 0.800 0.660 0.040 0.868 0.877 0.890 0.676 0.701 0.725
UGTR [116] ICCV21 ResNet-50 0.818 0.667 0.035 0.850 0.853 0.891 0.671 0.712 0.742

BAS [117] arXiv21 ResNet-34 0.802 0.677 0.038 0.869 0.855 0.870 0.707 0.715 0.729
NCHIT [118] CVIU22 ResNet-50 0.792 0.591 0.046 0.794 0.819 0.879 0.596 0.649 0.698

C2FNet-V2 [120] TCSVT22 Res2Net-50 0.811 0.691 0.036 0.890 0.887 0.896 0.718 0.725 0.742
CubeNet [121] PR22 ResNet-50 0.795 0.643 0.041 0.862 0.865 0.883 0.669 0.692 0.715
ERRNet [122] PR22 ResNet-50 0.786 0.630 0.043 0.845 0.867 0.886 0.646 0.675 0.702
TPRNet [123] TVCJ22 Res2Net-50 0.817 0.683 0.036 0.869 0.887 0.903 0.694 0.724 0.748
FAPNet [126] TIP22 Res2Net-50 0.822 0.694 0.036 0.875 0.888 0.902 0.707 0.731 0.758
BSANet [125] AAAI22 Res2Net-50 0.818 0.699 0.034 0.894 0.891 0.901 0.723 0.738 0.753
OCENet [129] WACV22 ResNet-50 0.827 0.707 0.033 0.885 0.894 0.905 0.718 0.741 0.764

BGNet [130] IJCAI22 Res2Net-50 0.831 0.722 0.033 0.902 0.901 0.911 0.739 0.753 0.774
PreyNet [131] MM22 ResNet-50 0.813 0.697 0.034 0.894 0.881 0.891 0.731 0.736 0.747

ZoomNet [133] CVPR22 ResNet-50 0.838 0.729 0.029 0.893 0.888 0.911 0.741 0.766 0.780
FDNet [134] CVPR22 Res2Net-50 0.840 0.729 0.030 0.906 0.919 0.935 0.728 0.757 0.788

SegMaR [135] CVPR22 ResNet-50 0.833 0.724 0.034 0.893 0.899 0.906 0.739 0.757 0.774
SINetV2 [22] TPAMI22 Res2Net-50 0.815 0.680 0.037 0.864 0.887 0.906 0.682 0.718 0.752

CamoFormer-C [147] arXiv23 ConvNeXt-B 0.860 0.770 0.024 0.926 0.926 0.935 0.778 0.798 0.818
CamoFormer-R [147] arXiv23 ResNet-50 0.838 0.724 0.029 0.900 0.916 0.930 0.721 0.753 0.786

PopNet [148] arXiv23 Res2Net-50 0.851 0.757 0.028 0.910 0.910 0.919 0.771 0.786 0.802
CRNet [141] AAAI23 ResNet-50 0.733 0.576 0.049 0.845 0.832 0.845 0.637 0.633 0.636
PFNet+ [25] Ssis23 ResNet-50 0.806 0.677 0.037 0.880 0.884 0.895 0.698 0.716 0.734

DGNet-S [27] MIR23 EfficientNet-B1 0.810 0.672 0.036 0.869 0.888 0.905 0.680 0.710 0.743
DGNet [27] MIR23 EfficientNet-B4 0.822 0.693 0.033 0.879 0.896 0.911 0.698 0.728 0.759

• Transformer-based Backbone
DTINet [132] ICPR22 MiT-B5 0.824 0.695 0.034 0.881 0.896 0.911 0.702 0.726 0.754

CamoFormer-S [147] arXiv23 Swin-B 0.862 0.772 0.024 0.932 0.931 0.941 0.780 0.799 0.818
CamoFormer-P [147] arXiv23 PVTv2-B4 0.869 0.786 0.023 0.931 0.932 0.939 0.794 0.811 0.829

HitNet [142] AAAI23 PVTv2-B2 0.871 0.806 0.023 0.936 0.935 0.938 0.818 0.823 0.838

may have occurred. Table 5 presents quantitative results on the
current largest COS testing dataset with 4,121 samples. The
benchmark includes 28 convolutional-based and four transformer-
based approaches. Our observations are:
• CamoFormer-C [147] still outperforms all methods on NC4K. In
contrast to the awkward situation observed on CAMO as described
in §5.3, the ResNet-50 based CamoFormer-R [147] now performs
better than two other competitors (i.e., SegMaR [135] and Zoom-
Net [133]) on NC4K. These results confirm the effectiveness of
CamoFormer’s decoder design in mapping latent features back to
the prediction space, particularly for more complicated scenarios.
• DGNet [27] shows less promise on the challenging NC4K
dataset, possibly due to its restricted modeling capability with
small model parameters. Nevertheless, this drawback provides an
opening for modification since the model has a lightweight and
simple architecture.
• While PopNet [148] may not perform well on small-scale
CMAO datasets, it has demonstrated potential in challenging
NC4K dataset. This indicates that using extra network to synthe-
size depth priors would be helpful for challenging samples. When
compared to SINetV2 based on Res2Net-50 [22], PopNet has a
heavier design (188.05M vs. 26.98M) and larger input resolution
(5122 vs. 3522), but only improves the Emn

φ
value by 0.6%.

• Regarding the CamoFormer [147] model, there is now a
noticeable difference in performance between its two variants.
Specifically, the CamoFormer-S variant based on Swin-B lags
behind while the CamoFormer-P variant based on PVTv2-B4
performs better.

5.5 Quantitative Analysis on COD10K

In Table 6, we present a performance comparison of 36
competitors, including 32 convolutional-based models and four
transformer-based models, on the COD10K dataset with diverse
concealed samples. Based on our evaluation, we have made the
following observations:
• CamoFormer-C [147], which has a robust backbone, remains the
best-performing method among all convolutional-based methods.
Similarly to its performance on NC4K, CamoFormer-R [147]
has once again outperformed strong competitors with identical
backbones such as SegMaR [135] and ZoomNet [133].
• Similar to its performance on the NC4K dataset, PopNet [148]
achieves consistently high results on the COD10K dataset, rank-
ing second only to CamoFormer-C [147]. We believe that prior
knowledge of the depth of the scene plays a crucial role in
enhancing the understanding of concealed environments. This
insight will motivate us to investigate more intelligent ways to
learn structural priors, such as incorporating multi-task learning
or heuristic methods into our models.
• Notably, HitNet [142] achieves the highest performance on
the COD10K benchmark, outperforming models with stronger
backbones like Swin-B and PVTv2-B4. To understand why this
is the case, we calculated the average resolution of all samples
in the CAMO (W=693.89 and H=564.22), NC4K (W=709.19 and
H=529.61), and COD10K (W=963.34 and H=740.54) datasets.
We found that the testing set for COD10K has the highest overall
resolution, which suggests that models utilizing higher resolutions
or multi-scale modeling would benefit from this characteristic.
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Therefore, HitNet is an excellent choice for detecting concealed
objects in scenarios where high-resolution images are available.

5.6 Qualitative Comparison

This section visually assesses the performance of current top
models on challenging and complex samples that are prone to
failure. We compare qualitative results predicted by ten groups of
top-performing models, including six convolutional-based models
(i.e., CamoFormer-C [147], DGNet [27], PopNet [148], ZoomNet
[133], FDNet [134] and SINetV2 [22]), two transformer-based
models (i.e., CamoFormer-S [147] and HitNet [142]), as well
as two other competitors (i.e., the earliest baseline SINet [19]
and a weakly-supervised model CRNet [141]). All samples are
selected from the COD10K testing dataset according to seven
fine-grained attributes. The qualitative comparison is presented in
Fig. 4, revealing several interesting findings.
• The attribute of multiple objects (MO) poses a challenge due to
the high false-negative rate in current top-performing models. As
depicted in the first column of Fig. 4, only two out of ten models
could locate the white flying bird approximately, as indicated by
the red circle in the GT mask. These two models are CamoFormer-
S [147], which employs a robust transformer-based encoder, and
FDNet [134], which utilizes a frequency domain learning strategy.
• The models we tested can accurately detect big objects (BO) by
precisely locating the target’s main part. However, these models
struggle to identify smaller details such as the red circles high-
lighting the toad’s claws in the second column of Fig. 4.
• Small object (SO) attribute presents a challenge as it only
occupies a small area in the image, typically less than 10%
of the total pixels as reported by COD10K [19]. As shown in
the third column of Fig. 4, only two models (CamoFormer-S
and CamoFormer-C [147]) can detect a cute cat lying on the
ground in the distance. Such a difficulty arises for two main
reasons: firstly, models struggle to differentiate small objects from
complex backgrounds or other irrelevant objects in an image;
secondly, detectors may miss small regions due to down-sampling
operations caused by low-resolution inputs.
• Out-of-view (OV) attribute refers to objects partially outside
the image boundaries, leading to incomplete representation. To
address this issue, a model should have a better holistic under-
standing of the concealed scene. As shown in the fourth column
of Fig. 4, both CamoFormer-C [147] and FDNet [134] can handle
the OV attribute and maintain the object’s integrity. However, two
transformer-based models failed to do so. This observation has
inspired us to explore more efficient methods, such as local mod-
eling within convolutional frameworks and cross-domain learning
strategies.
• Shape complexity (SC) attribute indicates that an object contains
thin parts, such as an animal’s foot. In the fifth column of Fig. 4,
the stick insect’s feet are a good example of this complexity,
being elongated and slender and thus difficult to predict accurately.
Only HitNet [142] with high-resolution inputs can predict a right-
bottom foot (indicated by a red circle).
• The attribute of occlusion (OC) refers to the partial occlusion of
objects, which is a common challenge in general scenes [183]. In
Fig. 4, for example, the sixth column shows two owls partially
occluded by a wire fence, causing their visual regions to be
separated. Unfortunately, most of the models presented were
unable to handle such cases.

• Indefinable boundary (IB) attribute is hard to address since its
uncertainty between foreground and background. As shown in the
last column of Fig. 4, a matting-level sample.
• In the last two rows of Fig. 4, we display the predictions
generated by SINet [19], which was our earliest baseline model.
Current models have significantly improved location accuracy,
boundary details, and other aspects. Additionally, CRNet [141],
a weakly-supervised method with only weak label supervision,
can effectively locate target objects to meet satisfactory standards.

6 DISCUSSION AND OUTLOOK

Based on our literature review and experimental analyses, we
discuss five challenges and potential CSU-related directions in this
section.

Annotation-Efficient Learning. Deep learning techniques have
significantly advanced the field of CSU. However, conventional
supervised deep learning is data-hungry and resource-consuming.
In practical scenarios, we hope the models can work on limited re-
sources and have good generalizability. Thus developing effective
learning strategies for CSU tasks is a promising direction, e.g.,
weakly-supervised strategy in CRNet [141].

Domain Adaptation. Camouflaged samples are generally col-
lected from natural scenes. Thus, deploying the models to detect
concealed objects in auto-driving scenarios is challenging. Recent
practice demonstrates that various techniques can be used to
alleviate this problem, e.g., domain adaptation [184], transfer
learning [185], few-shot learning [186], and meta-learning [187].

High-Fidelity Synthetic Dataset. To alleviate algorithmic biases,
increasing the diversity and scale of data is crucial. The rapid
development of AI-generated content (AIGC) [188] and deep
generative models, such as generative adversarial networks [189],
[190], [191] and diffusion models [192], [193], is making it
easier to create synthetic data for general domains. Recently,
to address the scarcity of multi-pattern training images, Luo et
al. [106] proposed a diffusion-based image generation framework
that generates salient objects on a camouflaged sample while
preserving its original label. Therefore, a model should be capable
of distinguishing between camouflaged and salient objects to
achieve a robust feature representation.

Neural Architecture Search. Automatic network architecture
search (NAS) is a promising research direction that can discover
optimal network architectures for superior performance on a given
task. In the context of concealment, NAS can identify more
effective network architectures to handle complex background
scenes, highly variable object appearances, and limited labeled
data. This can lead to the developing of more efficient and
effective network architectures, resulting in improved accuracy
and efficiency. Combining NAS with other research directions,
such as domain adaptation and data-efficient learning, can further
enhance the understanding of concealed scenes. These avenues of
exploration hold significant potential for advancing the state-of-
the-art and warrant further investigation in future research.

Large Model and Prompt Engineering. This topic has gained
popularity and has even become a direction for the natural lan-
guage processing community. Recently, the Segment Anything
Model (SAM) [194] has revolutionized computer vision algo-
rithms, although it has limitations [195] in unprompted settings
on several concealed scenarios. One can leverage the prompt
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Fig. 4. Qualitative results of ten COS approaches. More descriptions on visual attributes in each column refer to §5.6.
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Fig. 5. Sample gallery of our CDS2K. It is collected from five sub-databases: (a-l) MVTecAD, (m-o) NEU, (p) CrackForest, (q) KolektorSDD, and
(r) MagneticTile. The defective regions are highlighted with red rectangles. (Top-Right) Word cloud visualization of CDS2K. (Bottom) The statistic
number of positive/negative samples of each category in our CDS2K.

engineering paradigm to simplify workflows using a well-trained
robust encoder and task-specific adaptions, such as task-specific
prompts and multi-task prediction heads. This approach is ex-
pected to become a future trend within the computer vision
community. Large language models (LLMs) have brought both
new opportunities and challenges to AI, moving towards artifi-
cial general intelligence further. However, it is challenging for
academia to train the resource-consuming large models. There
could be a promising paradigm that the state-of-the-art deep CSU
models are used as the domain experts, and meanwhile, the large
models could work as an external component to assist the expert
models by providing an auxiliary decision, representation, etc.

7 DEFECT SEGMENTATION DATASET

Industrial defects usually originate from the undesirable produc-
tion process, e.g., mechanical impact, workpiece friction, chemical
corrosion, and other unavoidable physical, whose external visual
form is usually with unexpected patterns or outliers, e.g., surface
scratches, spots, holes on industrial devices; color difference,
indentation on fabric surface; impurities, breakage, stains on the
material surface, etc. Though previous works achieve promising
advances for identifying visual defects by vision-based techniques,
such as classification [196], [197], [198], detection [199], [200],
[201], and segmentation [202], [203], [204]. These techniques
work on the assumption that defects are easily detected, but they
ignore those challenging defects that are “seamlessly” embedded
in their materials surroundings. With this, we elaborately collect a

new multi-scene benchmark, named CDS2K, for the concealed de-
fect segmentation task, whose samples are selected from existing
industrial defect databases.

7.1 Dataset Organisation
To create a dataset of superior quality, we established three
principles for selecting data: (a) The chosen sample should include
at least one defective region, which will serve as a positive
example. (b) The defective regions should have a pattern similar
to the background, making them difficult to identify. (c) We also
select normal cases as negative examples to provide a contrasting
perspective with the positive ones. These samples were selected
from the following well-known defect segmentation databases.
• MVTecAD4 [205], [206] contains several positive and negative
samples for unsupervised anomaly detection. We manually select
748 positive and 746 negative samples with concealed patterns
from two main categories: (a) object category as in the 1st row
of Fig. 5: pill, screw, tile, transistor, wood, and zipper. (b) texture
category as in the 2nd row of Fig. 5: bottle, capsule, carpet, grid,
leather, and metal nut. The number of positive/negative samples is
shown with yellow circles in Fig. 5
• NEU5 provides three different database: oil pollution defect
images [207] (OPDI), spot defect images [208] (SDI), and steel
pit defect images [209] (SPDI). As shown in the third row (green

4. https://www.mvtec.com/company/research/datasets/mvtec-ad
5. http://faculty.neu.edu.cn/songkechen/zh CN/zdylm/263270/list/index.

htm

https://www.mvtec.com/company/research/datasets/mvtec-ad
http://faculty.neu.edu.cn/songkechen/zh_CN/zdylm/263270/list/index.htm
http://faculty.neu.edu.cn/songkechen/zh_CN/zdylm/263270/list/index.htm
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TABLE 7
Statistic of positive samples in CDS2K. The region ratio is calculated by r = defective pixels/all pixels for a given image. Of note, we only count

the number of positive samples in five sub-datasets.

Category 0% < r < 1% 1% ≤ r < 10% 10% ≤ r < 20% 20% ≤ r < 30% 30% ≤ r < 40% 40% ≤ r < 50% Total

M
V

Te
cA

D

Objects-Pill 41 55 0 0 0 0 96
Objects-Screw 71 1 0 0 0 0 72

Objects-Tile 0 30 28 7 2 0 67
Objects-Transistor 1 7 0 0 0 0 8

Objects-Wood 2 26 2 0 0 0 30
Objects-Zipper 16 102 1 0 0 0 119
Texture-Bottle 3 39 20 1 0 0 63

Texture-Capsule 17 8 0 0 0 0 25
Texture-Carpet 37 45 0 0 0 0 82

Texture-Grid 39 18 0 0 0 0 57
Texture-Leather 70 21 0 0 0 0 91

Texture-Metal Nut 6 31 1 0 0 0 38

N
E

U OPDI 10 0 0 0 0 0 10
SDI 20 0 0 0 0 0 20

SPDI 15 0 0 0 0 0 15
CrackForest 28 90 0 0 0 0 118

KolektorSDD 31 0 0 0 0 0 31
Magnetic Tile Defect 216 70 27 27 24 24 388

Total 623 543 79 35 26 24 1330

TABLE 8
Quantitative comparison on the positive samples of CDS2K.

Model Pub/Year Backbone Sα ↑ Fw
β
↑ M ↓ Ead

φ
↑ Emn

φ
↑ Emx

φ
↑ Fad

β
↑ Fmn

β
↑ Fmx

β
↑

SINetV2 [22] TPAMI22 Res2Net-50 0.551 0.215 0.102 0.509 0.567 0.597 0.223 0.248 0.258
HitNet [142] AAAI23 PVTv2-B2 0.563 0.276 0.118 0.574 0.564 0.570 0.298 0.298 0.299
DGNet [27] MIR23 EfficientNet-B4 0.578 0.258 0.089 0.552 0.569 0.579 0.274 0.291 0.297

CamoFormer-P [147] arXiv23 PVTv2-B4 0.589 0.298 0.100 0.590 0.588 0.596 0.330 0.329 0.339

(a) Negative (b) Positive (c) Bounding Box (d) Mask

Fig. 6. Visualization of different annotations. We select a group of
images from the MVTecAD database, including a negative (a) and a
positive (b) sample. Corresponding annotations are provided: category
(scratches on wood) and defect locations: bounding box (c) and seg-
mentation mask (d).

circles) of Fig. 5, we select 10, 20, and 15 positive samples from
these databases separately.
• CrackForest6 [210], [211] is a densely-annotated road crack
image database for the health monitoring of urban road surface.
We select 118 samples with concealed patterns from them, and the
samples are shown in the third row (red circle) of Fig. 5.
• KolektorSDD7 [203] collected and annotated by Kolektor
Group, which contains several defective and non-defective sur-
faces from the controlled industrial environment in a real-world
case. We manually select 31 positive and 30 negative samples
with concealed patterns, and the samples are shown in the third
row (blue circle) of Fig. 5.
• Magnetic Tile Defect8 [212] datasets contains six common
magnetic tile defects and corresponding dense annotations. We
picked 388 positive and 386 negative examples, displayed as white
circles in Fig. 5.

6. https://github.com/cuilimeng/CrackForest-dataset
7. https://www.vicos.si/resources/kolektorsdd/
8. https://github.com/abin24/Magnetic-tile-defect-datasets

7.2 Dataset Description
The CDS2K comprises 2,492 samples, consisting of 1,330 positive
and 1,162 negative instances. Three different human-annotated
labels are provided to each sample – category, bounding box,
and pixel-wise segmentation mask. Fig. 6 illustrates examples of
these annotations. The average ratio of defective regions for each
category is presented in Table 7, which indicates that most of the
defective regions are relatively small.

7.3 Evaluation on CDS2K
Here, we evaluate the generalizability of current cutting-edge
COS models on the positive samples of CDS2K. Regrading the
code availability, we here choose four top-performing COS ap-
proaches: SINetV2 [22], DGNet [27], CamoFormer-P [147], and
HitNet [142]. As reported in Table 8, our observations indicate that
these models are not effective in handling cross-domain samples,
highlighting the need for further exploration of the domain gap
between natural scene and downstream applications.

8 CONCLUSION

This paper aims to provide an overview of deep learning tech-
niques tailored for concealed scene understanding (CSU). To help
the readers view the global landscape of this field, we have
made four contributions: Firstly, we provide a detailed survey
of CSU, which includes its background, taxonomy, task-specific
challenges, and advances in the deep learning era. To the best
of our knowledge, this survey is the most comprehensive one
to date. Secondly, we have created the largest and most up-
to-date benchmark for concealed object segmentation (COS),
which is a foundational and prosperous direction at CSU. This
benchmark allows for a quantitative comparison of state-of-the-
art techniques. Thirdly, we have collected the largest concealed

https://github.com/cuilimeng/CrackForest-dataset
https://www.vicos.si/resources/kolektorsdd/
https://github.com/abin24/Magnetic-tile-defect-datasets
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defect segmentation dataset, CDS2K, by including hard cases
from diverse industrial scenarios. We have also constructed a
comprehensive benchmark to evaluate the generalizability of deep
CSU in practical scenarios. Finally, we discuss open problems
and potential directions for this community. We aim to encourage
further research and development in this area.

We would conclude from the following perspectives. (1)
Model. The most common practice is based on the architecture
of sharing UNet, which is enhanced by various attention modules.
In addition, injecting extra priors and/or introducing auxiliary
tasks improve the performance, while there are many potential
problems to explore. (2) Training. Fully-supervised learning is the
mainstream strategy in COS, but few researchers have addressed
the challenge caused by insufficient data or labels. CRNet [141]
is a good attempt to alleviate this issue. (3) Dataset. The existing
datasets are still not large and diverse enough. This community
needs more concealed samples involving more domains (e.g.,
autonomous driving and clinical diagnosis). (4) Performance.
Transformer and ConvNext based models outperform other com-
petitors by a clear margin. Cost-performance tradeoff is still under-
studied, for which DGNet [27] is a good attempt. (5) Metric.
There is no well-defined metrics that can consider the different
camouflage degree of different data to give a comprehensive
evaluation. This causes unfair comparisons.

Besides, existing CSU methods focus on the appearance at-
tributes of the concealed scenes (e.g., color, texture, boundary)
to distinguish concealed objects without enough perception and
output from the semantic perspective (e.g., relationships between
objects). However, semantics is a good tool for bridging the
human and machine intelligence gap. Therefore, beyond the visual
space, semantic level awareness is key to the next-generation
concealed visual perception. In the future, CSU models should
incorporate various semantic abilities, including integrating high-
level semantics, learning vision-language knowledge [213], and
modeling interactions across objects.

We hope that this survey provides a detailed overview for new
researchers, presents a convenient reference for relevant experts,
and encourages future research.
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