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New challenges and opportunities

Fluctuating renewable energy sources
– poor short-range prediction
– correlated uncertainty

Inverter-based generation
– control flexibility
– decreased resilience
– tighter operating specifications
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How does the grid cope with this uncertainty?
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Example: power systems load / generation balancing
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Real-time operations

operator-mediated and
based on pre-defined
remedial actions
struggles to cope with
increased uncertainty
today’s architecture becomes
highly inefficient
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Ancillary services

• Real time balancing (supply = demand)
• Economic re-dispatch
• Voltage regulation
• Voltage collapse prevention
• Line congestion relief
• Reactive power compensation
• Losses minimization

Today: partially automated services, provided by separate mechanisms.

Future real-time operation

Future power systems will require faster operation, based on online monitoring
and measurement, in order to meet operational specifications in real-time.
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Teaser: voltage stability in the Nordic system

Heavily loaded system
Large transfers between north and
central areas
All loads equipped with LTCs
Generators equipped with
Automatic Voltage Regulators and
Over Excitation Limiters
Frequency control through speed
governors g15
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Voltage collapse

250 MW load ramp
from t = 500 to t = 800.
Extra demand is balanced by
primary frequency control
Cascade of activation of
over-excitation limiters
LTCs increase power demand of
distribution buses
...voltage collapse

Let us assume we can control AVR
set-points in real time...
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Voltage collapse averted!
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What makes real-time operation effective

Feedforward optimization

Optimization System

d estimate

u

d

y

complex optimal decision
operational constraints
MIMO (multi-input/output)
highly model-based
computationally intensive

Feedback control

Controller Systemr +
u

y

d

−

robust to model uncertainty
fast response
measurement driven
suboptimal operation
unconstrained operation

Proposal: a feedback approach to optimal real-time operation
to inherit the best of the two worlds
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OVERVIEW

1. Projected gradient flow on the power flow manifold

2. Interconnected dynamics and stability analysis

3. Numerical experiments
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PROJECTED GRADIENT FLOW
ON THE POWER FLOW MANIFOLD
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Steady-state AC power flow model
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(all variables and parameters are    -valued)
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Power flow manifold
State x =

[
v
θ
p
q

]

AC power flow equations f(x) = 0
Set of all grid states that satisfy the AC power flow equations

→ power flow manifold M := {x | f(x) = 0}
Regular submanifold of dimension 2n
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Trajectory feasibility

Closed-loop trajectories
necessarily belong toM

⇒ ẋ is tangent toM
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Tangent space
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Tangent space at a given power
flow solution x∗ ∈M

Ax∗(x− x∗) = 0

Ax∗ := ∂f(x)
∂x

∣∣∣∣
x=x∗

Implicit – No input/outputs (not a disadvantage)
Sparse – The matrix Ax∗ has the sparsity pattern of the grid graph
Structure preserving – Elements of Ax∗ depend on local parameters
Useful approximation for power system analysis

→ Bolognani & Dörfler (2015)
“Fast power system analysis via implicit linearization of the power flow manifold”

Saverio Bolognani 2018-11-16 15

http://dx.doi.org/10.1109/ALLERTON.2015.7447032
http://dx.doi.org/10.1109/ALLERTON.2015.7447032


Control specifications as an OPF

Real-time Optimal Power Flow (OPF)

• Minimize cost of generation
• Satisfy AC power flow laws
• Respect generation capacity
• No over-/under-voltage
• No congestion

minimize
∑

k∈N
costk(P

G
k )

subject to P
G + jQ

G = P
L + jQ

L + diag(V )Y
∗

V
∗

P
k
≤ P

G
k ≤ P k, Q

k
≤ Q

G
k ≤ Qk

V k ≤ Vk ≤ V k

|Pkl + jQkl| ≤ Skl

Challenging specifications on the
closed-loop trajectories:
1. stay on the manifold at all times
2. satisfy constraints at all times
3. converge to the OPF solution

Real-time
operation

physical, steady-state
power system

(AC power flow equations)
PG = PL + <{diag(V )Y ∗V∗}
QG = QL + ={diag(V )Y ∗V∗}

Loads
PL, QL

generator
setpoints

state
measurements

Saverio Bolognani 2018-11-16 16



Control specifications as an OPF

Real-time Optimal Power Flow (OPF)

• Minimize cost of generation
• Satisfy AC power flow laws
• Respect generation capacity
• No over-/under-voltage
• No congestion

minimize
∑

k∈N
costk(P

G
k )

subject to P
G + jQ

G = P
L + jQ

L + diag(V )Y
∗

V
∗

P
k
≤ P

G
k ≤ P k, Q

k
≤ Q

G
k ≤ Qk

V
k
≤ Vk ≤ V k

|Pkl + jQkl| ≤ Skl

Prototype of real-time OPF

minimize φ(x)
subject to x ∈ K =M∩X

φ : Rn → R objective function
M⊂ Rn AC power flow equations
X ⊂ Rn operational constraints
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Projected dynamical systems for trajectory feasibility

Operational constraints

x(t) ∈ K =M∩X = {power flow manifold} ∩ {operational constraints}

ẋ = ΠK (x,−gradφ(x)) , x(0) = x0

where ΠK(x, v) ∈ arg min
w∈TxK

||v − w|| belong to the feasible cone TxK

Theorem [AH et al. 2016] (simplified)

If φ has compact level sets on K, then the (Carathéodory-)solution x(t) will
converge to a critical point x∗ of φ on K.
Furthermore, if x∗ is asymptotically stable then it is a local minimizer of φ on K.

→ Hauswirth, Bolognani, Hug, & Dörfler (2016)
“Projected gradient descent on Riemanniann manifolds
with applications to online power system optimization”
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How to induce the projected gradient flow

Algebraic constraints on the state x
– Implicit: power flow equations f(x) = 0
– Explicit: steady state of local controllers + physics x = h(u, w)

Equivalent optimization problem

minimizeu,x φ(x)
subject to x ∈ X

x = h(u,w)

feedback
optimizer

power
system

steady state:
x = h(u,w)

U

u

x

w

e.g.
u̇ = −∇φ(x)

Input saturation: u ∈ U at all times (hard constraint)
Closed-loop trajectory: h(u,w) ∈ X at all times (soft constraint)
Steady state:The closed-loop system converges to the solution of the OPF
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Online optimization in closed loop

feedback
optimizer

power
system

steady state:
x = h(u,w)

U

u

x

w

e.g.
u̇ = −∇φ(x)

Optimization perspective
Algorithms as dynamical systems
[Lessard et al., 2014], [Wilson et al., 2018]
→ implemented via the physics

Control perspective
Existing feedback systems
interpreted as solving opt. problem
→ general objective + constraints

Lots of recent theory development:
[Bolognani et. al, 2015], [Dall’Anese et al., 2014], [Gan and Low, 2016], [Tang and Low, 2017], [Cady et
al., 2015], [Hauswirth et al. 2016], . . .survey: [Molzahn et al. 2018]
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INTERCONNECTED DYNAMICS AND
STABILITY ANALYSIS
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Problem Description

Optimization Problem

minimize
y,u

Φ(x)

subject to x = (CH +D)u+ CRw

u ∈ U

Steady-state feedback design:

u̇ = ΠU
(
−ε(CH +D)T∇Φ

)
(u)

LTI Dynamics

ż = Az +Bu+Qw

x = Cz +Du

A is Hurwitz, steady-state maps

z = −A−1B︸ ︷︷ ︸
H

u−A−1Q︸ ︷︷ ︸
R

w

x = (CH +D)u+ CRw

ε
∫

U
u

B
∫

D A

−(CH +D)T∇Φ x
C

+

+

+

+
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Main Result

Theorem
Assume

LTI system internally asymptotically stable: ∃P � 0 : PA+ATP � −I
Φ̂(u) := Φ((CH +D)u+Rw) has

– compact level sets
– `-Lipschitz gradient

Then, the closed-loop system is stable & converges to critical points for all

0 ≤ ε ≤ 1
2`‖PH‖

Proof: based on singular perturbation analysis, performed via an ad hoc La
Salle argument.

→ Menta, Hauswirth, Bolognani, Hug & Dörfler (2018)
“Stability of Dynamic Feedback Optimization with Applications to Power Systems”
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Highlights and comparison of our contributions

Weak assumptions on plant

Internal stability

→ Steady-state map H
(reduced model dependency)

→ No assumptions on observability
or controllability

Weak assumptions on cost

Lipschitz gradient

→ No convexity required

Convexity⇒ global convergence

Potentially conservative bound, but

→ minimal assumptions on
optimization problem & plant

→ directly useful for design
(no LMI/IQC stability test)
[Nelson et al. 2017], [Colombino et al. 2018]

proof is general and can be
extended to other algorithms

→ applicable to switched systems
(→ input saturation)
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NUMERICAL EXPERIMENTS
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Optimal constrained frequency control

Dynamic model:

linearized swing dynamics (with primary frequency control)

1st-order turbine-governor

DC power flow approximation (Kron-reduced)

θ̇ = ω

ω̇ = −M−1 (Dω + Bθ − p+ pL(t)
)

ṗ = −K
(
R−1ω + p− pC

)





ż = Az +Bu+Qw where

z =
[
θ
ω
p

]
, u = pC , w = pL(t)

Measurement: frequency at node 1 + line flows + active power injections

x =




0 1 0 . . . 0 0
B` 0 0
0 0 I


 z
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Power application: optimal constrained frequency control
Optimization problem:

minimize
x,u

Φ(x)

subject to x = CHu+ CRw

u ∈ U

where x = CHu+ CRw is the steady-state input-output map and

Φ(x) = cost(x) + 1
2‖max{0, x− x}‖2Ξ + 1

2‖max{0, x− x}‖2Ξ

encodes both
economic cost of p (DC OPF)
operational limits (on line flows, frequency, ...) as penalty functions

while
U describes the saturation constraints on the actuation.
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Response to contingencies
Generator outage & double line tripping in IEEE 118-bus test system
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How conservative is ε??
Simulation on IEEE 118-bus test case

still stable for ε = 2ε?
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unstable for ε = 10ε?
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Note: Observed factors of conservativeness ranging from 1.2 to 1000,
depending on penalty scalings
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Conclusions

Integral feedback control to to solve constrained optimization problems
A sound mathematical framework: projected dynamical systems

– existence of solutions, time varying constraints, disconnected regions, ...

The proposed design methods features
– completely general objective functions and constraints
– robustness to model mismatch / rejection of unmeasured disturbances
– almost-model-free design (only steady-state map is needed)
– quantifiable robustness guarantees w.r.t. system dynamics

→ a new approach to real-time power system operation

A Unified Control Framework for
Real-Time Power System Operation
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