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Optimal Consumption Policies for
Power-Constrained Flexible Loads

Under Dynamic Pricing
Donatello Materassi, Saverio Bolognani, Mardavij Roozbehani, and Munther A. Dahleh

Abstract—This paper analyzes the response of an individual
consumer with a flexible demand for electricity to exogenous and
stochastic electricity prices. The contributions of this paper are
twofold. First, we propose a comprehensive model for which the
optimal policy can be explicitly computed. The proposed consumer
model features a time varying bound on power consumption,
the presence of a nondeferrable load profile, the presence of
a load profile that can be deferred up to a deadline, and the
possibility of curtailment. Second, we describe the algorithm
that, via explicit backward iterations of the Bellman equation,
returns the optimal response of such consumer in a very gen-
eral energy market scenario featuring a correlated/nonstationary
price process and multiple energy procurement sources.

Index Terms—Power demand, power generation economics,
power load control.

I. INTRODUCTION

MECHANISMS for real-time demand response are likely
to be one of the most significant technologies that will

emerge in future power grids. Consumers or smart devices
with communication and computation capabilities will be able
to adjust their consumption in real-time in order to mitigate
the effects of exogenous uncertainties and intermittencies of
renewable generation. Developing methodologies to determine
the stability properties and quantify the reliability of the sys-
tem resulting from the interaction between consumers with
reconfigurable energy needs and the electricity market is a
fundamental problem that still has to be fully addressed [1].

Success in the development of such methodologies relies on
progress in three directions.

1) Development of tractable models from basic principles
at the individual device/consumer level: these models
should be expressive enough to capture the most impor-
tant characteristics of power consumption and, at the
same time, abstract enough to be tractable for analysis
and design.
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2) Development of techniques to obtain aggregate models
with foundations in the individual models in order to
reliably characterize the aggregate behavior of a large
number of consumers.

3) Identification and validation of such models with actual
data.

This paper contributes to the first goal by studying the
optimal response of an individual consumer to stochasti-
cally varying electricity prices. The proposed consumer model
allows for a very general energy demand, featuring: 1) a time
varying bound on the instantaneous power consumption; 2) the
presence of a nondeferrable load profile; 3) the presence of a
load profile that can be deferred up to a given deadline; and
4) the possibility of curtailment at the deadline, at a cost.
For such demand, it is possible to compute the exact optimal
behavior of the consumer that wants to optimize her energy
consumption in a real time market with time correlated and
nonstationary prices, and multiple energy procurement options.

The optimal response of similar classes of consumers to
an exogenous price has been investigated since the seminal
contribution in [2] and its characterization has been shown
to be closely related to variations of the inventory control
problem (see [3]–[5] and the references therein). While these
tools have been applied, for example, to extend the solution
of the optimal energy storage problem from a deterministic
setting [6] to a stochastic one [7], [8], the existing literature
on the implications for individual flexible consumers in more
practical scenarios is relatively narrow.

A similar problem has been formulated under the terminol-
ogy of multistage energy procurement. In this scenario, large
consumers have the option of purchasing energy from different
sources in the day-ahead auction and in the real-time market,
and want to minimize the expected energy cost, possibly while
mitigating risk [9]. Stochastic optimization methods [10], [11]
and nonprobabilistic decision strategies [12] have been spe-
cialized for this problem, obtaining complex algorithms whose
computational burden can partially be mitigated via approxi-
mation or reduction techniques. If only two stages are assumed
(one day-ahead and one real-time transaction), then the result-
ing optimal policy [13] is a special case of the scenario that,
we propose in this paper.

Several papers, including [14]–[19], have considered cer-
tain applications of deferrable power demand, for which they
derived specialized strategies, often based on heuristics or
certain features of the specific application. In other cases,

1949-3053 c© 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:donnie13@mit.edu
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON SMART GRID

computationally intensive algorithms have been proposed
for more general and comprehensive formulations of the
deferrable load problem, based on approximate solutions of
the corresponding stochastic dynamic program [20], heuristic
strategies [21], Monte Carlo methods [22], or robust discrete
optimization [23]. Because of their complexity, these methods
do not usually provide analytical solutions and are not well
suited for the derivation of aggregate models.

There have been previous contributions toward the mathe-
matical understanding of the optimal strategy of a deferrable
load responding to an exogenous price, based on dynamic pro-
gramming (DP), such as [24]–[28]. However, results in [24]
are limited to the case of independent prices only proving
that the “value function” is piecewise linear in the backlogged
demand, with no explicit expressions for the computation of
the value functions. In [25], a detailed model that takes into
account bounds on consumption and correlated prices has
been proposed, showing that the value function is convex with
respect to the backlogged demand. In [26], optimal threshold
policies have been derived for the case of both interruptible
and noninterruptible tasks. However, the authors assumed that
consumption is discrete (on/off) in nature, and prices are inde-
pendent in each period. Extension of these results to more
general settings is not immediate. In [27], a quasi-analytic
solution to the problem is derived, but in the case of no bounds
of consumptions and only for an independent and identically
distributed process. In [28], a Markovian price model is con-
sidered, and the optimal threshold policy for a simpler model
of a delay-averse load is computed, discussing an explicit
iterative derivation of the thresholds and the computational
complexity of this derivation.

Compared to these works, in this paper, we model flexi-
ble loads taking into account multiple features simultaneously
(i.e., a time-varying bound on power consumption, a firm
demand profile, a shiftable demand profile with a hard dead-
line). The optimal policy for these loads is fully described by
a set of thresholds: the consumer will consume only when the
price falls below a certain level which depends on the time left
to his deadline, on the future consumption needs, and on the
information about the price process. The key technical achieve-
ment is the development of an exact procedure to compute
such thresholds, without relying on any approximation tech-
nique, in several energy market scenarios of practical relevance
(i.e., with nonstationary and correlated prices, with possible
curtailment, and with multiple procurement sources). Because
the proposed algorithm is amenable to implementation in rela-
tive small computational units (i.e., in the computational core
of smart appliances), it is reasonable to adopt this policy as
an atomic model of the response of flexible loads to real-time
energy prices, which is the ultimate goal of this paper.

This paper is organized as follows. We first formulate
the problem in terms of DP (Section II), and we describe a
general approach for its solution via the stochastic Bellman
equation. In Section III, we show how to explicitly perform
the iterations of the Bellman equation in the simplified case of
an independent identically distributed (i.i.d). price process, in
order to provide the necessary basic intuition. This allows us
to use a simpler notation since the value functions associated

with the stochastic Bellman equation are independent of the
previous history. The extension of the i.i.d. hypothesis to the
more general case of correlated prices is then discussed in
Section IV. In Section V, we show how the same approach
can also be used in the case of multiple energy procurement
options, at different prices. The procedure to compute the
optimal policy, and the resulting consumer response to a price
signal, is illustrated numerically in Section VI.

II. MODEL OF INDIVIDUAL CONSUMER WITH

DEFERRABLE DEMAND

The consumer has a predetermined energy demand profile
defined over a known time horizon consisting of n intervals,
indexed by k = 0, . . . , n − 1. Such demand profile is made of
two components: 1) the firm demand d( f )

k , k = 0, . . . , n − 1;
and 2) the shiftable demand d(s)

k , k = 0, . . . , n − 1. The
firm demand d( f )

k needs to be satisfied at time k, and can-
not be deferred in the future. Instead, the shiftable demand
d(s)

k describes energy needs that can be satisfied either at time
k or at a any later time up to the last time interval n − 1. In
a way, the demand profile d(s)

k defines how early the energy
needs of the consumer can be served, opposed to the time
deadline n that poses a limit to the deferral of consumption.
It is assumed that both the profiles d( f ) and d(s) are known to
the consumer at the beginning of the optimization horizon.

The consumer’s backlogged demand at the kth interval is
denoted by xk ∈ (−∞, 0], where xk = 0 means that there
is no backlogged demand. The state variable xk is updated
according to xk+1 = xk +uk −d( f )

k −d(s)
k , where, uk ∈ [0, umax

k ]
is the amount of energy that the consumer decides to withdraw
from the grid during the kth period, and umax

k is a possibly time
varying limit on the instantaneous power consumption.

It is also assumed, for now, that the energy cost is linear
in the consumption uk, namely it is equal to λkuk. The case
with different energy procurement options available to the
consumer is analyzed in Section V. The price λk is a stochas-
tic process with known probability distribution. In particular,
in this paper, we first consider the case where {λj}+∞

j=−∞ is an
independent and identically distributed process, and then, we
extend the results to the case where {λj}+∞

j=−∞ is a Markov
process of order m, namely that the conditional distribution
of λk given the whole price history depends only on the past
m prices {λj}k−1

j=k−m.
Finally, we assume that the consumer suffers a penalty

C(xn) ≥ 0 determined by any residual backlogged demand xn at
the end of the optimization horizon. The function C(xn) models
the curtailment that the consumer would adopt if her energy
needs were to be partially satisfied. We assume that the function
C(xn), defined on negative values of xn, is nonincreasing and
convex, since a rational consumer will curtail consumption at
the expense of less essential needs first. We also assume that
C(xn) is piecewise linear. This assumption is only marginally
restrictive, since any continuous curtailment function C(xn) can
be approximated with a piecewise linear function.

Remark 1 (Multiple Time Deadlines): The proposed model
assumes that the entirety of the consumer demand shares
the same time deadline n. Further investigation shows that
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there is indeed a qualitative difference in the optimal
consumption problem with a single or multiple deadlines.
Materassi et al. [29] showed how this latter problem is in fact
a scheduling problem with a rich structure of the feasibility
set, and different tools are need to be employed to aggregate
the individual policies of the consumers.

A. Optimization-Based Model

The consumer’s energy management problem is formulated
as a finite-horizon DP problem

min E

[
C(xn) +

n−1∑
k=0

λkuk

]

subject to xk+1 = xk + uk − d( f )
k − d(s)

k

x0 = 0

xk ≤ 0

d( f )
k ≤ uk ≤ umax

k . (1)

The situation where no curtailment is allowed can be taken
into account by considering the limit case C(xn) = −γ xn, with
γ arbitrarily large. This condition is equivalent to including the
additional terminal constraint xn = 0.

In this paper, we will always assume that the problem is
feasible.

We observe that, we can reformulate the problem in an
equivalent way by “redefining” uk as uk − d( f )

k and removing
the explicit presence of a firm demand. Also, the constraint
xk ≤ 0 can be removed, if we introduce the constraint

uk ≤ uk(xk) := min
{

umax
k − d( f )

k , d(s)
k − xk

}
. (2)

Thus, the consumer optimization problem becomes

min E

[
C(xn) +

n−1∑
k=0

λkuk

]

subject to xk+1 = xk − dk + uk

x0 = 0

0 ≤ uk ≤ uk(xk) (3)

where now the input uk has a bound that depends on the state
xk and the demand profile dk, k = 1, . . . , n−1, is equal to the
deferrable demand d(s) only. Thus, we have no loss of general-
ity, if we consider the optimization problem (3), in which the
firm demand and the constraint xk ≤ 0 do not appear explicitly.

B. Solution via Bellman Stochastic Equation

The optimization problem (3) is a (stochastic) dynamic pro-
gram. The solution of a dynamic program is immediately
obtained if it is possible to solve the (stochastic) Bellman
equation associated with it [30]. The Bellman equation is an
equation in which the unknown is a function. Usually the func-
tion solving the Bellman equation is referred to as the value
function. In general, an explicit form for the value function is
difficult to obtain. In the following, we show that for (3) the
value function can be obtained using explicit formulas.

We consider the general case in which the stochastic price
λk is a Markov process of order m. Thus, the conditional dis-
tribution of λk given the past history {λj}k−1

j=−∞ depends only

on a limited number of past prices λk−1, . . . , λk−m. In this
case, the approach via DP is effective since it is necessary to
keep track of only the last m price values in order to obtain
the optimal solution.

The Bellman stochastic equation [30], associated with
program (3) and defined in terms of the value function
V(xk, {λj}k

j=k−m+1) for k = 0, . . . , n − 1, is

Vk

(
xk,

{
λj

}k
j=k−m+1

)
= min

uk∈[0,uk]

{
λkuk + E

[
Vk+1

(
xk+1,

{
λj

}k+1
j=k−m+2

)
∣∣∣xk,

{
λj

}k
j=k−m+1

]}
(4)

with final condition given by the function

Vn

(
xn,

{
λj

}n
j=n−m+1

)
= C(xn) (5)

for every history {λj}n
j=n−m+1.

Observe that the dynamics of the state xk depends determin-
istically on the decision variable uk. Assuming that the state
xk does not affect the future prices (the consumer is a price
taker), then (4) becomes

Vk

(
xk,

{
λj

}k
j=k−m+1

)
= min

uk∈[0,uk]

{
λkuk + E

[
Vk+1

(
xk − dk + uk,

{
λj

}k+1
j=k−m+2

)
∣∣∣ {λj

}k
j=k−m+1

]}
.

Observe that, given the deterministic dependence of xk+1
on xk, uk and dk, we can define the average value function as

Wk

(
xk+1,

{
λj

}k
j=k−m+1

)
:= E

[
Vk+1

(
xk+1,

{
λj

}k+1
j=k−m+2

) ∣∣∣ {λj
}k

j=k−m+1

]
(6)

for k = 0, . . . , n − 1.
We then rewrite (4) as

Vk

(
xk,

{
λj

}k
j=k−m+1

)
= min

uk∈[0,uk]

{
λkuk + Wk

(
xk − dk + uk,

{
λj

}k
j=k−m+1

)}
.

In order to minimize the quantity λkuk + Wk(xk − dk +
uk, {λj}k

j=k−m+1), let us differentiate with respect to the deci-
sion variable uk and let us equate to zero. This leads to

− ωk

(
xk − dk + uk,

{
λj

}k
j=k−m+1

)
= λk (7)

where, we have defined

ωk

(
xk+1,

{
λj

}k
j=k−m+1

)
:= ∂

∂xk+1
Wk

(
xk+1,

{
λj

}k
j=k−m+1

)
.

(8)

A graphical representation of (7) is given in Fig. 1.
Equation (7) has a straightforward economic interpretation.
The curve −ωk(xk − dk + uk, {λj}k

j=k−m+1) represents the
marginal utility associated with the consumption of energy
given the price history, while the line at λk represents the asso-
ciated marginal cost. In the presence of no other constraints, a
consumer would consume the quantity ûk that corresponds to



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON SMART GRID

Fig. 1. Graphical interpretation of (7). The function −ωk(xk − dk +
uk, {λj}k

j=k−m+1) represents the utility associated to the unit xk − dk + uk
of backlogged energy for the next time interval. The line at λk represents
the marginal price for consumption. The value ûk where the two functions
intersect is the optimal consumption.

the point of intersection between the two curves. Such intersec-
tion, if it exists, is unique when −ωk(xk−dk+uk, {λj}k

j=k−m+1)

is continuous and monotonically decreasing. In the case of
−ωk(xk −dk +uk, {λj}k

j=k−m+1) monotonically decreasing, but
with no intersections between the two curves (i.e., because of
discontinuities), the optimal consumption ûk would be

ûk := sup
{

uk

∣∣∣ωk

(
xk − dk + uk,

{
λj

}k
j=k−m+1

)
+ λk ≤ 0

}
(9)

with the convention that sup{∅} = −∞. Observe that if the
marginal price curve lies completely below the marginal value
curve, we have ûk = +∞. Instead, if the marginal price curve
lies above the marginal value curve, we have ûk = −∞.

It is immediate to verify that ûk in (9) is the optimal con-
sumption when there are no constraints on uk, even in the
case where −ωk(xk − dk + uk, {λj}k

j=k−m+1) is monotonically
nonincreasing (e.g., piecewise constant).

When uk is constrained in [0, uk(xk)], (9) is still useful
to determine the optimal consumption. If −ωk(xk − dk +
uk, {λj}k

j=k−m+1) is monotonically nonincreasing in uk, the
optimal consumption u∗

k is determined as follows:

u∗
k =

⎧⎨
⎩

0 if ûk < 0
uk(x) if ûk > uk(x)
ûk otherwise.

(10)

The policy provided by (10) has again a straightforward
economic interpretation. The optimal consumption ûk, that
would happen in the presence of no constraints, is deter-
mined by intersecting the averaged marginal value function
−ωk(xk −dk +uk, {λj}k

j=k−m+1) and the current marginal price
λk. In the presence of the constraints, the optimal level of con-
sumption is forced to lie in the interval [0, uk(xk)], motivating
the final form of (10).

In the following, we will first show how to compute the
quantity ûk defined in (9), and thus the optimal consump-
tion defined in (10), when the price process {λj}+∞

j=−∞ where
the variables λj are assumed independent (but not necessar-
ily identically distributed). This is a scenario similar to [27],
with the main difference given by the fact that the constraint
uk ∈ [0, uk(xk)] is taken into account.

In Section IV, we will then extend the results to the case of
generic Markov prices, and in Section V, we will show how
to allow different energy procurement options, and thus more
complex structures of the energy price.

Fig. 2. Graphical representation of S∣∣β(z)
α(z)(z).

III. INDEPENDENT AND IDENTICALLY DISTRIBUTED

PRICE PROCESS

The main goal of this section is to provide an explicit formula
for the computation of the averaged marginal value function
ωk(xk+1, {λj}k

j=k−m+1), defined in (8), in the case of a price
process {λj}+∞

j=−∞ independent and identically distributed.
The knowledge of the averaged marginal function ωk at each

time k = 0, . . . , n − 1 determines the optimal consumption
policy as indicated in (9) and (10).

We start again from the Bellman equation (4), and observe
that, the situation of i.i.d prices would correspond to the case
m = 0. For m = 0, (4) can still be applied with a small
modification. Indeed, we notice that for m = 0, the function
Wk does not depend on λk. Instead, the function Vk still keeps
its dependence on λk since such a variable is contained in the
argument of the min operator yielding

Vk(xk, λk) = min
uk

{λkuk + E[Vk+1(xk+1, λk+1)]} (11)

for k = 0, . . . , n − 1, and

Vn(xn, λn) = C(xn). (12)

We have the following result.
Theorem 1: Consider the optimal consumption problem in

the case of an i.i.d price process, with curtailment penalty
Cn(xn) that is convex and piecewise linear. The optimal pol-
icy is given by (9) and (10), where the averaged marginal
value functions ωk(xk+1), for k = 0, . . . , n − 1, are piecewise
constant and monotonically nonincreasing, and are given by
the backward iterations

− ωk−1(xk) =
∫

S∣∣−ωk(xk−dk)

−ωk(xk−dk+uk(xk))
(λk) dP(λk) (13)

−ωn−1(xn) = −dC(xn)

dxn
(14)

where the saturation function S∣∣β
α
(·) is defined as

S∣∣β(z)
α(z)(z) :=

⎧⎨
⎩

α if z < α

β if z > β

z otherwise
(15)

for α(z) ≤ β(z) ∀z, and represented in Fig. 2.
The property that −ωk, for k = 0, . . . , n − 1, are

nonincreasing and piecewise constant in xk+1 has practi-
cal relevance, since piecewise linear functions are extremely
memory-efficient to store and manipulate.

We prove this results constructively, by using the back-
ward iterations of the Bellman equation. Defining for
k = 0, . . . , n − 1, we find

Vk(xk, λk) = min
uk∈[0,uk]

{λkuk + Wk(xk − dk + uk)}.
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Fig. 3. Interpretation of the difference of the two integrals in (17), for
uk(xk) 
= uk(xk + ε).

The averaged marginal value function ωk is therefore simply
defined as

ωk(xk+1) = ∂

∂xk+1
E[Vk+1(xk+1, λk+1)]. (16)

Recall that, we are considering a curtailment penalty
C(xn) which is convex and piecewise linear. Then, according
to (12) and (16), −ωn−1(xn) = −dC/dxn is monotoni-
cally nonincreasing and piecewise constant. Adopting this
as a base case, we assume by induction, that −ωk(xk+1) is
monotonically nonincreasing in xk+1.

In order to find the minimum of the function λkuk+Wk(xk−
dk +uk) for uk in the interval [0, uk(xk)] and for a fixed λ, we
can simply integrate its derivative with respect to uk as long
as it is nonpositive in the interval [0, uk(xk)]. We thus have

Vk(xk, λk) = Wk(xk − dk)

+
∫ ūk(xk)

0
min

{
dWk

duk
(xk − dk + uk) + λk, 0

}
duk.

Equivalently, we find that

Vk(xk, λk) = Wk (xk − dk + ūk(xk))

+
∫ ūk(xk)

0
min {λk,−ωk(xk − dk + uk)} duk.

In order to compute ωk−1(xk) according to (16), we take
ε > 0 sufficiently small and compute

Vk(xk + ε, λk) − Vk(xk, λk)

= Wk(xk + ε − dk + ūk(xk + ε))

+
∫ ūk(xk+ε)

0
min {λk,−ωk(xk + ε − dk + uk)} duk

− Wk (xk − dk + ūk(xk))

−
∫ ūk(xk)

0
min {λk,−ωk(xk − dk + uk)} duk. (17)

The graphical interpretation of the difference between the
two integrals in the last equation is given in Fig. 3. The value
of Vk(xk + ε, λk) − Vk(xk, λk) is given by the difference of
the two integrals as represented in the figure summed to the
difference of two terms depending on the function Wk(xk+1).
While it is not possible to provide an explicit solution for
the general case, this quantity can be computed in the case
where Wk(xk+1) is a piecewise linear functions (and thus ωk

is piecewise constant). We therefore have two cases.

A. Case uk(xk) = umax
k —d( f )

k

Given the definition (2) for uk(xk), in this case, we also
have that, almost everywhere and for ε sufficiently small,

Fig. 4. Interpretation of the difference of the two integrals in (17) in the case
of piecewise marginal value function, for uk(xk) = uk(xk + ε) = umax

k —d( f )
k .

uk(xk + ε) = umax
k − d( f )

k . Since −ωk(xk+1) is piecewise con-
stant, the difference of the two integrals is given, by

	A =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if λk < −ωk(xk − dk + uk(xk))

−ε [−ωk(xk − dk) + ωk(xk − dk + uk(xk))]

if λk > −ωk(xk − dk)

−ε[λk + ωk(xk − dk + uk(xk))] otherwise.

(18)

This is exemplified by the plot in Fig. 4. At the same time,
it holds almost everywhere and for sufficiently small ε > 0
that

Wk(xk + ε − dk + uk(xk + ε)) − Wk(xk − dk + uk(xk))

= εωk(xk − dk + uk(xk)). (19)

Thus, using (18) and (19) in (17), we find that

lim
ε→0

[Vk(xk + ε, λk) − Vk(xk, λk)]/ε

= −S∣∣−ωk(xk−dk)

−ωk(xk−dk+uk(xk))
(λk). (20)

By averaging (20) over λk, we find a formula for the update
of the marginal expected value function ωk

− ωk−1(xk) =
∫

S∣∣−ωk(xk−dk)

−ωk(xk−dk+uk(xk))
(λk) dP(λk) (21)

where dP(λk) is the probability density associated with the
random variable λk.

B. Case uk(xk) < umax
k —d( f )

k

Given the definition (2) for uk(xk), in this case, we also
have that, almost everywhere and for ε sufficiently small,
uk(xk)—uk(xk + ε) = ε. In this case, we therefore have that

Wk+1 (xk + ε − dk + ūk(xk + ε))

− Wk+1(xk − dk + ūk(xk)) = 0. (22)

Instead, the area between the two integrals is given by

	A =
{

−ε [−ωk(xk − dk)] if λk > −ωk(xk − dk)

−ελk otherwise.
(23)

Thus, using (22) and (23) in (17), we find that

lim
ε→0

[Vk(xk + ε, λk) − Vk(xk, λk)]/ε

= − S∣∣−ωk(xk−dk)

−∞ (λk).
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Averaging the last expression with respect to λk, we find
that

− ωk−1(xk) =
∫

S∣∣−ωk(xk−dk)

−∞ (λk)dP(λk) (24)

where P(λk) is the probability measure associated with the
random variable λk.

The function −ωk(xk+1) is defined for xk+1 ≤ 0. By for-
mally extending it to −ωk(xk+1) = −∞ for xk+1 > 0, (21) and
(24) can be expressed in the unified form (13). Observe that,
since the function −ωk(xk+1) is piecewise constant and mono-
tonically nonincreasing, also −ωk−1(xk) is piecewise constant
and monotonically nonincreasing, as stated in Theorem 2.

IV. MARKOV PRICE PROCESS

The previous derivation can be extended to the case where
the price process is not a sequence of independent random
variables. This can be achieved by simply considering the
proper conditional distributions in (13), instead of the static
probability measure P(λk).

The following result follows.
Theorem 2: Consider the optimal consumption problem

with curtailment penalty Cn(xn) that is convex and piecewise
linear. The optimal policy is given by (9) and (10), where the
averaged marginal value functions −ωk(xk+1, {λj}k−1

j=k−m+1),
for k = 0, . . . , n−1, are piecewise constant in xk+1, monoton-
ically nonincreasing in xk+1, and are given by the backward
iterations

−ωk−1

(
xk,

{
λj

}k−1
j=k−m

))

=
∫

−S∣∣−ωk

(
xk−d,{λj}k

j=k−m+1

)
−ωk

(
xk−d+uk(xk),{λj}k

j=k−m+1

)(λk)

dP
(
λk|

{
λj

}k−1
j=k−m

)
(25)

where P(λk|{λj}k−1
j=k−m) is the conditional probability measure

of λk given {λj}k−1
j=k−m, and

− ωn−1

(
xn, {λj}n−1

j=n−m

)
= −dC(xn)

dxn
. (26)

Therefore, also in the case of correlated prices, the optimal
strategy of consumption is in the form of thresholds that can
be explicitly computed from the price history.

Also in this case, in order to prove the optimality of
the policy, we construct the explicit iterations for the aver-
aged marginal value function. Starting from the stochastic
Bellman equation (4) for each price λk+1 fix the price his-
tory {λj}k

j=k−m+1. As in the previous scenario, by assuming
that −ωk is monotonically nondecreasing in xk+1, for each
fixed price history, we find that

Vk(xk,
{
λj

}k
j=k−m+1) = Wk(xk − dk + ūk(xk),

{
λj

}k
j=k−m+1)

+
ūk(xk)∫
0

min
{
λk,−ωk(xk − dk + uk,

{
λj

}k
j=k−m+1)

}
duk.

Proceeding exactly as in the previous sce-
nario, we also find that, with the formal extension

Fig. 5. Schematic representation of the piece-wise constant price curve that
approximates the procurement cost in the presence of multiple sources. The
shaded area corresponds to the total price paid to consume uk at time k.

Fig. 6. Interpretation of the difference of the two integrals in (17), in the
case of a piecewise constant energy price (energy procurement scenario).

−ωk(xk+1, {λj}k
j=k−m+1) = −∞ for xk > 0 and by considering

ε > 0 sufficiently small, we can write[
Vk

(
xk + ε,

{
λj

}k
j=k−m+1

)
− Vk

(
xk,

{
λj

}k
j=k−m+1

)]
/ε

= −S∣∣−ωk

(
xk−d,{λj}k

j=k−m+1

)
−ωk

(
xk−d+uk(xk),{λj}k

j=k−m+1

)(λk) (27)

for every price history {λj}k−1
j=k−m. Taking the limit for

ε → 0 and averaging with respect to λk, given the history
{λj}k−1

j=k−m+1, we obtain (25).
Since the final condition of the backward iterations is given

by (26) and C(xn) is a piecewise linear and convex function,
then it is guaranteed by iterations (25) that each −ωk is piece-
wise constant and monotonically decreasing in xk+1 for a fixed
history {λj}k−1

j=k−m+1.

V. ENERGY PROCUREMENT PROBLEM

In the derivation of the optimal policy, we assumed that
the energy cost is linear in the consumption, i.e., the indi-
vidual consumer faces the marginal real-time energy price λk.
In many practical cases, however, the consumer is allowed to
purchase energy from multiple sources, possibly including its
own generation facilities. If this is the case, then the result-
ing marginal energy price is a convex, nondecreasing function
λk(uk) of the power consumption, and the total energy cost
for the consumer becomes

∫ uk
0 λk(z)dz.

The methodology proposed in this paper can be extended
to this scenario, as long as we can approximate the real-time
price curve λk(uk) with a piecewise constant function. Let
{ū(1), ū(2), . . . , ū(M)} be a set of fixed consumption thresholds.
Then, at every time k, the energy price curve is described
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by a vector λk = [λ(0)
k , λ

(1)
k , λ

(2)
k , . . . , λ

(M)
k ], describing the

marginal costs in the corresponding energy consumption inter-
vals (see Fig. 5).

The derivation of the optimal policy described in Section III
can be repeated in this case. Similarly as before, the difference
Vk(xk +ε,λk)−Vk(xk,λk) can be computed explicitly, by eval-
uating the area between the two curves min{λk(uk),−ωk(xk −
dk + uk)} and min{λk,−ωk(xk + ε − dk + uk)}. In this case,
however, this area needs to be computed separately for each
consumption interval (see how Fig. 6 replaces Fig. 4).

The backward iteration (13) of the Bellman equation (for
the i.i.d. case, and similarly for the case of correlated prices)
is finally replaced by

− ωk−1(xk) =
∫ Mk−1∑

i=0

S∣∣−ω̄
(i)
k

−ω̄
(i+1)
k

(
λ

(i)
k + ω̄

(i+1)
k

)

+ S∣∣−ω̄
(Mk)

k−ω̄k

(
λ

(Mk)
k

)
dP(λk)

where Mk is such that ū(Mk) is the largest consumption
threshold smaller than ūk, and we introduced the compact
notations

ω̄
(i)
k = ωk

(
xk − dk + ū(i)

)
, ω̄k = ωk (xk − dk + ūk).

While the computational complexity of the iteration surely
increased (depending on the number of consumption thresh-
olds), it is again an explicit iteration that preserves the
piece-wise nature of the averaged marginal value functions
−ωk(xk+1), and ultimately returns a threshold policy.

VI. NUMERICAL EXAMPLE

A. Example for i.i.d. Price Process

We first illustrate, via a simple numerical example, the com-
putation of the derivatives of the expected value functions (Wk)
for k = 0, . . . , n−1 and how these functions define the optimal
consumption for a price-responsive energy user. Consider an
i.i.d price process {λk}k∈Z with probability distributions that
is uniform in the interval [0, 1]. Consider a price responsive
user with demand profile (d0, d1, d2) = (3, 0, 0) over an opti-
mization horizon n = 3 and bound on consumption uk = 2,
for k = 0, 1, 2. Assume that the task is “critical,” thus the
backlog at time n = 3 has to be zero, x3 = 0. We want to
compute the derivatives of the value functions. Since the task
is critical, we initialize the backward iterations as

−ωn−1(xn) = −ω2(x3) =
{+∞ for − 2 ≤ x3 < 0

−∞ for 0 ≤ x3

as shown in Fig. 7(a). Applying the backward iteration (13),
we find

−ω1(x2) =
∫

S∣∣−ω2(x2)

−ω2(x2+2)
(λ2)dP(λ2)

=
⎧⎨
⎩

+∞ for − 4 ≤ x2 < −2
1
2 for − 2 ≤ x2 < 0

−∞ for 0 ≤ x2

that is shown in Fig. 7(b). Notice that, in order to compute
−ω1(x2), we only have to compute the integral in (13) for

Fig. 7. Derivatives of the marginal value functions −ω3, −ω2, and −ω1 for
the numerical example of Section VI in (a)–(c), respectively. (d) Determination
of the optimal consumption u∗

0 at time k = 0. If the price λ0 is above 7/8,
then the optimal policies provides u∗

0 = 0; if the price is between 3/8 and 7/8
(as in the figure), the optimal policy provides u∗

0 = 1; if the price is below
3/8, the optimal policy provides u∗

0 = ū0 = 2.

a finite number of values of x2, given the piecewise constant
nature of the functions ωk.

Applying again (13), we find

−ω0(x1) =
∫

S∣∣−ω1(x1)

−ω1(x1+2)
(λ1)dP(λ1)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+∞ for − 6 ≤ x1 < −4
5
8 for − 4 ≤ x1 < −2
3
8 for − 2 ≤ x1 < 0

−∞ for 0 ≤ x1

that is shown in Fig. 7(c). Now that −ω0(x1) is computed, we
can plot −ω0(x0 − d0 + u0) as a function of u0 and intersect
this curve with the horizontal line λ0 in order to determine
the optimal consumption, using the expressions (9) and (10).
As Fig. 7(d) suggests, if the price is above 7/8, then û0 = −1
and the optimal policy returns u∗

0 = 0; if the price is between
3/8 and 7/8 [as in Fig. 7(d)] the optimal policy provides u∗

0 =
û0 = 1; if the price is below 3/8, then û0 = 3 and then the
optimal policy provides u∗

0 = 2.
This simple numerical example provides also a qualitative

assessment of the complexity of the proposed algorithm. In
fact, the number of thresholds that describe the value function
increases at every backward step in the iterative procedures,
and for each threshold, we need to compute an expectation
operation (see also the discussion in [28] for a similar algo-
rithm). The complexity of this latter operation depends on the
pricing model: in the case of discretized prices, this opera-
tion reduces to a sum over the possible price levels (and their
probabilities).

B. Correlated Prices

Let us consider the following scenario. There is a contract
in place between a utility company and a household/facility
where energy is delivered according to a mechanism of real-
time pricing that considers only five possible prices: “high,”
“medium/high,” “medium,” “medium/low,” and “low.” Prices
are updated at a given frequency (for example every 15 min)
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Fig. 8. Graph representation of the price process modeled as Markov process.
The labels on the arrows are the corresponding transition probabilities from
one price to another (transitions from one state to itself have been omitted).

and kept constant in between updates. A contract of this kind
(with only a few discretized prices) might provide some of
the advantages of real-time pricing without exposing the con-
sumer to the high variability of the market. The consumer (or
better a smart appliance) monitors the price and determines
the appropriate consumption trying to minimize the expected
cost. Let us assume that the price process is well modeled by
a Markov process, so that the probability of having a certain
price during the next time interval depends only on the price at
the current interval. Let the five price levels be [10, 7, 5, 2, 1]
and the transition probabilities be as represented in Fig. 8.
Observe that a higher prices a time k is positively correlated
with a higher price at time k+1 and vice versa. Positive corre-
lation in the price process has already been observed in power
systems [31], thus determining an optimal consumption pol-
icy in the case of a correlated price process has great practical
relevance.

Assume that a task requires nine energy units and has to be
completed within six time steps (k = 0, 1, 2, 3, 4, 5) with no
curtailment allowed. We model the task assuming a shiftable
demand profile d(s) = [9, 0, 0, 0, 0, 0]. Assume also that the
household has a constraint on the energy that it can withdraw
from the grid, namely umax

k = 3, for all k. However, suppose
that there are other processes already scheduled that can not be
either postponed or anticipated. They are modeled as a firm
component of the demand d( f ) = [1, 1, 0, 0, 2, 2]. Applying
the backward iterations proposed in Theorem 2, it is possible
to compute the function −ωk(xk+1, λk), for k = 0, 1, 2, 3, 4, 5.
Notice that, by considering discretized prices, the functions
−ωk(xk+1, λk) can be represented (and stored) as five piece-
wise constant functions of xk+1, each one associated to a value
of λk. For k = 0 the result of these computations is reported
in Fig. 9. Observe that higher value functions corresponds to
higher values of λ0. This is a direct consequence of the pos-
itive correlation of the price process: if the λ0 is high it is
more likely that future prices will be high as well.

The optimal consumption is, therefore determined immedi-
ately from the five value functions computed at k = 0, as shown
before in Fig. 7(d). Once the price λ0 is known, the appropri-
ate value function is selected. The intersection of the selected
curve with the price level λ0 determines the value û0 for which
−ω0(x0 − d0 + û0, λ0) = λ0, as in (9). The optimal consump-
tion u∗

0 is then computed according to (10), i.e., by limiting
the consumption to the interval [0, ū0], if it falls outside. In the
example of Fig. 9, we assumed that the price λ0 is medium, and
we obtained û0 = 3. As ū0 = umax

0 − d( f )
0 = 2, then u∗

0 = 2.

Fig. 9. Computed function −ω0(x1, λ0) = λ0 for the example in
Section VI-B. The price λ0 can assume only five discrete values, thus there
are five piecewise constant functions of x1 = x0 − d0 + u0, each one associ-
ated to a value of λ0. Once λ0 is known, the appropriate piecewise function
is selected, and used to determine the optimal consumption.

This numerical example also shows how, as expected, the
number of thresholds increases with the length of the opti-
mization horizon n. It is indeed possible to construct examples
where the number of thresholds grows exponentially in n.
However, in the specific case where the bounds uk are all
commensurable and uniformly bounded, the number of thresh-
olds grows linearly with the time horizon. Regardless of these
asymptotic behaviors, in practice only the specific applica-
tion (in particular the price update frequency and the price
discretization) is going to dictate the computational require-
ments of this procedure. However, the resulting complexity is
expected to be typically manageable by the computational core
of a smart appliance, at least for a wide variety of scenarios.

VII. CONCLUSION

In this paper, we have considered the problem of optimal
consumption for an energy user with flexible loads, responding
to correlated real time energy prices from multiple procure-
ment sources. The model that we introduced for the individual
user allows to describe a very general scenario, including
power consumption constraints, firm and shiftable demand
profiles, and possible curtailment. In this model, loads are
aggregated by deadline. This choice proves to be effective. In
this case, we show how the optimal consumption strategy can
be explicitly computed, via backward iterations of a Bellman
stochastic equation.
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