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Abstract—The focus of this paper is the online load flow
optimization of power systems in closed loop. In contrast to the
conventional approach where an AC OPF solution is computed
before being applied to the system, our objective is to design
an adaptive feedback controller that steers the system in real
time to the optimal operating point without explicitly solving
an AC OPF problem. Our approach can be used for example
to simultaneously regulate voltages, mitigate line congestion,
and optimize operating costs under time-varying conditions. In
contrast to related work which is mostly focused on distribution
grids, we introduce a modeling approach in terms of manifold
optimization that is applicable in general scenarios. For this,
we treat the power flow equations as implicit constraints that
are naturally enforced and hence give rise to the power flow
manifold (PFM). Based on our theoretical results for this type
of optimization problems, we propose a discrete-time projected
gradient descent scheme on the PFM. In this work, we confirm
through a detailed simulation study that the algorithm performs
well in a more realistic power system setup and reliably tracks
the time-varying optimum of the underlying AC OPF problem.

Index Terms—Load flow control, Manifold optimization, Gra-
dient methods, Nonlinear dynamical systems.

I. INTRODUCTION

In recent years, operating a power system has become
more challenging as a consequence of ever increasing en-
ergy consumption, higher system complexity, decreasing time-
scales, energy-efficiency considerations, and most notably due
to the integration of fluctuating and distributed renewable
energy sources. This development has reinforced the interest
in mathematical optimization for power system operations.

In particular, the increased volatility due to intermittent
renewable infeed and changing consumption patterns have
raised the ante on optimizing the system operation in real
time based on live measurements [1]. This development is
supported by the ubiquitous deployment of sensing equipment
and controllable devices at all grid levels.

A straightforward approach to online optimization is to
repeatedly apply conventional feedforward control (Fig. 1a).
Based on a grid model and measurements of uncontrollable
loads, dispatchable and non-dispatchable generators, an opti-
mization problem is formulated and then solved using standard
optimization algorithms. The result is then implemented by
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Fig. 1. Online Power System Optimization Schemes

changing the set-points of controllable devices accordingly
and the overall procedure is repeated again on regular time
intervals. Although this approach is based on classical and
well-understood methodologies from optimal power flow pro-
gramming, it has some drawbacks that would hinder its
successful application. In particular, this method is not robust
with respect to model mismatch, since parameter uncertainties,
time-varying loading and generation, and time delays between
sensing and actuation would lead to steady-state errors (i.e.,
suboptimality) and violation of operational constraints.

Instead, recent works such as [2]–[9] have proposed feed-
back controllers that steer the power system to an optimal
state (Fig. 1b) without computing it explicitly by solving
an OPF problem. We will refer to this concept as feed-
back optimization. In contrast to feedforward optimization,
a feedback control loop is more robust towards parameter
uncertainties, has no steady-state error and in general requires
less computational effort. This latter feature is due to the idea
that in feedback optimization the controller should be designed
such that the physical system performs the most challenging



computational operations naturally. In the particular case of a
power system, the AC power flow equations are one type of
constraints that are naturally enforced by the laws of physics.

Previous works such as [2]–[4] base the control design on
linearized models of the power flow equations around some
fixed operating point, but then apply the controller in closed
loop with the nonlinear physical system. In [5], the authors
instead implicitly linearize the power flow equations at every
iteration which enables more stringent optimality guarantees.
All of these works are tailored to the specific requirements
of distribution grids by considering for example only radial
networks, PQ-buses and voltage constraints.

In this paper, we describe a general model for feedback op-
timization of power systems and provide a design method for
discrete-time feedback controllers that are guaranteed to drive
the system to an optimum of a given AC OPF problem. Our
approach does not distinguish between meshed and radial net-
works, can incorporate various bus models as well as different
types of operational constraints. This modeling flexibility and
the general convergence guarantees are a consequence of our
recent theoretical work [6].

By formalizing the feedback optimization task as a con-
strained optimization problem on the so-called power flow
manifold (PFM), we treat the power flow equations already
at the modeling stage as implicit constraints that cannot be
violated. Any feedback law thus defines a vector field on the
PFM. The properties of the algorithms in [2]–[4] are difficult to
analyze if implemented in a feedback loop with the nonlinear
system, since their design is not directly based on the PFM,
and therefore the vector fields they induce on the PFM are
somewhat contrived. We advocate that it is more natural to
consider a canonical vector field on the PFM (e.g., the gradient
descent minimizing a cost function on the PFM) and from this
infer a discrete-time feedback controller.

The standard gradient descent on the PFM cannot directly
handle operational constraints such as voltage or generation
limits. We will therefore either model them as soft constraints
or use the projected gradient descent depending on the nature
of the constraint. We developed the theoretical underpinning
of this approach in [6], where the continuous-time equivalent
to this strategy has been proven to converge asymptotically to
a feasible and locally optimal operating point.

In this paper, we show that the proposed controller also
performs well under more realistic conditions, such as finite
step-size, meshed grid topology, and different bus types. In
particular, we confirm that the system is capable of tracking
the optimal system state under fluctuating load and generation.

The rest of this paper is structured as follows: In Section II,
we introduce the power system model. Besides defining the
terms exogenous and endogenous variables, we formalize the
operation that “naturally enforces” power flow constraints. In
Section III, we present our feedback control law that steers the
power system to an optimal state under stationary conditions,
and in Section IV, we illustrate the behavior of the controlled
power system in simulations.

II. POWER NETWORK MODEL

Consider a power grid with n buses and denote by uh ∈ C
and sh ∈ C the voltage and power injection phasors at bus
h. Voltages may be expressed in polar form as uh := vhe

jθh

where vh denotes the voltage magnitude and θh its angle, while
for power injections we use rectangular coordinates sh :=
ph + jqh where ph and qh denote active and reactive power
injections respectively. We use u, s ∈ Cn and v, θ, p, q ∈ Rn
to denote the vectors obtained from stacking the corresponding
nodal quantities. We define

x :=


p
q
v
θ

 ∈ R4n

to represent the state of the power system. This augmented
state allows us to accommodate multiple bus models and use
an implicit description of the power flow equations.

Interconnections between buses are described by the stan-
dard Π-model for power transmission lines which gives rise
to the bus admittance matrix Y . Nodal power injections and
voltages are hence linked algebraically by the well-known AC
power flow equations that take the form

diag(u)Y u− s = 0 (1)

where diag(u) denotes the matrix with the elements of u on
its diagonal.

A. The Power Flow Manifold

Consider the set of power system states that satisfy (1), i.e.,

M := {x ∈ R4n|F (x) = 0} ,

where F (x) : R4n → R2n encodes the nonlinear equations
(1), expressed in their real and imaginary parts. It has been
shown in [10] that the set M has the structure of a smooth
2n-manifold, or in other words, a 2n-dimensional surface that
is embedded in R4n. We callM the power flow manifold. The
PFM describes the most fundamental physical constraints of
power systems.

As a smooth manifold, M has a tangent space for every
x ∈M given by

TxM := {w ∈ R4n|∇F (x)w = 0}

where ∇F (x) denotes the Jacobian matrix of F at x. An
explicit formula for ∇F (x) is given in [10], which contains
(among others) the usual (DC) power flow linearizations at
particular operating points.

B. Exogenous & Endogenous variables

For our feedback optimization we need to partition the
state vector x into three subvectors each containing a specific
type of variable. Namely, xc ∈ Rr denotes the controllable
variables and xd ∈ Rs contains all variables that are governed
by external processes but are not controllable. Together xc and
xd form the exogenous variables xex. As a fact, we always
have r + s = 2n. That is, the number of exogenous variables



matches exactly the dimension of the PFM. The remaining 2n
variables are called endogenous and denoted by xend.

The partition of the state variables into xc, xd and xend
is done by bus type as summarized in Table I. For a PQ
generation bus i, active and reactive power generation pi
and qi are controllable variables since they can be controlled
directly via appropriate set-points, whereas vi and θi will
adapt autonomously to the current state of the grid. Hence
they are endogenous. Similarly for a PV generation bus i
the controllable variables are pi and vi while qi and θi are
endogenous. For a PQ load bus p and q are uncontrollable,
but exogenous.

Finally, one node, here denoted by node 0, will act as the
slack bus of the system. The voltage v0 is controllable whereas
θ0 is uncontrollable since it will serve as the angle reference
and will be set to 0. Although set-points for p0 and q0 can be
defined, p0 and q0 are strictly speaking endogenous because by
definition the slack bus power injections compensate for power
imbalance rather than following its set-points. This is a crucial
property for the retraction mechanism described Section III-A.

TABLE I
PARTITION OF STATE VARIABLES BY BUS TYPE

Exogenous Endogenous

Controllable Uncontrollable

PQ generation pi, qi vi, θi
PQ load pi, qi vi, θi
PV generation pi, vi qi, θi
slack bus v0 θ0 p0, q0

C. Constrained optimal power flow

We assume that the power system is subject to operational
constraints of the form

p
i
< pi < pi

q
i
< qi < qi

vi < vi < vi

for all nodes i and where p
i
, pi, qi, qi, vi, vi denote upper

and lower limits on active and reactive generation as well
as voltage, respectively. Furthermore, we define the reference
angle θ0 = 0 and line current limits of the form

|ysh
kl|2v2k + |ykl|2(v2k + v2l − 4vkvl cos(θkl)) ≤ I

2

kl
(2)

where ysh
kl is the line shunt admittance, ykl is the series

admittance and Ikl is the current flow limit of the line from
node k to l.

We classify the constraints according to the types of vari-
ables they contain. Constraints that depend only on exogenous
variables form together the feasible input region X ⊂ R2n.
By the nature of exogenous variables, it is possible to strictly
enforce these constraints at all times. In fact, our feedback
control will output set-points that are guaranteed to lie in X
by means of projections.

Contrarily, constraints on endogenous variables cannot be
directly enforced. We propose to treat them as soft constraints.
For this, assume that there are a total of m constraints on the
endogenous variables, each given as gi(xend) ≤ 0 for i =
1, . . . ,m. We define the penalty function

φ(xend) :=

m∑
i=1

γi max{0, gi(xend)}2 (3)

where the γi > 0 are adjustable penalty parameters.
Consider a continuously differentiable cost function J(x) :

R4n → R depicting, e.g., the cost of generation. The sum
of J and the penalty function (3) yields the objective func-
tion J̃(x) := J(x) + φ(xend). Therefore, with our feedback
controller we try to track the solution of

minimize
x∈M

J(x) + φ(xend)

subject to xex ∈ X
(4)

which is effectively an AC OPF problem where a subset of its
constraints is treated as soft constraints.

III. FEEDBACK CONTROL LAW

To minimize J̃ subject to all exogenous constraints as in (4),
we propose the update rule for the control variables given by

xk+1
c = xkc + dkc . (5)

The step dkc is given as the controllable subvector of the
solution of

minimize
dk∈R4n

||dk + α∇J̃(xk)||2 (6a)

subject to ∇F (xk)dk = 0 (6b)

xkex + dkex ∈ X . (6c)

where α > 0 is a fixed step size parameter and∇J̃(x) denotes
the gradient of the object function J̃(x) at x ∈M.

In a nutshell, the solution of the quadratic program (6) is
the best feasible descent step in the direction of J̃ . This is
illustrated in Fig. 2.

A feasible descent step has to lie in the tangent space of
the PFM which is stated in constraint (6b). Furthermore, the
descent step has to result in a state that satisfies the feasible
input region. This is enforced by constraint (6c).

It can be shown that if α → 0 then (5) is equivalent to a
continuous-time projected gradient descent system. In partic-
ular, we proved in [6] that these types of dynamical systems
are well-behaved in the sense that trajectories converge to
equilibrium points (i.e., no periodic orbits can occur) and an
isolated equilibrium point is asymptotically stable if and only
if it minimizes J̃ .

A. Natural retraction onto the PFM

Based on the proposed control architecture in Fig. 1b, we
realize that we can actuate the system by updating the set-
points xc according to (5). However, even though the update
step is tangential to M the new point x̃ as shown in Fig. 2 is
in general not in M.



Fig. 2. Illustration of control and retraction mechanisms. The quadratic
program (6) projects the scaled gradient α∇J̃(xk) to the feasible subset
of the tangent plane TxM resulting in the vector dk . The point xk + dk

does in general not lie onM, i.e., does not satisfy the power flow equations.
Hence, the retraction R applied to that point produces xk+1 by adjusting all
endogenous variables such that the power flow equations hold again.

In practice, the inherent power system dynamics will
reestablish x ∈ M, resulting in a change of the endogenous
variables xend. In other words, after changing generator set-
points the remaining variables will adapt automatically such
that the power flow equations remain satisfied. These facts
have been rigorously shown in the limit when the update steps
are taken infinitesimally small [6].

We call this process of automatically enforcing the power
flow equations a retraction. This notion is inspired by a similar
notion in manifold optimization [11], [12], yet our use of the
term is relatively informal.

We denote the retraction operation by R :M×Rr×Rs →
M that maps (x, x̃c, x̃d) to a new state x′ such that x′c = x̃c
and x′d = x̃d. For this to be well-defined, it is sufficient
to assume that the power flow equations are solvable and
the power flow Jacobian is non-singular everywhere on the
feasible input region [6]. Concretely, for all possible values in
the feasible input region, a power flow solution must exist and
no voltage collapse can occur.

IV. SIMULATIONS

To test the proposed feedback controller, we have imple-
mented a simulation procedure according to Fig. 3, with
both the controller and the retraction implemented in silico.
Concretely, the retraction R is performed using an off-the-
shelf AC power flow solver, fixing the exogenous variables xc
to the new control inputs, enforcing the externally controlled
variables xd based on given time-varying profiles, and then
computing the remaining values (i.e., the endogenous variables
xend). As discussed in Section III-A, this retraction step would
not be part of the algorithm in real implementations, and
instead would be “outsourced” to the physics of the power
system.

In the following, we demonstrate the capabilities of our
feedback controller, namely we show how our approach can be
used to simultaneously regulate voltages throughout the net-
work, mitigate line congestion and optimize operating costs.

Feedback
Controller (5)

AC power flow
R(x, xc, xd)xc

controlled variables

xd
time-varying profile

x
grid state

Fig. 3. Feedback OPF simulation process

For this, we consider a setup based on the IEEE 30 bus
power flow test case [13] and time series data from [14].
For the power flow calculations that are part of the retraction
operation the AC power flow solver of [15] is used.

The topology of the network is shown in Fig. 4. For
simplicity, line shunts have been removed and transformers
are at their nominal setting. The remaining grid parameters
correspond to the original IEEE 30 bus test case.

All buses host some uncontrollable PQ loads. The total time-
varying demand is given in Fig. 5, and represents ensembles
of different types of loads (residential, industrial, commercial,
agricultural).

In addition to the two conventional generators and three
synchronous condensors in the original test case, a solar farm
and wind power plant have been added at buses 8 and 25,
respectively. These intermittent generators are subject to time-
varying maximum active power injections ps(t) and pw(t) that
model the fluctuating solar irradiation and prevalence of wind
throughout the day. These profiles are also shown in Fig. 5.

All generators incur a cost in [$/hr] given as a(1)i pi+a
(2)
i p2i .

The marginal operating cost of the two renewable generators
is set to 0.

Concerning reactive power generation, we make the simpli-
fying assumption that the limits for the solar and wind farms
are independent of their active power generation, i.e., there is
no constraint on the power factor of the generator output. All
generator parameters are summarized in Table II.

TABLE II
GENERATOR COST COEFFICIENTS, OUTPUT CONSTRAINTS AND BUS TYPE

Cost Constraints

a(1) a(2) p
i

pi q
i

qi Type

Generator 1 0.1 0.9 0 150 −40 50 slack
Generator 2 0.04 0.5 0 120 −40 50 PV
Condensor 1 0 0 0 0 −40 50 PV
Condensor 2 0 0 0 0 −40 50 PV
Condensor 3 0 0 0 0 −40 50 PV
Solar 0 0 0 ps(t) −40 50 PQ
Wind 0 0 0 pw(t) −40 50 PQ

Cost coefficients a(1) and a(2) are given in [$/(MW2h)] and [$/MWh]
respectively. Power generation limits are in [MW] and [MVar] accordingly.

Further constraints include upper and lower voltage limits
of 1.06 p.u. and 0.94 p.u. at every bus, branch current limit
of 0.9 p.u. for the line from bus 8 to bus 9 and a similar limit
of 0.8 p.u. for the line from bus 24 to bus 25.
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Fig. 4. IEEE 30 bus system with additional intermittent generation
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We simulate 24 hours of operation. Every 15 seconds, the
controller receives field measurements about the system state
xk, solves the quadratic program (6), and updates the set-point
of the controllable generators via (5) for the next iteration. At
that stage the retraction R is performed, that is, the AC power
flow solver computes feasible system state based on the new
generator set-points. After this, the controller receives the new
measurements. Note that this procedure implies a 15 second
delay between sensing and actuation.

The result of the simulation is shown in Fig. 6. In order to
evaluate how well the optimum of a the underlying AC OPF
problem is tracked under time-varying conditions, we also
compute the generation cost that corresponds to the optimal
operation of the grid, as if we had infinite computational power
and perfect model knowledge, and we could sense, compute
and actuate it in real time (i.e., without time delay). The
comparison in Fig. 6a between the generation cost achieved
by the feedback optimization approach and the offline OPF
computation demonstrates the excellent tracking performance
in terms of generation cost.

Bus voltage profiles and the global voltage constraints are
shown in Fig. 6b. The voltage profiles at generator buses are
highlighted in color.
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Fig. 6c and 6d show active and reactive power generation
respectively. For the active power generation of renewable
energy sources, the available power is drawn as a dotted line
to highlight curtailment.

Finally, Fig. 6e shows line currents. Since all transformers
and line shunts have been removed all lines conserve current,
i.e., there is no need to distinguish between “to” and “from”
currents. The two lines whose limits become active over the
simulation horizon are highlighted.

The simulation unfolds as follows. From 00:00 to about
00:30 converges to the optimal operating point before starting
to track it. This transitory phenomenon is a consequence of a
highly suboptimal initialization point and can be completely
avoided by using an AC OPF solution computed offline as an
initial point for the simulation. It does not occur in continuous
operation. We show this behavior to demonstrate that our
algorithm creates a large region of attraction and converges
reliably to the optimum even from far away operating points.

At about 07:00 in the simulation the consumption reaches
a first maximum while wind and solar generation are low.
Consequently, Generator 2 runs at full capacity and the most
expensive generator, Generator 1, has to ramp up to cover the
remaining load resulting in high generation costs for this time
period.

With the appearance of abundant solar power generation
generation cost decreases sharply. From about 10:00 to 13:00
the line from the solar power plant to the adjacent bus 8
works is congested and as a consequence solar power output
is curtailed.

During the period from 18:00 to 20:00 the high availability
of wind power leads to over-voltage and line congestion
problems leading to multiple active constraints. The controller
adapts the generators set-point by first using the available
reactive power resources to regulate the voltage, and finally
by curtailing the wind production.

The small residual violation of endogenous constraints (in
particular of the voltage band) is an inherent result of using
soft penalty functions for voltage constraints. This violation
can be reduced by increasing the penalty terms, at the cost of
a more aggressive actuation.

In this context it must be noted that strict constraint satisfac-
tion of voltage and line constraints in a feedback optimization
context is neither sensible nor practical. In any real-world
application subject to model uncertainty, time delays and
measurement errors slight constraint violations are bound to
happen with any online optimization approach.

Overall, the feedback controller prioritizes cheap generators
whenever possible and available to minimize generation cost.
It acts on reactive power generation and curtails active power
dynamically within its limits to ensure that voltage and line
constraints across the grid are respected.

V. CONCLUSIONS

In this work, we have presented a novel framework for
the design of feedback controllers for power system online

operation. The proposed framework allows to derive mathe-
matically rigorous guarantees of convergence to the solution
of an optimal nonlinear AC power flow program. The resulting
feedback strategy is therefore capable of tracking the time-
varying optimal operating point of the grid, while enforcing
operational constraints along the entire trajectory of the sys-
tem.

The proposed feedback controller can fully exploit the
nonlinear nature of the system (therefore integrating multiple
ancillary services such as voltage regulation, economic dis-
patch, congestion control, etc.) although it does not rely on
computational tools such power flow or OPF solvers.

In future work, we will address the robustness and adaptivity
properties of the proposed scheme with respect to model
uncertainties and approximate updates. Another avenue of
future research is to extend our algorithmic procedure to
dualization methods and compare their performance with the
soft penalties investigated here.
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