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Abstract— In this paper, we show how a dynamic popula-
tion game can model the strategic interaction and migration
decisions made by a large population of agents in response
to epidemic prevalence. Specifically, we consider a modified
susceptible-asymptomatic-infected-recovered (SAIR) epidemic
model over multiple zones. Agents choose whether to activate
(i.e., interact with others), how many other agents to interact
with, and which zone to move to in a time-scale which is
comparable with the epidemic evolution. We define and analyze
the notion of equilibrium in this game, and investigate the
transient behavior of the epidemic spread in a range of
numerical case studies, providing insights on the effects of
the agents’ degree of future awareness, strategic migration
decisions, as well as different levels of lockdown and other
interventions. One of our key findings is that the strategic
behavior of agents plays an important role in the progression
of the epidemic and can be exploited in order to design suitable
epidemic control measures.

I. INTRODUCTION

Infectious diseases or epidemics spread through society by
exploiting social interactions. As the disease becomes more
prevalent, individuals and authorities take various measures
to prevent its spread. These measures include restricting
large gatherings and travel, imposing lock-downs, and oth-
ers. Furthermore, individuals voluntarily reduce their social
interaction and even migrate to safer locations in a strategic
and non-myopic manner [1], [2] which plays a significant
role in epidemic evolution. Therefore, it is critical to rigor-
ously investigate the interplay between individual behavior,
emerging network structure and epidemic evolution.

Mathematical modeling of epidemic evolution on networks
has a rich history; see [3]–[5] for comprehensive reviews.
Recent work has explored epidemic mitigation strategies
based on centralized resource allocation [6], [7] as well
as decentralized or game-theoretic protection strategies [8]–
[10]. Several papers have considered dynamic or evolution-
ary game-theoretic approaches in the context of networked
epidemics [11]–[13]. Evolution of network topology and epi-
demic states in a comparable time-scale have recently been
studied in the framework of activity-driven networks [14],
[15]. Game-theoretic decision-making in this framework was
recently studied in [16] where the authors consider myopic
bounded rational agents who decide whether to activate or
not as a function of the current prevalence of the epidemic.
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To the best of our knowledge, there have been few rigorous
game-theoretic formulations that model agents that
• decide their degree of activation, and consequently

influence the resulting network topology,
• decide whether to migrate to different locations, and
• maximize both current and long-run future pay-off

in the same time-scale as epidemic evolution. In this work,
we present a framework to address the above research gap.

Motivated by the presence of asymptomatic carriers in
COVID-19 [17], [18], we build upon the SAIR epidemic
model studied in [19], [20]. We consider a large population
regime where the state of an individual agent is characterized
by its infection state and location or zone. At discrete time
instants, each agent decides its degree of activation and
next location. The agent is then paired randomly with other
agents, and its infection state evolves following an aug-
mented SAIR epidemic model which also takes into account
unknowingly recovered agents as described in Section II.
Agents decide strategically in order to maximize a discounted
infinite horizon expected reward which is a function of the
aggregate infection state, the zonal distribution of the agents,
and the policy followed by the population.

In a departure from the conventional assumption of a
static population distribution in the classical population game
setting [21], epidemic evolution leads to a dynamically evolv-
ing population state which makes the analysis particularly
challenging. Previous works that study dynamic strategic in-
teractions in large populations include anonymous sequential
games [22]–[24] and mean field games [25]–[29], which
are often difficult to apply in practical models. We utilize
the recently developed framework of dynamic population
games [30], in which the authors show a reduction of the
dynamic setting to a static population game setting [21].
This simplifies the analysis in comparison to the existing
approaches, and is particularly useful for epidemic models.
As a consequence of the reduction, standard evolutionary
models [21] can be adapted for the coupled dynamics of the
agents’ states and strategic decision making, which evolve
on the same time-scale.

The paper is structured as follows: the dynamic population
model is presented in Section II, and its stationary equilibria
are analyzed in Section III. The evolutionary update of
agents’ policies is modeled in Section IV. Numerical experi-
ments reported in Section V provide compelling insights into
agents’ behavior, effects of lockdown measures and strategic
mobility patterns. For instance, we observe that if recovered
agents are exempt from lockdown measures, it leads to an
increased level of activity by susceptible and asymptomatic



agents as well without having much impact on the peak
and total infections. In other words, strategic behavior does
not lead to a higher infection level and the social welfare
improves due to higher activity levels.

II. MODEL

We consider a homogeneous population of agents, each
corresponding to an individual. The state and the dynamics
of this population are described by the following elements.

A. States

We augment the SAIR epidemic model to distinguish
between recovered agents who are aware of being recovered
and those who are recovered, but unaware of ever being in-
fected. Specifically, each agent can be in one of the following
infection states or compartments: Susceptible (S), infected
Asymptomatic (A), Infected symptomatic (I), Recovered (R),
Unknowingly recovered (U) (corresponding to agents that
have recovered without showing symptoms). Agents in states
R and U are immune from further infection. Moreover, each
agent resides in one of Z zones.

Formally, we define the state of each agent as (s, z) ∈
S×Z , where S = { S, A, I, R, U } and Z = { 1, . . . , Z }. The
state distribution is d ∈ D = ∆(S×Z), where d[s, z] denotes
the proportion of agents with infection state s residing in
zone z.

B. Actions and policies

We consider a dynamic environment that evolves in
discrete-time (e.g., each time interval representing a day).
At each time step, each agent strategically chooses:

• its activation degree a ∈ A = { 0, 1, . . . , amax }, which
denotes the number of other agents it chooses to interact
with (a = 0 signifies no activation), and

• the zone z̃ ∈ Z where to move (at the end of the day)
and reside for the next day.

The combined action is denoted (a, z̃) ∈ A× Z .
A (Markovian) policy is denoted by π : S × Z →

∆(A×Z), and it maps an agent’s state (s, z) ∈ S ×Z to a
randomization over the actions (a, z̃) ∈ A×Z . The set of all
possible policies is denoted by Π. Explicitly, π[a, z̃ | s, z] is
the probability that an agent plays (a, z̃) when in state (s, z).

All agents are homogeneous and follow the same policy π.
Policies need to be consistent with the information structure
of the problem: agents that have never shown symptoms act
in the same way, i.e. π[· | S, z] = π[· | A, z] = π[· | U, z].

C. State transitions

In order to study the evolution of the epidemic and the
behavior of the agents, we now derive a dynamic model of
the evolution of state distribution d when the agents adopt
a policy π. We denote the policy-state pair (π, d) as the
social state. The state of each agent changes at every time
step according to transition probabilities encoded by the

stochastic matrix

P [s+, z+ | s, z](π, d)

=
∑
a,z̃

π[a, z̃ | s, z] p[s+, z+ | s, z, a, z̃](π, d), (1)

where p(s+, z+ | s, z, a, z̃)(π, d) denotes the probability
distribution over the next state when an agent in infection
state s and zone z chooses action (a, z̃) in social state (π, d).

Note that the Markov chain P [s+, z+ | s, z](π, d) is
not time-homogeneous, since the transition probabilities are
parametrized by the time-varying social state (π, d). How-
ever, it becomes time-homogeneous if (π, d) is stationary
(see the equilibrium analysis in Section III).

The crucial element of (1) is the state transition function

p[s+, z+ | s, z, a, z̃](π, d)

:= P[s+ | s, z, a](π, d) P[z+ | z, z̃](π, d), (2)

specified hereafter. The term P[z+ | z, z̃](π, d) corresponds
to zone transitions, which we assume to be deterministic and
independent of (π, d) and thus defined as

P[z+ | z, z̃](π, d) =

{
1 if z+ = z̃,

0 otherwise.

In order to derive the infection state transition probabilities
P[s+ | s, z, a](π, d) (which are schematically represented in
Figure 1), we combine the transition rules of the (augmented)
SAIR model with the specific activation actions as follows.
• At a given time, an agent in state s in zone z chooses

its activation degree a according to policy π. Then, it is
paired randomly with a other individuals in zone z with
the probability of being connected with another agent
being proportional to the activation degree of the target
agent (analogous to the configuration model [31]).

• Once the network is formed, a susceptible agent be-
comes asymptomatic with probability βA ∈ [0, 1] per
each asymptomatic neighbor and with probability βI ∈
[0, 1] per each infected neighbor independently.

• An asymptomatic agent becomes (symptomatically) in-
fected with probability δIA ∈ (0, 1],1 and recovers
without being aware of it with probability δUA ∈ [0, 1].

• An infected agent recovers with probability δRI ∈ (0, 1].
• An individual in state U becomes aware of its recovery

with probability δRU ∈ [0, 1] (for example via serological
tests on the population). Once recovered (knowingly or
unknowingly), an agent has developed immunity and
does not get infected again.

• The network thus formed gets discarded at the next time
step and the process repeats.

We now formally state the above model of epidemic
evolution. Note that with the exception of the transition from
state S to A, all other state transition probabilities are defined
via exogenous parameters and do not depend on the social

1This represents both the aggravation of the illness and the result of
testing in the asymptomatic population.
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Fig. 1: Infection state transition diagram

state. Let us then compute the probability of interacting with
asymptomatic or infected agents. We define the total amount
of activity in zone z, which is determined both by the mass
of active agents and by their degrees of activation, as

ez(π, d) =
∑
s

d[s, z]
∑
a,z̃

a π[a, z̃ | s, z].

Similarly, the amount of activity by asymptomatic agents
in zone z is given by

eAz(π, d) = d[A, z]
∑
a,z̃

a π[a, z̃ | A, z],

and the amount of activity by infected agents in zone z is

eIz(π, d) = d[I, z]
∑
a,z̃

a π[a, z̃ | I, z].

In order to consider the event of encountering no agents
to connect with when the amount of activity in the zone
ez(π, d) is minute, we introduce a small constant amount
ε > 0 of fictitious activation that does not belong to any of
the agents. Consequently in zone z, the probability of not
interacting with any agents, the probability of a randomly
chosen agent being asymptomatic and the probability of a
randomly chosen agent being symptomatic are, respectively,

γ∅z (π, d) =
ε

ez(π, d) + ε
, (3)

γAz(π, d) =
eAz(π, d)

ez(π, d) + ε
, γIz(π, d) =

eIz(π, d)

ez(π, d) + ε
. (4)

As a result, the probability of a susceptible agent to not
get infected upon activation is

P[s+ = S | s = S, z, a](π, d)

=
(
1− βA γAz(π, d)− βI γIz(π, d)

)a
.

It is easy to see that when a susceptible agent does not
interact with any other agent (i.e., a = 0), it remains
susceptible.2 When it participates in exactly one interaction
(a = 1) in z, the probability that its neighbor is asymptomatic
(respectively, infected) is γAz(π, d) (respectively, γIz(π, d)).
When it draws a > 0 independent agents to interact with,
it must not get infected in any of the interactions to remain
susceptible, and this occurs with the specified probability.

The remaining infection state transition probabilities fol-
low directly from the model as:

P[s+ = A | s = S, z, a](π, d) =

1− P[s+ = S | s = S, z, a](π, d)

2We define 00 = 1 for the edge case if 1−βAγAz(π, d)−βIγIz(π, d) = 0.

P[s+ = I | s = A, z, a](π, d) = δIA ,

P[s+ = U | s = A, z, a](π, d) = δUA ,

P[s+ = A | s = A, z, a](π, d) = 1− δIA − δUA ,
P[s+ = R | s = I, z, a](π, d) = δRI ,

P[s+ = I | s = I, z, a](π, d) = 1− δRI ,
P[s+ = R | s = U, z, a](π, d) = δRU

P[s+ = U | s = U, z, a](π, d) = 1− δRU
P[s+ = R | s = R, z, a](π, d) = 1.

These expressions completely specify P[s+ | s, z, a](π, d)
(Figure 1) and therefore the state transition function (2).

D. Rewards

Each agent’s own state (s, z) and action (a, z̃) yields
an immediate reward for the agent, composed of a reward
ra[s, z, a] for their activation decision, a reward rm[s, z, z̃]
for their migration decision, and a reward rd[s] for how the
agent’s health is affected by the disease. Formally,

r[s, z, a, z̃] := ract[s, z, a] + rmig[s, z, z̃] + rdis[s]. (5)

The activation reward is defined as

ract[s, z, a] := o[a]− c[s, z, a],

where o[a] ∈ R+ denotes the social benefit of interacting
with a other agents and is assumed to be non-decreasing in
a with o[0] = 0, and c[s, z, a] ∈ R+ denotes the cost imposed
by the authority in zone z to discourage activity. We assume
that c[s, z, a] are non-decreasing in a and satisfy

c[I, z, a] ≥ c[S, z, a] = c[A, z, a] = c[U, z, a] ≥ c[R, z, a]

element-wise, since lockdown measures can be more strin-
gent against individuals showing symptoms and more benign
for individuals who are known to be immune.

The migration reward rmig[s, z, z̃] encodes the non-
negative cost of migrating to a new zone. In this work, we
define

rmig[s, z, z̃] :=

{
0 if z̃ = z,

−cmig if z̃ 6= z.

However, one may consider a richer cost function that
incorporates specific travel restrictions between zones, and
is a function of the infection state (i.e., different cost for
symptomatic and immune agents).

The third term in (5) encodes the cost of being ill:

rdis[s] :=

{
−cdis if s = I,

0 otherwise.

E. Agents’ Strategic Decisions

We now introduce the strategic decision-making process
of the agents. The immediate expected reward of an agent
in state (s, z) when it follows policy π is

R[s, z](π) =
∑
a,z̃

π[a, z̃ | s, z] r[s, z, a, z̃],



with r[s, z, a, z̃] as defined in (5). The expected discounted
infinite horizon reward of an agent in state (s, z) with
discount factor α ∈ [0, 1) following the homogeneous policy
π is recursively defined as

V [s, z](π, d) = R[s, z](π)

+ α
∑

s+,z+

P [s+, z+ | s, z](π, d) V [s+, z+](π, d),

or, equivalently in vector form,

V (π, d) = (I − α P (π, d))−1 R(π). (6)

Note that (6) is continuous in the social state (π, d), as I −
α P (π, d) is guaranteed to be invertible for α ∈ [0, 1).

While an agent can compute the expected discounted
reward V (π, d) at a given social state (π, d), the policy π
may not be optimal for the agent. Thus, we assume that each
agent chooses its current action (a, z̃) in order to maximize

Q[s, z, a, z̃](π, d) := r[s, z, a, z̃]

+ α
∑

s+,z+

p[s+, z+ | s, z, a, z̃](π, d) V [s+, z+](π, d), (7)

i.e., the agent is cognizant of the immediate reward and the
effect of its action on their future state; however, it assesses
the future reward based on a stationarity assumption on
the social state (π, d). In other words, the agent chooses
its action to maximize a single-stage deviation from the
homogeneous policy π [32, Section 2.7]. Intuitively, this cor-
responds to assuming that the rest of the population is acting
rationally at this moment, and that its own actions are not
going to affect the social state significantly. This is a sensible
working approximation in practice, and becomes exact at the
equilibrium as discussed in the following section.

III. EQUILIBRIUM ANALYSIS

We start by introducing the notion of best response based
on the single-stage deviation reward defined in (7).

Definition 1 (Best Response). The best response of an agent
in state (s, z) at the social state (π, d) is the set valued
correspondence Bs,z : Π×D ⇒ ∆(A×Z) given by

Bs,z(π, d) ∈
{
σ ∈ ∆(A×Z) : ∀σ′ ∈ ∆(A×Z)∑

a,z̃

(σ[a, z̃]− σ′[a, z̃]) Q[s, z, a, z̃](π, d) ≥ 0
}
. (8)

The above notion of best response is from the perspective
of an individual agent in state (s, z) when all other agents
are following the homogeneous policy π and their states are
distributed as per d. The agent will choose any distribution σ
over the actions which maximizes its expected single-stage
deviation reward Q at the current state (s, z).

Consequently, a social state (π,d) is stationary when
agents in all states are playing their best response when they
follow the policy π, and additionally, the state distribution d
is stationary under this policy. Thus, we have the following
definition of a stationary equilibrium.

Definition 2 (Stationary equilibrium). A stationary equilib-
rium is a social state (π,d) ∈ Π×D which satisfies

π[· | s, z] ∈ Bs,z(π,d), ∀(s, z) ∈ S × Z, (SE.1)
d = d P (π,d). (SE.2)

Thus, at the equilibrium, the state Markov chain P (π,d)
(1) is time-homogeneous, and the agents behave optimally
in the corresponding Markov decision process [32].

Theorem 1 ( [30]). A stationary equilibrium (π,d) for the
proposed dynamic population game is guaranteed to exist.

We refer to [30] for the details of the proof, which relies
on a fixed-point argument. The proof requires that the state
transition and reward functions are continuous in the social
state (π, d), which is satisfied in our model.

The following proposition shows that the stationary dis-
tribution d does not have any asymptomatic or infected
agents (i.e., eventually, the epidemic will die out). The final
stationary distribution is however not unique.

Proposition 1. Let r∗act[s, z] := maxa ract[s, z, a] be the
maximum activation reward in state s and zone z, and let
A∗s,z be the set of activation levels that achieve such reward.
Let r̄act[s] := maxz r

∗
act[s, z] be the maximum activation

reward in state s across all zones, and let δRU , α, cmig > 03.
Let us define the subset of zones

Z̄s = argmax
z

r∗act[s, z],

Z0
s =

{
z | r̄act[s]− r∗act[s, z] >

1− α
α

cmig

}
.

Then, any social state (π,d) satisfying

d[A, z] = d[I, z] = d[U, z] = 0 ∀z,
d[s, z ∈ Z0

s ] = 0 ∀s,
π[a /∈ A∗s,z, z̃ | s, z] = 0 ∀z̃, s, z,
π[a, z̃ /∈ Z̄s | s, z ∈ Z0

s ] = 0 ∀a, s,
π[a, z̃ 6= z | s, z /∈ Z0

s ] = 0 ∀a, s.
is a stationary equilibrium.

Proposition 1 (whose proof is in the Appendix) also
shows how stationary equilibria can be computed without
solving a fixed-point problem, and directly identifies some
dominant strategies for the agents. The identification of
dominant strategies is extremely insightful for the design
of interventions (e.g., lockdown measure for the different
compartments). For example, it is possible to verify that

A∗R,z = argmax
a

ract[R, z, a] = argmax
a

(o[a]− c[R, z, a])

corresponds to the dominant activation strategies for agents
in R (knowingly immune agents, including those that tested
positive to a serological test). Notice that the activation
caused by immune agents appears in the denominator of the

3An analogous result can be obtained when δRU = 0, in which case d[U, z]
does not need to be zero. The case α = 0 is easily derived by interpreting
(1− α)/α as +∞.



probability that a generic agent interacts with an infectious
agent – see (4) – therefore looser lockdown measures for
recovered agents (c[R, z, a] = 0) can be used to reduce the
spreading as shown in simulations in Section V.

IV. SOCIAL STATE DYNAMICS

Different stationary equilibria correspond to drastically
different outcomes in terms of the impact of the epidemic on
the population. For this reason, it is interesting to investigate
the transient behavior leading to the equilibrium, which is
determined by the state dynamics from Section II-C, i.e.,

d+ = d P (π, d),

and the way in which agents update their policies. For
this second part, we get inspiration from the evolutionary
dynamic models in classical population games [21], and more
precisely from the perturbed best response dynamics.

We assume that the agents are not perfectly rational, with
the bounded rationality factor λ ∈ [0,∞). When they are
making a decision on which action to play, they follow the
logit choice function [21, Section 6.2], given by

π̃[a, z̃ | s, z](π, d) =
exp (λ Q[s, z, a, z̃](π, d))∑

a′,z̃′ exp (λ Q[s, z, a′, z̃′](π, d))
.

For λ = 0, it results in a uniform distribution over all the
actions. At the limit λ → ∞, we recover the perfect best
response. At finite value of λ, it assigns higher probabilities
to actions with higher payoffs, modeling the effect of con-
current reasons (unrelated to the epidemic) that affect the
agents’ strategic behavior.

In order to model the fact that agents update their policies
gradually, we consider the discrete-time update

π+[· | s, z] = (1− η) π[· | s, z] + η π̃[· | s, z],
where η ∈ (0, 1] is a parameter that controls the rate of
policy change: for η < 1, agents have inertia in their decision
making, while for η = 1 agents promptly update their action
decision to the perturbed best response π̃. Note that this
update model leads to a perturbed version of the equilibrium
policy π at the rest points, rather than the exact policy [21].

V. NUMERICAL CASE STUDIES

We present a select number of case studies to showcase
how our model can be insightful for the analysis of different
phenomena in epidemic spreading:
• the effect of agents’ strategic activation decisions on the

spread of the epidemic,
• the impact of lockdown interventions on both the con-

tainment of the epidemic and the economic welfare of
the population, and

• the effect of strategic migration decisions on how the
epidemic spreads across multiple locations.

For this purpose, we consider an infectious epidemic
characterized by βA = βI = 0.2, δIA = δUA = 0.08, and δRI =
0.04. The agents can activate up to degree amax = 6, and the
activation reward is linear in the activation degree, with a
unit reward for maximum activation o[amax] = 1. The illness

is quite severe, with a discomfort cost cdis = 10. Initially,
we let the agents choose an activation degree uniformly at
random and do not plan any move. The agents are highly
rational (λ = 10) and unless otherwise stated, we consider
that they update their decisions with an inertia η = 0.2.
We consider both a single zone and a two zone setting, and
denote the zones by Z1 and Z2. In all cases, the epidemic
starts in Z1 with a proportion of 2% of that zone’s population
asymptomatic (A), and 1% infected (I).

We further consider that authorities can enforce lockdown
regulations through the parameter alock[s, z], which repre-
sents the maximum allowed activation degree and can differ
between zones and for agents in different infection states.
Lockdown is implemented by setting c[s, z, a] = 0 if a ≤
alock[s, z], and c[s, z, a] = 3o[a] otherwise. Regardless of the
lockdown measures, we always assume that the discomfort of
the illness is sufficient to prevent symptomatically infected
agents from activating. As a consequence, the main threat
of the epidemic is due to the presence of asymptomatically
infected agents in the population.

A. Lockdown measures

We first investigate the single zone scenario, with a focus
on how agents of different cognitive ability react under
various lockdown measures, and the resulting effects on the
epidemic spread. Figure 2 shows an example with lockdown
degree alock = 2 and three cases. In both cases (2a) and (2b),
the lockdown is enforced on the whole population, and the
cases differ in the agents’ cognitive level of the future.
In (2a), the agents are completely myopic. Notice how they
simply adhere to the lockdown degree4, which aligns with
standard epidemic models. Farsighted agents (2b), on the
other hand, behave considerably differently under the same
lockdown measures. We observe that they actively adjust
their activation decisions in response to the epidemic threat,
and volunteer to limit their activity beyond the lockdown
requirement at peak infection times. This aligns with the
intuitive notion of individuals acting responsibly under the
epidemic threat, and our model demonstrates that this is
indeed in their best interest. The reduction in activity levels
leads to a less severe epidemic spread, with both a consid-
erably smaller total and peak number of infections.

Case (2c) also considers farsighted agents, but this time
recovered agents are exempt from lockdown and thus activate
at the maximum degree, as per their dominant strategy.
This leads to a significant reduction of the total amount
of infections. In fact, due the prevalence of activity of
immune agents, it becomes less likely for a susceptible
agent to encounter an infected agent. Consequently, sus-
ceptible, asymptomatic and unknowingly recovered agents
too increase their level of activation. Nevertheless, the peak
infection remains being largely unchanged.

This insight is further explored in Figure 3, which shows
the effect of different lockdown measures on three main

4A slight deviation to the expected degree of activation is due to the
agents’ bounded rationality.
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Fig. 2: The effect of the agents’ farsightedness and of the exclusion of immune agents from lockdown measures on the epidemic.
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Fig. 3: The effect of the severity of the lockdown measures on three key epidemic indicators, for different scenarios.

performance indices: the total infections (R + U at the end
of the epidemic), the peak infections (highest value of I5),
and the average welfare (mean reward (5) in the population
over the duration of the epidemic). We depict the same cases
considered in Figure 2 and perform a parameter sweep over
the strictness of the lockdown alock. Additionally, we show-
case the effect of performing serological tests to increase
the amount of knowingly immune agents, at a testing rate
δRU = 0.05. We observe that the myopic agent model is rather
pessimistic in all the performance metrics. For farsighted
agents, the exemption of recovered agents and serological
tests lead to significant improvements in the average welfare,

5We do not consider infected but asymptomatic agents since they do not
contribute to the load on medical facilities.

mostly because the knowingly immune agents are able to
achieve their maximum activation reward without increasing
the threat of the epidemic. On the contrary, as discussed
before, these measures reduce the probability of infection
and ultimately improve the final outcome (total infections).

B. Strategic migration
We showcase the effect of strategic migration in a setting

with two zones, with zone Z1 initially holding 90% of the
total population, and zone Z2 initially infection free. In
both zones, (knowingly) recovered agents are exempt from
lockdown, and the lockdown restrictions for the other agents
are different in the zones. Namely, Z1 has a looser lockdown,
with a maximum allowed activation degree of 4, whereas Z2
only allows a maximum of 2. The migration cost is cmig = 2,
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Fig. 4: Effect of strategic migration/activation decisions on the epidemic spreading between two zones with different lockdown measures.

and the agents are farsighted with α = 0.9. Note that with
these parameters, susceptible agents will want to move to Z1

when the epidemic is not prevalent, as per Proposition 16.
The inertia in the policy update is η = 0.1.

Additionally, both zones perform serological testing at rate
δRU = 0.01. The resulting epidemic spread is displayed in
Figure 4. First, notice how the proportion of unknowingly
recovered agents decays, in contrast to Figure 2, in which
no serological testing is performed.

We now focus on the strategic migration behavior of
agents who are either susceptible to infection or think they
are (S, A, U), as the epidemic unfolds. Note that symptomat-
ically infected and recovered agents never move since they
are immune to the threat of the epidemic, and the activation
costs are the same for them in both zones. Initially, the
epidemic risk is still small in Z1, and the occupants of Z2

start moving there to benefit from the more lenient lockdown
measure. This trend soon reverses, however, with the rise of
infections in Z1: the strategic agents elect to move to the zone
with stricter lockdown to escape the epidemic risk. Since a
proportion of the movers are asymptomatically infected, this
leads to an outbreak of the epidemic in Z2 as well, with
lower, but significant, peak infections than Z1. Eventually,
once the infections in Z1 has decreased sufficiently (at
approximately day 50), some Z2 residents move to Z1 again,
initiating a second wave of infections in Z1. At the end of
the epidemic, all the remaining agents move from Z2 as per
their dominant strategy.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we propose a model of strategic behavior
at both individual and societal level based on first princi-

6Here, r∗act[S, Z2] = 1
3

and r̄act[S] = 2
3

, therefore Z2 ∈ Z0
S .

ples, demonstrate its potential to explain complex activation
and migration patterns, and to guide the design of more
effective epidemic control measures. We characterize the
stationary equilibria in the proposed dynamic population
game setting and illustrate how a better understanding of
the emergent behavior can be leveraged to design effective
mitigation strategies. For instance, we show that withdrawing
restrictions on recovered agents leads to higher levels of
activity by susceptible agents without increasing the peak and
total infection levels. This observation provides a rigorous
justification for conducting large-scale serological testing
and letting individuals with immunity to interact freely for
significantly improving the welfare of the society.

A natural extension of this model includes further control
measures such as vaccinations and the generalization to a het-
erogeneous population game that would allow, for example,
to consider agents with different “home zones.” The problem
of designing optimal intervention strategies that incorporates
the strategic response of agents to such interventions is a
challenging avenue for future research.

APPENDIX

Proof of Proposition 1

The first property follows the fact that states A, I, and U are
transient in the infection state Markov chain (see Figure 1),
and evolve independently of the agents’ migrations. We omit
the formal steps because of space limitations.

We now observe that, given a distribution that is only
supported on the two compartments S and R, no transition
between compartments of the extended SAIR model is
possible. The reward for agents in both these compartments
then becomes independent from the actions of others, and
the set A∗s,z defines their dominant activation strategies.



We now consider migration strategies of the agents at the
equilibrium (π,d). We first consider an agent in infection
state s ∈ {S, R} residing in zone z ∈ Z̄s. In this zone, the
activation reward is maximum among all other zones for the
agent in state s. Since the infection state remains unchanged,
and migration is costly (cmig > 0), migrating to a different
zone does not lead to a beneficial single-stage deviation for
the agent.

We now consider an agent in zone z ∈ Zn
s := Z \ {Z̄s ∪

Z0
s }. According to policy π, the agent does not migrate to a

different zone. Consequently, the value function for the agent
is

V [s, z](π,d) =
r∗act[s, z]

1− α .

Now, consider a single-stage deviation where the agent
moves to location z′ ∈ Z̄s and chooses activation degree
a′ ∈ A∗s,z . Consequently, using the definition of Zn

s ,

Q[s, z, a′, z′] = r∗act[s, z]− cmig + α
r̄act[s]

1− α < V [s, z](π,d).

In other words, an agent in a zone in Zn
s does not find

it beneficial to migrate anywhere else in a single-stage
deviation.

It remains to show that an agent in zone z ∈ Z0
s finds

it beneficial to move to a zone in Z̄s and consequently, we
must have d[s, z] = 0 for z ∈ Z0

s . Under policy π, we have

π[a /∈ A∗s,z, z′ /∈ Z̄s|s, z] = 0.

Consequently, the value function for the agent is

V [s, z](π,d) = r∗act[s, z]− cmig + α
r̄act[s]

1− α >
r∗act[s, z]

1− α ;

in other words, the policy π yields a higher value compared
to any policy that does not include migration. Similarly, one
can show that migrating to a zone in Zn

s instead does not
yield a beneficial single-stage deviation since r∗act[s, z

′] <
r̄act[s] for any zone z′ ∈ Zn

s .
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