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Abstract

The paper deals with a Model Predictive Control (MPC) algorithm applied to electrical drives. The main

contribution is a comprehensive and detailed description of the controller design process that points out the most

critical aspects and gives also some practical hints for implementation. As an example, the MPC is developed for

a permanent magnet synchronous motor drive. Speed and current controllers are combined together, including all

of the state variables of the system, instead of keeping the conventional cascade structure. This way the controller

enforces both the current and the voltage limits. Both simulation and experimental results point out the validity of

the design procedure and the potentials of the MPC in the electrical drives field.
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I. INTRODUCTION

Model predictive control (MPC) derives from a rather old approach whose first ideas have been published

more than 20 years ago [1], [2], [3], [4]. Its strategies are based on an explicit and identifiable model of

the controlled system, which is used to pre-calculate the behavior of the plant and to choose an optimal

value of the control variables.

Because of the computational effort required by MPC, its implementation has been formerly restricted

to slowly varying systems, as chemical processes, in which the time step of the discretization is long



enough to allow the complete execution of the control algorithm. As the performance of the available

computing hardware has rapidly increased and new faster algorithms have been developed, it is now

possible to implement MPC for fast systems with shorter time steps [5].

Electrical drives are of particular interest for the application of MPC for at least two reasons:

1) their quite accurate linear models can be obtained by both analytical means and identification

techniques;

2) bounds on drive variables play a key role in the dynamics of the system. Actually, two main

approaches are available to deal with systems constraints: the conventional anti–windup techniques,

with their manifold variants, widely used in the PI controllers, and MPC. It is worth to note that the

difficulty in establishing constraints on the states have also limited the application of conventional

state space controllers.

In spite of the mentioned advantages, MPC applications to electrical drives are still largely unexplored

and they involve only few research laboratories. For example, generalized predictive control (GPC) – a

special case of MPC – has been applied to induction motors first for the current regulation only [6] and,

later, for the speed and current control [7]. In [8], the more general MPC solution has been adopted for

the design of the current controller in the same drive. In other works [9], [10] model predictive control

has been used as a current or a torque/flux controller, directly driving the inverter states.

The main contribution of this paper is a comprehensive and detailed description of the design process of

an MPC controller for an electrical drive, pointing out the most critical aspects and giving some practical

hints for the design and the implementation, and some suggestions for future studies and developments.

As an example of application, the MPC is applied to the control of a permanent magnet synchronous

motor (PMSM). Speed and current controllers are combined together in a single MPC that includes all

the state variables of the system, instead of keeping the conventional cascade structure. In this way it is

possible to enforce all the constraints of the system – namely current and voltage limits – in the controller.

Opposite to previous works, the paper also considers the motional coupling effect between the direct and



quadrature axes of the motor.

The proposed approach exploits the main advantages of MPC, i.e. its capability of systematically coping

with hard constraints on inputs and states, and its suitability for directly addressing multi-variable systems.

Other issues, that have never been addressed for MPC of electrical drives, are discussed in this paper.

These are the null steady-state error in the presence of unknown load and parameters mismatch of the

model, and the preservation of stability when a low-pass filter is introduced in the feedback path, especially

in the speed measurement.

The paper is organized as follows. Section II provides an overview of the MPC basics. Section III

presents the drive model, while Section IV is dedicated to MPC design. The controller implementation is

presented in Section V, along with its simulation. A stability analysis is reported in Section VI, and the

experimental results are presented in Section VII.

II. BASICS OF MODEL PREDICTIVE CONTROL

In MPC the controller selects the next input sequence on the basis of the prediction of the future system

state behavior [11]. More precisely, it chooses the input signal that minimizes a given cost function of

the state. The cost function can be either a L2 norm of the state, or a L1 or a L∞ norm. The quadratic

cost function has been preferred in this paper.

Since the controller has to predict the future system behavior, the core of MPC is the model of the

system. Let’s then consider a discrete-time state space model in the form

x(k + 1) = Ax(k) + Bu(k) (1)

y(k) = Cx(k) + Du(k) (2)

where the system variables x, u and y satisfy the constraints

x ∈ X ⊂ Rn,y ∈ Y ⊂ Rp,u ∈ U ⊂ Rm .



The cost function in its general form is

JNp = x(k +Np)T Px(k +Np)

+

Np∑
j=1

[
x(k + j − 1)T Qx(k + j − 1)

+ u(k + j − 1)T Ru(k + j − 1)
]

(3)

where Q = QT ≥ 0 weighs the state vector, R = RT > 0 penalizes the control action and P = PT ≥ 0

weighs the state value at the end of the prediction period Np.

The problem of finding the best control input for the system then reduces to solving the minimization

of (3) subject to

x(k + j) ∈ X j = 1 , . . . , Np

u(k + j) ∈ U j = 0 , . . . , Np

x(k + j + 1) = Ax(k + j) + Bu(k + j) j = 0, .., Np − 1

Expressing the state at step j as the superposition of free and driven response, that is

x(k + j) = Ajx(k) +

j−1∑
h=0

AhBu(k + j − 1− h)

the cost function can be transformed in a function of the initial state and of the input sequence only:

J ′Np
(x(k)) =

1

2
x(k)T Yx(k) +

1

2
UT HU + x(k)T FU (4)

where U =
[
u(k)T , . . . , u(k +Nu − 1)T

]T ∈ Rm·Nu is the vector that contains all the input steps from

sampling instant k to sampling instant k + Nu − 1, where Nu ≤ Np is the control horizon. The input is

supposed to be constant after k +Nu − 1, that is after Nu variations of the control signal.

The constraints too can be rewritten with the only dependence on the input U and the initial state x(k),

GU ≤W + Ex(k) (5)

The matrices H ≥ 0, F, Y, G, W and E can be determined from the matrices Q, R and P in (3) ([12],

[13]).



The new cost function (4) and the constraints (5) that have been obtained fit in the class of optimization

problems called Quadratic Programming, for which efficient iterative solvers are available in the technical

literature on non-linear programming and optimization methods (see [12], [13] and references therein).

Because of the constraints, the controller does not result to be an analytically determined, linear time–

invariant feedback of the state [14]. On the contrary, a convex optimization problem has to be solved

online. However, the computational effort of solving this optimization problem at each time step can be

greatly reduced, as explained later in Section V.

Once the optimal input sequence has been computed, only the first sample is applied to the plant,

according to the receding horizon policy. The starting point of the optimal control scheme is periodically

updated through feedback and the prediction horizon accordingly shifted (or made to recede) in time, so

that the control scheme sees a predicted behavior which is naturally updated to account for the measured

evolution of the system.

More precisely, at a given sampling instant k only the first control input u∗(k) of the open-loop

optimal control sequence U∗(k) is applied to the physical system, which then evolves until the successive

sampling instant k+1. Based on the newly measured state x(k+1) the new optimal input u∗(k+1) is then

obtained for the shifted horizon and applied, thus combining state feedback and the optimal open-loop

input sequences to effectively close the control loop.

III. DRIVE MODEL

In order to exemplify the design of an MPC, the speed and current control of a PMSM drive is

developed. To this aim, the drive has to be appropriately modelled. For the electrical subsystem of the

drive, a synchronous reference frame (d, q), with the d-axis fixed to the stator PM flux linkage vector is

considered, as it lets all the electrical variables be constant at steady-state. The electrical dynamics of the

PMSM drive can be thus described by the following stator equations, where the time dependency of the



variables is understood, and iron saturation is assumed negligible:

did
dt

=
1

Ld

(ud −Rid + ωmeLqiq)

diq
dt

=
1

Lq

(uq −Riq − ωmeLdid − ωmeΛmg)

(6)

The mechanical dynamics is described by the following equation, derived from the torque balance:

dωme

dt
=
p

J

(
ktiq −

B

p
ωme − τL

)
(7)

The motor torque constant is kt = 3pΛmg/2 and ωme = pωm is the electromechanical speed. Λmg is

the PM flux linkage, p is the number of pole pairs, and ωm is the mechanical speed. In addition, τL is

the disturbance torque, while J and B are the moment of inertia and the viscous coefficient of the load.

From (6) and (7), one can realize that the PMSM drive system is described by a nonlinear set of

equations, even if electrical and mechanical parameters are constant, because of the motional coupling

terms in each axis of (6), involving the speed and the current of the other axis.

In (7), it has been assumed that the motor torque is generated uniquely by the interaction between stator

currents and PM flux linkage (PM torque), neglecting the reluctance torque contribution (if any). This

means that the motor torque is made proportional to the quadrature current only, while direct current is

controlled to zero to minimize Joule losses. This is the case of any motor featuring low or null saliency

on the rotor, as in Surface-mounted PM (SPM) motors. However different d− and q− axis inductances

are indicated in (6) to account for a low saliency that may appear in the considered motors.

Larger saliency characteristic is exhibited by Interior PM (IPM) motors, and it is generally exploited to

increase the delivered torque for a given current level by impressing a negative d− axis current. In such

a way, additional non-linearities arise from the nonlinear motor torque equation as well as from the iron

saturation, often present in IPM motors.

The main goal of this paper is to introduce the reader to the MPC and to illustrate its potentials in the

field of electrical drives. Therefore, the focus will be on the essential hints for MPC design, rather than

on illustrating high-complexity applications. A motor with low or null saliency will be considered, with id



forced to zero. Nevertheless, the design procedure discussed in the paper is quite general and it contains

guidelines to arrange it to a salient PM motor too, accepting of course a more complicated controller.

As regards the design constraints, input voltages are limited by the inverter DC link voltage Udc, which

induces an hexagonal voltage boundary rotating in the d-q voltage plane with angular speed ωme. For

the sake of simplicity, the boundary can be approximated by the circle with radius Udc/
√

3, inscribed

in the hexagon and invariant under the stationary-to-synchronous coordinates transformation. When more

convenient, an alternative approximate boundary may be a polygonal region fixed in the d-q reference

frame.

A further constraint concerns the current level, mainly for motor and inverter thermal limits. Since the

id current is regulated to zero, current limitation actually sets the maximum amplitude of the iq current.

IV. MPC DESIGN OF A PMSM DRIVE

A. Definition of the MPC state variables

The first step in the design of a model predictive controller consists in determining a discrete–time

model for the system.

MPC can be best implemented for the class of systems that accepts a representation by a linear model

with constraints, because in that case most of the optimization process can be moved off–line (see Section

V). The linear model has to be pursued by an appropriate choice of the state variables.

As pointed out in Section III, the most important non–linearity of the PMSM drive is given by the

coupling terms involving the speed and the currents id and iq. In particular, the effect of the term ωmeiq

on the state equation for id cannot be ignored, while the term ωmeid in the iq equation has generally

little or no effect, once the direct current id is kept null. In principle, it could be possible to decouple id

and iq acting on the MPC output signals ud and uq, but then the voltage constraints in the model would

not reflect the actual ones, because of the additional decoupling terms added outside. As both ωme and

iq can be available for measurement in the drive, the ωmeiq term will then be considered as a measured

disturbance and it is included in the model.



The state variables of the system are then the currents id and iq and the angular speed ωme, along with

the measured disturbance ω̂meiq.

x =
[
id iq ω̂meiq ωme

]T
The input signal is the two dimensional voltage vector

u = [ud uq]
T .

According to this choice, the model for the motor is then

ẋ =



− R
Ld

0 Lq

Ld
0

0 − R
Lq

0 −Λmg

Lq

0 0 0 0

0 pkt

J
0 −B

J


x +



1
Ld

0

0 1
Lq

0 0

0 0


u

The dynamics of the measured disturbance ω̂meiq has been linearised around iq = 0 and ωme = 0, therefore

having ˙̂
ωmeiq = 0 (i.e. a constant disturbance in the prediction horizon, measured at the beginning of the

prediction process). This is the most effective choice to obtain a single linear model for the drive in all its

operating conditions. Adopting variable structure modelling to account for different linearization points

does not result in significant improvement of the performances, as simulations and experimental results

have confirmed.

Load torque is treated as an unpredictable disturbance. Its effect on drive behavior and the related MPC

rejection capability will be illustrated later in the paper.

B. Discrete time model

As said, MPC design requires a discrete–time model. Since it has to deal with both current and speed

dynamics (characterised by quite different time constants), for a correct approximation of the fastest

dynamics the time step has to be small enough with respect to the smallest time constant, which is the

electrical one. The main drawback of a very small time step is that the coefficients that describe the slow

dynamics associated to the speed are extremely close to zero or to 1, with numerical problems. Besides,



very small control cycles may cause an excessive microprocessor load factor and the risk of overflow. A

time step T = 1/(12kHz) = 83.3µs has been chosen in this work.

The resulting discrete time model (obtained with forward Euler discretisation) is the following

x(k + 1) =



1− T R
Ld

0 T Lq

Ld
0

0 1− T R
Lq

0 −T Λmg

Lq

0 0 1 0

0 T pkt

J
0 1− T B

J


x(k)

+



T
Ld

0

0 T
Lq

0 0

0 0


u(k) = Ax(k) + Bu(k) (8)

C. State augmentation for tracking

As the objective of the design is tracking and not driving the system to zero, some modifications are

needed to the state variables. First of all, to be able to weigh the speed error in the cost function, the

reference ωref
me has to appear as a state variable of the system. As information about the future reference

is not generally available, its state equation is

ωref
me (k + 1) = ωref

me (k) (9)

Since the cost function penalizes the control signal too, we would not be able to achieve offset–free

tracking, because the controller would apply a control signal smaller than the one that results in zero

error.

There are two main ways one can deal with this issue. The first is to weigh the error u−uref instead of

u in the cost function, where uref is the input signal that produces the given output reference. This requires

the a priori knowledge of uref , that is highly sensitive to the model parameters. The other approach consists



in weighing the input variation at each time step instead of its value. This way the input is allowed to

reach the required level that produces the desired output, without worsening the cost function.

This latter solution is implemented by transforming the input description in its differential form:

ud(k) = ud(k − 1) + ∆ud(k)

uq(k) = uq(k − 1) + ∆uq(k)

Two additional state variables, the components uk−1
d = ud(k−1) and uk−1

q = uq(k−1), are thus introduced.

The new augmented state vector is

xTR(k) =
[
id iq ω̂meiq ωme ωref

me uk−1
d uk−1

q

]T
and the input vector becomes

∆u(k) = [∆ud ∆uq]
T

The new system has the following state update equation

xTR(k + 1) =


A 0 B

0 1 0

0 0 I

xTR(k) +


B

0

I

∆u(k)

where A and B are the matrices that appear in (8).

A slight modification leads to a more accurate system model. As the control input ∆u will not drive

the inverter before the next time step, a 1–step delay should be included in the model. This usually

requires the introduction of a new state variable for each input that has to be delayed. Conversely, in the

augmented form that has been obtained for tracking, it is enough to remove the dependency of xTR(k+1)

on the input ∆u(k), getting

xTR(k + 1) =


A 0 B

0 1 0

0 0 I

xTR(k) +


0

0

I

∆u(k)



D. Cost function and control law parameters

Once that a discrete–time model for the system is available, the next important step is the definition

of the cost function that shall be minimized by an appropriate choice of the control inputs at each time

step. As pointed out in Section II, the cost function is a quadratic expression of the state in the form (3).

In the case analysed in this work, the main quantity to be weighted is the speed error ωref
me − ωme; as id

has to be zero, its value will be included in the cost function as well. Moreover, as the cost matrix for the

system input signals has to be positive definite, a non-zero weight has to be chosen for the inputs ∆ud

and ∆uq. Another choice concerns the weight for iq. There is no real reason to penalize a large value

of iq, especially when the goal is to achieve reference tracking in presence of possible load disturbances.

However, choosing a small, non-zero value for the weight of iq plays a key role in the stability of the

whole closed-loop system. This will be confirmed in the stability analysis in Section VI.

The matrices Q and R (according to the notation used in (3)) are then

Q =



γid 0 0 0 0 0 0

0 γiq 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 γwme −γwme 0 0

0 0 0 −γwme γwme 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



(10)

R =

 γu 0

0 γu

 (11)

where the γs are the cost coefficients. Matrix P is a constant. Its tuning would represent a further degree

of freedom that has not been exploited in this work, choosing P = 0.

The parameters have been set to the following values by virtual prototyping and simulations:

γid = 100, γiq = 1, γωme = 30, γu = 0.8



Another important parameter of the cost function is the length Np of the prediction horizon. Ideally,

it has to be chosen long enough to include the most relevant part of the system dynamic. Unfortunately,

due to computational reasons, it is not possible to include the whole speed dynamics in the prediction

horizon, as it would result in hundreds or thousands of time steps (while the currents dynamics is fully

described in few time steps). For this reason a compromise has to be found, keeping in mind that a lower

limit exists for the length of the prediction horizon. Indeed, it has to be noted that after discretisation the

whole state space is not reachable in one time step. In other words, the effects of a change in the input

signals ∆u at the time step k will have effect on the voltage u at the time step k + 1, on the current i

at time k + 2, and on the speed ωme at time k + 3. This sets a minimum value Np = 4 for the prediction

horizon. In the implementation presented in this paper, it is Np = 5.

There is still another parameter, not related to the cost function, but rather to the control law. It is the

control horizon Nu, that is the number of steps after which the input signal is considered steady when

predicting the future response of the system. The only reason for the parameter Nu is the simplification

of the optimization process, for the sake of offline computational time. On the other hand, it results in

achieving a sub–optimal solution instead of the optimal one (even if simulation and experimental results

showed that this sub–optimality is not critical at all).

In the implementation of this paper it has been choosen Nu = 1. It means to consider a constant

control input when predicting the system behavior. This may seem limiting; note however that for the

same reasons that have been pointed out above, any input signal after k + 1, where k is the sampling

instant when the algorithm is executed, would have no effect on the main state variable we are interested

in (the speed ωme) before k + 5, that is inside the prediction horizon Np = 5.

E. State variable bounds

One of the most important features of MPC is its ability in dealing with bounds on the state variables.

To exploit this capability an accurate set of bounds have to be included in the model of the system. The

two most important bounds in a PMSM drive are the current and the voltage limits. They are two upper



limits on the magnitude of i and u, that correspond to a circular limit in the d-q plane. However, as linear

limits are highly preferable for implementation purposes, two polygonal approximations of those limits

have been adopted.

As regards the current limit, a rectangular region has been enforced, corresponding to independent

limits on id and iq.

id ∈ [−εIN εIN ]

iq ∈ [−IN IN ]

where IN is the nominal stator current of the drive and ε is a coefficient smaller than 1 (for example

ε = 0.2). As id is kept close to zero, this approximation is somehow acceptable.

As regards the voltage limit, a finer approximation has been used instead, because both ud and uq can

be far from zero. The circular region |u| ≤ UN has been converted in an octagon P8, therefore enforcing

eight linear constraints. The octagon is inscribed into the circular limit region.

u ∈ P8 ⊂ {u : |u| ≤ UN}

Particular attention has to be paid in enforcing these constraints on the present and future steps inside

the prediction horizon. While the voltage corresponds to the control input and therefore it is chosen by

the controller itself, the current value comes from a measurement on the real currents. Due to overshoots

and measurement noise, the current at sampling time k can lie outside the given region. However, as the

control input applied at sampling time k has no effect on the currents until the instant k + 2, current

limits on the two steps k and k + 1 must be removed.

F. Integral action for offset–free tracking

A typical problem of MPC is the way it deals with unmeasured disturbances and parameter

mismatch in the system model. In fact, as the control input applied to the system depends on the current

state only, and not on the past history of the system, there is no guarantee of steady–state zero offset in

case of either disturbances or inexact system modelling. This issue is addressed in the MPC literature



using the information coming from the comparison between the predicted and the actual system output,

together with some models of the disturbances acting on the plant [15], [16], or adding some sort of

robustness to model predictive control [17], [18].

In the present case, a simpler solution has been adopted, as prediction errors are not available because

the optimization is perfomed offline (see Section V). The proposed solution consists in adding an integrator

of the angular speed error ωref
me − ωme outside of the controller, the output of which is used to move the

reference ωref
me . In other words, instead of feeding the controller with the speed reference provided by the

user, it is fed by

ω̄ref
me = ωref

me +KINT

∫ (
ωref

me − ωme

)
dt

Avoiding the problem of integrator wind-up (that has to be faced with this approach) is particularly

easy as the MPC controller algorithm (see Section V) automatically returns a flag if any of the constraints

is active. If one or more of the constraints are active, the integration of the error is not executed for that

single time step.

This solution can also be interpreted as modelling all the disturbances in one additional signal on the

angular speed ωme and estimating this disturbance by integrating the signal ωme and its reference. The

choice of KINT is not particularly challenging. In this paper, a value of KINT = 20 let the steady-state

speed error be eliminated, with little influence on the system dynamic.

G. Presence of filters in the feedback

In the practical implementation of a speed controller, a low-pass filter in the speed feedback may

appear. This can be introduced by the designer, either to filter out high–frequency noise from the signal

coming from the resolver/encoder, or to account for some unavoidable effects like time delays in the

measurement. The presence of an additional pole in the gain loop has one main consequence: it worsens

the dynamic behavior of the closed-loop systems, even compromising the closed-loop stability.

It is quite easy to deal with this problem in the MPC, by introducing an additional state in the controller,



namely the filtered speed ωf
me governed by

ω̇f
me = − 1

τf
ωf

me +
1

τf
ωme

where τf is the time constant of the low-pass filter. In the cost function, weighting the error ωref
me − ωf

me

instead of ωref
me − ωme allows the designer to choose large time constants in the feedback filter without

compromising the stability of the closed-loop system. Experimental tests (not reported in this paper)

confirmed the effectiveness of this approach.

The only drawback is the augmented state space, which implies a more complex algorithm and longer

computational time. Nevertheless, it is a solution one should keep in mind when feedback filtering is

somehow unavoidable.

V. IMPLEMENTATION AND ALGORITHM

So far, MPC has been mainly used in slow process control, due to its large computational demand,

needed to seek the future control actions that minimize a given cost function. Previous approaches tried to

solve this optimization problem analytically. These solutions (GPC, for example) have the unacceptable

drawback of making the inclusion of constraints difficult, when not impossible at all [14]. Consequently,

the development and implementation of the control algorithm is crucial to the application of MPC to fast

dynamic systems.

In [8], most of the optimization problem is solved off-line, thus keeping the complexity of the on-

line part of the algorithm rather low. This is possible by computing an explicit solution of the control

law [12]. Indeed, in the case of a linear system with constraints and a quadratic cost function of the

state, the optimization problem of finding the control values that minimize the given cost function is a

multi–parametric quadratic program. Moreover, the control law is a piecewise-linear and continuous state

feedback, defined on a finite number of contiguous regions. More precisely, in each region of the state

space the control law takes the form

ui(k) = Fi x(k) + Gi (12)



where i is the index of the active region, that is the convex region in which the state is at the sampling

time k, and the matrices Fi and Gi are the result of the optimization algorithm described in [12].

Fig. 1 shows an example of regions partition of the controller. From the figure one can see the main

hyperplane that divides positive from negative speed errors, and the regions that appear as the state get

closer to the current limit (6 A in this example). These regions automatically enforce the current limit of

the controller.

Applying (12) to the system means to search the region in which the system state is located and then

evaluating the affine feedback law in the form (12), to obtain the input to be applied to the system. The

online part of the algorithm consists of a region search and a matrix multiplication and sum, as one can

see in Fig. 2. The step of determining in which region the system lies may be computationally intensive,

in the presence of numerous regions. The complexity can be reduced implementing a dichotomic search

among the regions. Instead of verifying whether the state is within a region, a binary search tree is

built [19]. As the regions aren’t ordered in any way, the search tree consists in determining a series of

hyperplanes that severs the contiguous regions, and then creating a tree of comparison of the current state

with each of these hyperplanes. The result of each comparison marks out the current state as “above” or

“below” the hyperplane. Hence, each region (which is a leaf of the tree) can be identified by the result

of the series of comparison from the root of the tree to the leaf itself, passing through the intermediate

nodes forming the branches of the binary tree.

Actually, the aforementioned dichotomic method moves offline the most computationally expensive part

of the search of the active region, leaving online only a short series of tests to locate the current state

among the hyperplanes and the computation of the control input based on the affine feedback law returned

by the active region. This makes it possible to execute the MPC algorithm fast enough to fit in the typical

time steps of the electrical drives.

Moreover, as the problem fits in the general frame of multi parametric programming, efficient tools

are available to solve it explicitly. In particular, the Multi–Parametric Toolbox (MPT) [13] for Matlab



provides both a solver for the optimization problem and some routines to generate the region partition

and the binary search tree for its simulation and implementation.

The developed MPC algorithm has been widely simulated in different operating conditions, before its

actual implementation. MPT allows both the simulation in Matlab and the implementation in C code. One

of the simulation results is in Fig. 3, which shows the response of the drive to a pulse speed reference

from 500 rpm to 1000 rpm. The parameters of the simulated drive are those of the test-bed that has been

later used for experimental validation, and they are reported in Section VII. The MPC has been designed

to enforce a current limit of 6 A and a voltage limit of 173 V (DC bus at 300 V).

One can note the good speed response with limited overshoot and without steady-state error. Acceleration

and deceleration are limited by the current limit that affects iq, while id is kept close to zero. Voltage

limits are not active in this operating conditions. Several feedback laws are used during the transients, as

one can see from the indexes of the active regions in the different moments of the response.

Simulations like that of Fig. 3 have been used to tune the MPC and to evaluate its complexity, because

analytical means are not easily available.

VI. STABILITY ANALYSIS

Generally, research studies about MPC closed-loop stability assume that the prediction horizon goes to

∞. Unfortunately, this hypothesis does not hold in the present application, since the prediction horizon

is far from including most of the future dynamics of the motor.

Alternatively, two main directions can be investigated: Lyapunov analysis (only briefly sketched) and

linearization (hereafter used).

A. Lyapunov analysis

Global stability of the closed-loop system can be investigated by the use of an appropriate Lyapunov

function. Indeed, the control law is the piecewise affine feedback (12). That means that the closed-loop



system has a similar piecewise structure in the form

x(k + 1) = αi x(k) + βi ,

where αi and βi result from algebraic manipulations on Fi, Gi and the system matrices A and B. As it

has been proved in [20], for such an autonomous system it is possible to seek an appropriate Lyapunov

function

V = xT Lix

that satisfies the requirements of being positive and decreasing along the trajectories of the system. The

matrices Li can be identically equal to a matrix L, then resulting in a quadratic Lyapunov function, or they

can be different constant matrices for each i–th region. In the latter case, V would result in a piecewise

quadratic function, and its existance is a sufficient condition to prove exponential stability of the system

[20]. A complete Lyapunov analysis has not been completed in this paper, but the software toolbox MPT

[13] offers some routines to search a suitable Lyapunov function of the desired form.

B. Linearization

The first approach consists in linearising the system around an equilibrium point, for small variations

of the state. This approach is simplified by the fact that the controller results to be piecewise affine in a

finite number of regions in the state space. In particular, there is a main region (the one in which none

of the constraints is active) in which the control law is a linear feedback of the state.

Supposing that the system is laying in that region, the stability can be investigated by the classical

methods that apply for linear systems. For example, one can be interested in checking the position of

the closed-loop poles when varying the weights in the cost function, which are the main tuning knobs

for MPC. As the systems has dimension n = 7, 7 poles appear in the map. It can be verified that two

of them are independent on the weights and located in z = 1 (therefore representing constant modes).

One can intuitively suppose that these modes refer to the measured disturbance ω̂meiq (see (8)) and to the

speed reference ωref
me (see (9)). Another pole is located close to 1, slightly inside the stable unit circle.



The remaining four poles are two complex conjugate couples. These, together with the (just mentioned)

real one, model the electro–mechanical dynamic of the system.

In Fig. 4 the position of the poles is plotted when the speed error weight in the cost function is varied

around the nominal one. The main effect occurs on the real pole close to 1, that moves towards the origin

as the weight γωme increases. This means that a higher weight corresponds to faster dynamics of the

system. However, one should keep in mind that this analysis does not include the effects of state variable

bounds and it is valid only for small variations of the states, which leaves the state within the main linear

region, where the linearization has been performed. This can be easily seen by simulation.

In Fig. 5, instead, the effects of modifying the weight of the current iq is analysed. With γiq = 0, one

of the complex conjugate pole pair is outside of the unit circle, and as the iq weight increases, they move

inside. As observed in Section IV when choosing the cost function parameters, a non–zero value of γiq

is therefore needed to obtain the closed-loop stability. What one would observe if the weight was set to

zero, is that the system would not stay in the main linear region, switching instead between the upper and

the lower current limits (a sort of bang–bang operation mode). On the other hand, a too high γiq causes

the real pole to move very close to 1, slowing down the speed response of the whole system.

Finally, in Fig. 6, the position of the poles is plotted for different values of the common weight of

∆ud and ∆uq. The optimization algorithm needs a non–zero value for these weights γu. It is worth to

note that their decrease moves one of the complex pair of poles towards the origin (therefore improving

stability and dynamic response), so that the smallest value that does not involve numerical problems has

been chosen in the design.

VII. EXPERIMENTAL RESULTS

The designed MPC for a PMSM drive has been experimentally validated on a laboratory testbench,

sketched in Fig. 7. The testbench uses an SPM motor supplied by a three-phase inverter, controlled by a

Fast Control Prototyping (FCP) board. A vector-controlled induction motor drive is used as mechanical

load. The whole digital control of the SPM motor drive is implemented in the FCP board, from the PWM



generation to the speed/current model predictive control. The PWM and sampling frequencies are both

12 kHz. Main drive data are reported in Table I.
Table I

MAIN DRIVE DATA

Nominal torque 13.8 Nm

Nominal current 8.5 A rms

Nominal speed 2160 rpm

Phase resistance 0.8 Ω

Phase inductance (Ld = Lq) 6.5 · 10−3 H

Pole pairs 3

Total moment of inertia 8.2 · 10−3 kg m2

DC bus voltage 300 V

Some experimental results are hereafter reported. At first the drive has been tested in the same conditions

of the simulation reported in Fig. 3. The experimental results are reported in Fig. 8. As in the simulation,

an iq limit of 50% of the nominal current (8.5
√

2 = 12 A peak) has been enforced to highlight its effects

on the dynamic. One can note the good overall performance of the drive and the tight correspondance

between the experimental and simulated results (apart from the chattering mainly due to the inverter

dead–times). The reliability of simulation in predicting MPC behavior is thus confirmed.

For the sake of comparison, the PMSM motor drive has been also designed and tested using three

PI controllers for the speed and current loops. d− and q− current controllers have been designed for a

bandwidth in between the inverse of the electric time constant and the inverse of the sampling time, while

a bandwidth a decade lower has been chosen for the speed controller. Experimental results are in Fig. 9.

Fig. 8 and Fig. 9 show the similar behavior of the MPC and the PI controllers within the nominal speed of

the motor. The PI controllers are equipped with anti-windup algorithms, which represent the most critical

design issue as the output of the current controllers (the d- and q- voltages) are the components of a

limited space vector and are not limited independently. Managing voltage limitations for current control

loops is the greatest disadvantage of PI solutions, while MPC has an inherent capability in operating under



limited conditions. The slightly higher noise superimposed to currents and voltages in the MPC version

can be reduced by a proper modification of the weights in the MPC controller, which is comparable to

changing a sort of proportional contribution.

The robustness of the controller to parametric mismatch has been briefly explored in one of its most

common occurences, that is a wrong assumption about the moment of inertia of the load. Fig. 10 shows

the behavior of the controller when it is designed for a moment of inertia 3 times greater than the actual

one. With respect to Fig. 9, a larger overshoot appears in the speed response, but the behavior is still

stable and acceptable.

In Fig. 11 a speed reference higher than the nominal is imposed, to force the intervention of the voltage

limit. This test points out the impressive capability of the MPC to control both current and voltage limits.

In particular, the voltage limit does not allow the reaching of the maximum speed reference.

As it can be seen, a sensible chattering is present as the voltages approach their limit. Voltage chattering

mirrors the chattering in the selection of the MPC active region, which occurs as the drive transits from

a non-limited to a limited condition operating point. The reduction of the chattering through a smoother,

or even hysteretical transition between MPC active regions is still an open point which should be further

investigated in future works.

In Fig. 12 and 13 a triangular speed reference is commanded. In the former, the slope is chosen so

that the required torque current ( iq=3 A) is beyond its limit. Therefore, there is room left for speed error

recovery, as testified by the current overshoots that occur after every acceleration reversal. In the latter,

the slope is twice larger, so that a 6 A iq is needed. As this value coincides with the enforced current

limit, therefore no overshoot is allowed and the controller achieve the best possible result while respecting

that limit. The speed error cannot be completely cancelled during acceleration.

The last set of experiments deals with the drive rejection capabilities to torque disturbances. It is worth

to recall that torque disturbance is not present in the state model used to design the MPC. The key role in

the zero–offset rejection of this kind of disturbances is played by the external integral action described in



Section IV. In these tests the current limit has been set to its nominal value (12 A) to operate the motor

up to its full torque.

In Fig. 14 a constant speed reference of 800 rpm is commanded, while the torque load varies from

20% to 40%, and then 20% again, of the nominal torque (13.8 Nm). The torque load is obtained by

commanding the induction motor drive connected to the drive under test. The torque measured by the

torquemeter shows a slightly larger value due to additional friction at this speed. The figure shows a good

capability of the MPC to limit the torque disturbance effects and to achieve zero steady-state speed error.

The maximum transient speed error is within 1.5% of the nominal drive speed.

In Fig. 15 the test is carried out at 100 rpm, i.e. less than 5 % of the nominal speed. At t = 0, the

application of a rated load torque step activates the current limitation. The settling time is then longer at

load torque onset, while lower at load detach. The speed error is higher than that exhibited in Fig. 14,

proportionally to the torque step amplitude.

As can be seen, the superimposed noise of Fig. 14 is higher than that of Fig. 15. As a matter of

fact, the speed sensor which has been used for the experimental work is an encoder with a resolution of

1000 pulses per revolution. The mechanical speed has been obtained measuring the period of the pulse

waveform coming from the encoder. It is well known that this measurement mode suffers of accuracy

problems as the speed increases, as in our case. An industrial practice, which involves some hardware

modifications, consists in toggling between period and frequency measurements of the encoder pulses, for

low and high speeds respectively.

The experimental results presented in this chapter, together with all the others carried out in the

development of the work, and the simulation results as well, point out the promising features and

characteristics of MPC applied to electrical motor drives. These potentials stimulate further exploration

and study on this type of controllers in order to achieve the familiarity required to transfer them to practical

applications.



VIII. CONCLUSIONS

By using a permanent magnet synchronous motor drive as a test bench, the paper gives an exhaustive

description of the design procedure of a Model Predictive Control (MPC) applied to the combined control

of the motor speed and current. After a brief introduction of the MPC fundamentals, the design is illustrated

in detail giving a step-by-step discussion of the main critical points and the hints for their successful

handling. Suggestions for extending the design to different drive controllers are also included. Simulations,

as well as numerous experimental results, highlight the promising features and characteristics of MPC

applied to electrical motor drives. As a last contribution, the MPC potentials pointed out in the paper

should stimulate further exploration and study on this type of controllers, in order to achieve the familiarity

required to transfer the results to practical applications.
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Figure 1. An example of region partition of the controller. As the dimension of the state is greater than 3, projection has been applied on

the state variables other than the current iq , the velocity ωme and the reference ωref
me .
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Figure 2. Flow chart of the control algorithms with a rough estimation of the computational complexity of each step. N is the number of

regions, n is the dimension of the state and m is the dimension of the input vector. In the experimental setup described in this paper we

have N = 80, n = 7, m = 2.
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Figure 3. Simulated drive response to a 500–to–1000 rpm reference speed pulse. From top to bottom: speed reference and response, d−

and q− currents, d− and q− voltages, and active region number of the MPC controller.
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Figure 8. Experimental drive response to a 500–to–1000 rpm reference speed pulse. From top to bottom: speed reference and response,

d− and q− currents, d− and q− voltages, and active region number of the MPC controller.
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Figure 9. Experimental drive response to a 500–to–1000 rpm reference speed pulse with PI controllers. From top to bottom: speed reference

and response, d− and q− currents, d− and q− voltages.
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Figure 10. Experimental drive response to a 500–to–1000 rpm reference speed pulse when the actual moment of inertia is 1/3 of the one

considered in the MPC model. From top to bottom: speed reference and response, and d− and q− currents.
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Figure 11. Experimental drive response to a 750–to–2250 rpm reference speed pulse. From top to bottom: speed reference and response,

d− and q− currents, and d− and q− voltages.
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Figure 12. Experimental drive response to a lower acceleration triangular speed reference. From top to bottom: speed reference and response,

and d− and q− current.
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Figure 13. Experimental drive response to a higher acceleration triangular speed reference. From top to bottom: speed reference and

response, and d− and q− current.



−0.1 0 0.1 0.2 0.3 0.4 0.5
700

800

900

ω
m

 ,
 ω

re
f

m
 [

rp
m

]

−0.1 0 0.1 0.2 0.3 0.4 0.5
−5

0

5

10

15

i d
 ,
 i

q
 [

A
]

−0.1 0 0.1 0.2 0.3 0.4 0.5
−5

0

5

10

15

τ
 [

N
m

]

t [s]

Figure 14. Experimental drive response at 800 rpm to a 20% to 40% load torque. From top to bottom: speed reference and response, d−

and q− current, and measured torque.
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Figure 15. Experimental drive response at 100 rpm to a 0% to 100% load torque. From top to bottom: speed reference and response, d−

and q− current, and measured torque.


