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On the Need for Communication for Voltage
Regulation of Power Distribution Grids

Saverio Bolognani, Ruggero Carli, Guido Cavraro, and Sandro Zampieri

Abstract—We consider the problem of regulating the voltage
profile of a power distribution grid by controlling the reactive
power injection of distributed microgenerators. We define a
very general class of purely local feedback controllers in which
reactive power injection is adjusted based on the local voltage
measurements. This class includes most of the solutions proposed
in the literature and in the latest grid code drafts. We show
that these strategies do not guarantee the desired regulation, as
each of them can have an equilibrium that is not feasible with
respect to the desired voltage and power constraints. We then
propose a networked feedback law to show that, by adding short-
range communication between microgenerators, it is possible to
design control strategies that provably converge to the feasible set.
This fundamental performance gap between local and networked
strategies is finally illustrated via simulations.

Index Terms—Networked control systems, decentralized con-
trol, optimization, power distribution, voltage control.

I. INTRODUCTION

FUTURE power distribution grids are expected to host a
significant amount of distributed microgeneration and to

serve an increasingly higher demand, driven for example by a
broader diffusion of electric vehicles. These grids are expected
to exhibit congestion phenomena [1]–[4] which cannot be
adequately addressed by merely designing oversized networks
based on a worst-case analysis (fit-and-forget). For example,
the voltage profile of these low and medium voltage networks
is going to be affected by bidirectional active power flows, and
both overvoltage and undervoltage conditions are expected to
happen increasingly often.

An avenue that is currently being explored by both re-
searchers and practitioners consists in providing microgen-
erators with sensing and computation capabilities, and in
exploiting the flexibility of their power electronic interface to
inject (or withdraw) reactive power from the grid. If properly
controlled, these devices can act as a finely distributed network
of reactive power compensators, providing a valuable ancillary
service to the distribution grid and, ultimately, preventing the
curtailment of renewable sources, allowing widespread electric
mobility, and postponing grid reinforcement.
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Because of the lack of full state monitoring of the distribu-
tion grid, most of the efforts towards reactive power control
for voltage regulation have focused on purely local (i.e., fully
decentralized) feedback strategies (see Figure 1). According
to these strategies, the reactive power injection of the power
inverter is adjusted based on real-time measurements that can
be performed at the point of connection of the power inverter
to the grid [5]. Different variations have been proposed (see
the review in [6, Section IV.D]). In most cases, the reference
for reactive power injection is computed as a static function of
the measured voltage amplitude, often with a deadband and/or
saturation [7]. Data-driven approaches have been proposed in
order to tune these static maps based on past data or prior
information on the grid demand and generation [8], [9]. In
some strategies, the static feedback is complemented by a
feedforward term which is a function of the local active and
reactive power demand [10], [11]. An offline optimization of
the static feedback (namely of the slope factor and of the
thresholds) based on the analysis of the voltage sensitivity
matrix, has been suggested in [12].

Since these static feedback laws could lead to oscillatory be-
haviors, incremental strategies have also been proposed. In this
case, the power injection is adjusted based on both the voltage
amplitude and the past reactive power setpoint [13], [14].
Other local dynamic controllers have been proposed as well,
either by implementing droop-like behaviors that solve some
reverse-engineered voltage regulation problems [15], [16] or
by explicitly implementing gradient-descent trajectories for the
desired cost function [17]–[20]. Different cost functions and
different descent methods have been considered, as long as the
resulting dynamic update was fully decentralized [21]–[23].

Purely local reactive power control strategies for micro-
generators have been considered for inclusion in the latest
revisions of some distribution grid codes [24]–[26]. However,
it has been empirically observed that these strategies might un-
derperform when compared to “benchmark” solutions, where a
centralized controller has access to the entire network state and
can optimally dispatch reactive power compensators [27], [28].
Furthermore, even minimal agent-to-agent communication has
been shown to be beneficial for this application [29]–[31].

In this paper, we investigate whether there is a fundamental
gap between the performance of purely local voltage regula-
tion strategies and distributed strategies in which a minimal
amount of communication between agents is allowed.

We start by formulating a general class of purely local
controllers, which contains the examples mentioned above.
The proposed class of controllers has been presented in the
preliminary work [32] and includes the smaller class defined
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Figure 1. Example of static (left panel) and incremental (right panel) purely
local feedback laws for voltage regulation via reactive power injection.

in [33], which only models static maps from the measured
voltages to the reactive power control. We show via a coun-
terexample how it is possible to construct scenarios where
all these controllers are not effective in regulating the voltage
between the desired limits, even if the available reactive power
resources would allow it if properly dispatched. In other words,
local feedback control laws fail to drive the system to a feasible
operating point, despite this being inside the reactive power
capability region of the inverters.

Compared to [32], in this paper we complete the investi-
gation of this fundamental performance gap by presenting a
distributed reactive power control strategy which requires only
short-range communications, uses the same measurements
available for the local control strategies (voltage magnitudes
at the microgenerators and no phasor measurement), does not
require monitoring of all buses (in contrast to the distributed
solutions in [34]–[38]), and provably converges to a feasible
operating point that guarantees satisfaction of the grid voltage
limits. From an application perspective, this Volt/VAR strategy
is interesting per se: to the best of our knowledge, no coor-
dinated voltage regulation strategy available in the literature
meets these specifications (except for the working paper [39],
based on a different iterative optimization method).

We illustrate these results in simulation on the IEEE 123-
bus feeder, using real power consumption and generation data.

All the proofs are collected in the Appendix.

A. Mathematical notation

We define by 1 the column vector of all ones, while ev is
the vector whose value is 1 in position v, and 0 elsewhere.

Given u, v, w ∈ R`, with vh ≤ wh, h = 1, . . . , ` we define
the operator [u]wv as the component wise projection of u in
the set

{
x ∈ R` : vh ≤ xh ≤ wh, h = 1, . . . , `

}
, that is,

([u]wv )h =

 uh if vh ≤ uh ≤ wh
vh if uh < vh
wh if uh > wh

(1)

Finally, we denote by u, Reu, and Imu, the complex con-
jugate, the real part, and the imaginary part of u, respectively.

II. POWER DISTRIBUTION GRID MODEL

We consider a grid-connected, balanced, power distribution
network, on which we define the following steady state quan-
tities for each bus h ∈ V := {1, . . . , n}:
vh voltage magnitudes
θh voltage angles
ph active power injections
qh reactive power injections

We then define v (and similarly θ, p, q) as the vectors contain-
ing all the scalar quantities vh (respectively θh, ph, qh).

All power flows that are compatible with the physics of the
grid (namely with Kirchhoff’s and Ohm’s law) must satisfy
the nonlinear complex-valued equation

diag(u)Y u = s (2)

where uh = vhe
jθh and sh = ph + jqh denote the complex

bus voltages and complex bus power injections, respectively,
and where Y is the bus admittance matrix of the grid. We
neglect shunt admittances and therefore assume Y 1 = 0.

We label the substation (where the distribution grid connects
to the higher voltage grid) as node 1 and consider it as an ideal
sinusoidal voltage generator (slack bus) at the nominal voltage
v1 = 1, with arbitrary, but fixed, angle θ1. We model all nodes
except the substation as constant power buses. These include
both loads and microgenerators.

We adopt a linearized model to express the relation between
voltages and nodal powers in the grid. The linearization of the
power flow equations around a flat voltage profile yields the
implicit relation [40][

ReY − ImY
− ImY −ReY

] [
v
θ

]
≈
[
p
q

]
, (3)

which is a good approximation when v ≈ 1 and θ, p, q ≈ 0.
It can be shown [29, Lemma 1] that there exists a unique

symmetric, positive semidefinite matrix X ∈ Cn×n such that{
Y X = I − e11ᵀ

Xe1 = 0,
(4)

which depends only on the topology of the grid power lines
and on their impedances, and whose elements are all non-
negative. This matrix allows to derive the following convenient
explicit expression for the voltage magnitudes.
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Lemma 1. Let Y be a bus admittance matrix satisfying Y 1 =
0, and let X be defined as in (4). Then, when p, q ≈ 0,

v ≈ 1 + ReXp+ ImXq. (5)

Equation (5) models the well known fact that the injection
or the absorption of reactive power increase or decrease,
respectively, the voltage magnitude also in the case of not
purely inductive lines. Notice in fact that we have made no
assumption on the X/R ratio of the lines.

The quality of this linearization can be studied following the
analysis in [41], and relies on having large nominal voltage of
the grid and relatively small nodal currents. This assumption
is verified in practice, and corresponds to correct design and
operation of distribution networks, where indeed the nominal
voltage is chosen sufficiently large in order to deliver power
to the loads with relatively small power losses.

Finally, we assume that microgenerators are connected to a
subset of the grid buses, namely C ⊆ V (with |C| = m). As
in Figure 1, each microgenerator is provided with
• sensing capabilities, so that it can take local voltage

magnitude measurements;
• computational capabilities that will be exploited to im-

plement the control algorithms;
• actuation capabilities, being able to regulate the amount

of reactive power injected into the grid.
In order to underline the difference among microgenerators
and passive loads in the notation, we introduce the following
block decomposition of the voltage magnitude vector v

v =

v1vG
vL

 , (6)

where v1 is the voltage magnitude at the substation, vG ∈ Rm
are the voltage magnitudes at the microgenerators, and vL ∈
Rn−m−1 are the voltage magnitudes at the loads. Similarly, we
also define sG = pG + jqG and sL = pL + jqL. Accordingly
with the same partitioning, we can partition the matrix X as0 0 0

0 XGG XGL

0 XLG XLL

 .
The structure of X descends from the property of the

Green’s matrix, and the block XGG is invertible [18].
With this decomposition, we then have

vG ≈ 1 +XR
GGpG +XR

GLpL +XI
GGqG +XI

GLqL, (7)

where the superscripts R and I indicate the real and imaginary
part of the block, respectively. In the sequel for simplicity
we will use (7) as an equality, even if it provides only an
approximate relation between the quantities on the model.

III. VOLTAGE CONTROL VIA REACTIVE POWER
REGULATION

In this section, we formulate the problem of controlling the
reactive power injected (or withdrawn) by the microgenerators
in order to regulate the voltage profile of the distribution

feeder. Since we assume that only microgenerators can mea-
sure their bus voltage, we consider the constraints

vmin ≤ vh ≤ vmax, ∀ h ∈ C, (8)

where vmin and vmax are, respectively, the minimum and
maximum admissible values for the voltage magnitudes. Typ-
ical scenarios include both symmetric bounds around the
nominal voltage (e.g. ±10%) and asymmetric bounds (e.g.
vmin = 0.87, vmax = 1.06).

In addition, since the generators deployed in the distribu-
tion network are, typically, of small size, we need to take
into account also constraints on their generation capabilities.
Precisely, we assume that

qmin,h ≤ qh ≤ qmax,h, ∀ h ∈ C, (9)

where qmin,h, qmax,h denote, respectively, the minimum and
the maximum amount of reactive power that can be injected
by agent h. In most cases qmin,h ≤ 0 and qmax,h ≥ 0.

Based on the constraints in (8) and in (9), we introduce a
proper definition of the set of the feasible reactive power in-
jections. Observe that, in the setup we consider, the quantities
pG, pL and qL are assumed to be constant and that only qG
is actuated in order to regulate vG; in other words, vG can be
described as a function of qG via (7). A given qG is said to be
feasible if it satisfies (9) and if the induced vG(qG) satisfies
(8). More formally, for a given triple (pG, pL, qL), we define

F (pG, pL, qL) =
{
qG such that ∀h ∈ C it holds

qmin,h ≤ qh ≤ qmax,h, vmin ≤ vh ≤ vmax

}
. (10)

Since there is no risk of confusion, for the sake of notational
convenience, we omit the dependence of F on (pG, pL, qL).

The goal of a reactive power control strategy is to drive the
reactive power injection of the microgenerators to a point that
belongs to the set F , for any initial condition.

In all the strategies that we consider in this paper, mi-
crogenerators measure periodically and synchronously the
magnitudes of their voltages; namely, all the agents take their
measurements at time instants t = 0, 1, . . . where without
loss of generality we have assumed unitary sampling time.
Based on those measurements, they synchronously update their
reactive power injection, and hold the same value until the next
measurement.

IV. A CLASS OF PURELY LOCAL CONTROL STRATEGIES

In this section, we define a family of purely local strategies,
in which each agent h updates qh based only on its current
reactive power injection and on the measurements of the
magnitude of its own voltage, i.e., vh; in these strategies,
agents do not communicate with each other. The family we
introduce includes most of the purely local strategies that have
been recently proposed in the literature and in the latest grid
code drafts, as reviewed in the Introduction.

In these strategies, the reactive power output of each micro-
generator h ∈ C can be expressed as

qh(t+ 1) = gh(qh(t), vh(t)). (11)
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We will say that a controller

gh : [qmin,h, qmax,h]× R≥0 → [qmin,h, qmax,h]

belongs to the class G if it meets the following properties:
1) the function gh(q, ·) is continuous ∀q ∈ [qmin,h, qmax,h];
2) the function gh(·, v) satisfies

gh(q, v)− gh(q′, v) < q − q′; (12)

for every q, q′ ∈ [qmin,h, qmax,h], with q > q′;
3) the function gh(q, ·) is weakly decreasing, i.e. for every

0 ≤ v ≤ v′,
gh(q, v) ≥ gh(q, v′). (13)

According with the principle that the local voltage is an
increasing function of the reactive power injection, condition
3) states that the lower the actual voltage is, the higher the
reactive power output will be. Conditions 1) and 2) are instead
typically introduced to obtain a stable dynamic behavior of the
closed-loop system.

Remark 1. G is a wide class, containing several algorithms
proposed in the literature. For instance, all the strategies in
which the power injection is computed as a static function
of the measured voltage amplitude, i.e. those that can be
expressed as

gh(q, v) = fh(v) (14)

where fh(v) is a function of the type depicted in the left panel
of Figure 1, fit in G. As reviewed in the Introduction, the
formulation (14) describes a large number of proposed control
strategies. Furthermore, also the incremental versions of (14),
whose update rules are either

gh(q, v) = [q + γ(fh(v)− q)]qmax,h
qmin,h (15)

or
gh(q, v) = [q + γ(f−1h (q)− v)]

qmax,h
qmin,h (16)

(presented respectively in [13] and [14]), belong to G.

A configuration (q∗h, v
∗
h) is said to be an equilibrium for the

algorithms gh if it satisfies the equation

q∗h = gh(q∗h, v
∗
h). (17)

The equilibria of the algorithms in G have a notable feature:
the reactive power output of each agent can be exactly inferred
from the knowledge of its equilibrium voltage, as the following
result shows.

Proposition 2. Let gh(q, v) belong to G. Given v∗ ∈ R≥0,
there exists only one q∗ such that equation (17) holds.

Thanks to Proposition 2, we can define, for each agent h,
the equilibrium function

Fh : R≥0 → [qmin,h, qmax,h]

v 7→ q : q = gh(q, v)

which, given the equilibrium voltage of agent h, returns its
reactive power output.

The next proposition studies some properties of the equi-
librium function.

Proposition 3. Let Fh(v) be the equilibrium function as-
sociated with the controller gh(q, v) ∈ G. Then Fh(v) is
continuous and weakly decreasing.

Remark 2. For the particular local control strategies described
by the update laws (14), (15), (16), it can be easily shown that
the equilibrium function is

Fh(v) = fh(v).

In addition, it is worth mentioning that there are strategies
that do not fit in G, for instance the local control law proposed
in [21], which can be expressed in the form

gh(q, v) = [q + fh(v)]
qmax,h
qmin,h . (18)

This incremental control law belongs to a more general class
composed by controllers that, instead of (12), satisfy

gh(q, v)− gh(q′, v) ≤ q − q′.

The difficulty in this case is that the equilibrium function is
a set valued function i.e., given a value of v, there is set of
reactive power output for which equation (17) holds. We will
specifically comment on this incremental control law in the
numerical analysis of Section VI.

So far, we characterized the equilibria of a single controller.
There remains the open question of what happens when every
agent in a smart distribution grid is commanded by a local
controller belonging to G.

Let us define the function

F (·) : Rm≥0 → [qmin,1, qmax,1]× · · · × [qmin,m, qmax,m]

[F (v)]h = Fh(v).

F (·) is a diagonal map with entries that are weakly decreasing.
In principle there could exist one, many or even zero

solutions of the power flow equations (2) coupled with the
equilibrium equations of the local controllers qG = F (vG). We
are able to discuss the existence and uniqueness of solutions if
the power flow equations (2) are in the linear regime, namely
when pG, pL, qG, qL are small. In this case, (qG, vG) is an
equilibrium if and only if it solves the system of equations

qG = F (vG)

vG = 1 +XI
GGqG + b

where
b := XR

GGpG +XR
GLpL +XI

GLqL.

If we let δvG := vG − 1 we can find equivalently that

δvG = XI
GGF (1 + δvG) + b. (19)

Since XI
GG is positive definite we can write

(XI
GG)−1δvG − F (1 + δvG) = (XI

GG)−1b,

where (XI
GG)−1 is positive definite as well. We are in a

position to apply the result in [42] and prove that, for any
b, equation (19) has a unique solution in δvG . Since the linear
approximation is valid only locally, what we found is true only
if both b and δvG are close to zero.
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Now that we have introduced a well defined function F
that maps voltage profiles vG into equilibrium reactive power
injections qG, we can discuss the effectiveness of this class of
local strategies for the regulation of the voltage.

In the rest of this section we provide a simple counterex-
ample in which, for any controller in G, there exists an
equilibrium of the algorithm that does not belong to F (i.e., it
is not feasible), even if F 6= ∅ (i.e., a feasible reactive power
injection exists).

A. A simple example of the ineffectiveness of local strategies

PCC

v1 v2 v3L1 L2 L3

q1 q2 q3

Consider a network composed of four nodes (the substa-
tion, a microgenerator, a load, and another microgenerator)
connected forming a line, as in figure, via inductances L1, L2,
and L3. We assume, for ease of notation, that vmin = 1−δ and
vmax = 1 + δ, for a given δ > 0. With no loss of generality,
we assume that, when v1 = 1, F1(1) = q̄1 ∈ [qmin,1, qmax,1).
We aim at showing that, for any value of L1, L2, and L3 there
exist values of qmax,3 and q2 such that

i) all local algorithms of the class G have an unfeasible
equilibrium (q∗1 , q

∗
3) /∈ F ;

ii) there exists a feasible reactive power injection (F 6= ∅).
As all lines are purely inductive and the voltage at the

substation is 1, the linearized model gives

v1 = 1 + L1q1 + L1q2 + L1q3

v3 = 1 + L1q1 + (L1 + L2)q2 + (L1 + L2 + L3)q3.

We know that, for any value of q2, an equilibrium (q∗1 , v
∗
1),

(q∗3 , v
∗
3) exists. We first show that, if

q2 = Q := − 1

L2
δ − L2 + L3

L2
qmax,3, (20)

then v∗3 < 1− δ. In order to do so, observe that

v∗1 − v∗3 = −L2q2 − (L2 + L3)q∗3
≥ −L2Q− (L2 + L3)qmax,3 = δ.

Observe moreover that, if we define φ1(v1) := v1 − 1 −
L1F1(v1), then

φ1(v∗1) = L1q2 + L1q
∗
3

≤ L1Q+ L1qmax,3 = −L1

L2
δ − L1L3

L2
qmax,3.

Since φ1(v1) is strictly increasing and φ1(1) = −L1F1(1) =
−L1q̄1, we can argue that if

1

L2
δ +

L3

L2
qmax,3 > q̄1 (21)

then v∗1 < 1 which, together with the fact that v∗1 − v∗3 ≥ δ
yields v∗3 < 1− δ.

This proves that if q2 = Q (and, in fact, if q2 ≤ Q), then
the equilibrium is not feasible.

In order to complete the example we show under which
conditions there exist reactive powers q1 ∈ [qmin,1, qmax,1],
q3 ∈ [qmin,3, qmax,3] such that v1, v3 ∈ [1 − δ, 1 + δ], when
q2 = Q. Let us take q3 = qmax,3. Then

v1 = 1 + L1q1 −
L1L3

L2
qmax,3 −

L1

L2
δ

v3 = 1 + L1q1 −
L1L3

L2
qmax,3 −

L1 + L2

L2
δ = v1 − δ

From this we can argue that the state is feasible if and only
if q1 is such that v1 ∈ [1, 1 + δ]. This condition is equivalent
to the fact that

1

L2
δ +

L3

L2
qmax,3 ≤ q1 ≤

1

L2
δ +

L3

L2
qmax,3 +

1

L1
δ.

We can conclude that there exists q1 ∈ [qmin,1, qmax,1] such
that the previous inequality holds if and only if

1

L2
δ +

L3

L2
qmax,3 ≤ qmax,1 (22)

1

L2
δ +

L3

L2
qmax,3 ≥ qmin,1 −

1

L1
δ. (23)

Notice that (23) is automatically satisfied if (21) is satisfied.
It is therefore enough to choose q2 according to (20) and
qmax,3 according to (21) and (22) in order to obtain the desired
counterexample that is valid for all strategies belonging to the
class of local strategies G.

V. A NETWORKED CONTROL STRATEGY

After having assessed the limitations of purely local strate-
gies in Section IV, we now investigate whether communication
between compensators allows to design a feedback control law
that is guaranteed to converge to the region F where both
voltage and reactive power constraints are satisfied. In order to
derive a sharp characterization of the minimal communication
that is needed to successfully solve the voltage regulation
problem, we only allow short-range communication between
the microgenerators. More precisely, we derive a distributed
voltage control strategy (denoted hereafter as DVS) in which
every agent h ∈ C can communicate with its neighbors,
defined as follows.

Definition 4 (Neighbor microgenerators). Let h ∈ C be a
microgenerator. The set of neighbors of h, denoted as N (h),
is the subset of C defined as

N (h) = {k ∈ C | ∃ π ∈ Phk, π ∩ C = {h, k}} ,
where Phk is the set of paths going from bus h to bus k..

See Figure 2 for an example, and notice that h ∈ N (h).
In the following, we illustrate the design process that yields

this networked control strategy and we then detail all the
operations that need to be performed by the agents.

We start by reformulating the voltage regulation specifica-
tions introduced in Section III as a constrained optimization
problem

min
qG

1

2
qTGX

I
GG qG (24a)

subject to
vmin ≤ vh(qG) ≤ vmax

qmin,h ≤ qh ≤ qmax,h
∀h ∈ C (24b)
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h

k ∈ N (h)

k′ /∈ N (h)
communication

Figure 2. An example of neighbor microgenerators. Black nodes are mi-
crogenerators (h ∈ C). White nodes are loads. The circled microgenerators
belong to the set N (h) of neighbors of h. For each agent k ∈ N (h), the
path that connects h to k does not include any other microgenerator.

where vh(qG) represents the h-th element of the right hand
side of (7). The feasible region of (24) corresponds exactly to
the set F defined in (10), and therefore the two representations
are completely equivalent.

Remark 3. For the sake of consistency with the specifications
of the fully decentralized problem, (24) only includes voltage
constraints on the buses that host a microgenerator. This
formulation can be easily generalized: if the voltage at a
load bus h′ can be measured, and this measurement can be
communicated, then the corresponding voltage limits can be
included in the optimization problem by adding a fictitious
generator at that bus with qmin,h′ = qmax,h′ .

We now derive an iterative algorithm for the solution
of (24), whose iterative steps will ultimately correspond to
the feedback law of our DVS. We start by dualizing the
voltage constraints in (24b). We therefore introduce, for each
agent h ∈ C, the Lagrange multipliers λmin,h and λmax,h

corresponding to the constraints vh ≥ vmin, vh ≤ vmax,
respectively. For ease of notation, we indicate by λ the vector
of all these multipliers. The resulting partial Lagrangian is

L(qG, λ) =
1

2
qTGX

I
GG qG +

∑
h∈C

λmin,h (vmin − vh(qG))

+
∑
h∈C

λmax,h (vh(qG)− vmax) .

The corresponding dual function becomes

g(λ) = min
qG
{L(qG, λ) | qmin,h ≤ qh ≤ qmax,h ∀h ∈ C} ,

(25)
which can be maximized by employing a subgradient ascent
algorithm on the dual variables λmin,h and λmax,h. A subgra-
dient for the dual g(λ) is given by the violation of the dualized
constraints at the solution q∗G of the minimization problem in
(25), i.e.,

vmin − vh(q∗G) ∈ ∂λmin,h
g(λ)

vh(q∗G)− vmax ∈ ∂λmax,h
g(λ).

The term vh(q∗G) that appears in all these subgradients does
not have to be explicitly computed (which would require to
know the entire grid model). It can be measured directly by
agent h, if the reactive power injection of the compensators
corresponds to q∗G.

For the solution of the inner constrained optimization prob-
lem (25), we again apply dual decomposition, this time with
respect to the constraints on the reactive power injections
qh. We therefore introduce the Lagrange multipliers µmin,h

and µmax,h, corresponding to the constraints qh ≥ qmin,h

and qh ≤ qmax,h, respectively. As before, we denote by
µ the vector containing all these multipliers. The resulting
Lagrangian is

Lλ(qG, µ) = L(qG, λ)+∑
h∈C

µmin,h (qmin,h − qh) +
∑
h∈C

µmax,h (qh − qmax,h) .

For the solution of this optimization subproblem, we propose
to alternate again an exact minimization step in the primal
variables qG, i.e.,

gλ(µ) = min
qG

Lλ(qG, µ), (26)

and a subgradient ascent step in the dual variables µ. Notice
that, differently from before, the primal step (26) is an uncon-
strained quadratic program, for which we derive a closed-form
solution. Moreover, the subgradients

qmin,h − q̂h ∈ ∂µmin,h
gλ(µ)

q̂h − qmax,h ∈ ∂µmax,h
gλ(µ)

can be directly evaluated in the algorithm based on the solution
q̂ of the minimization in (26).

A. Description of the control algorithm

Inspired by the iterative optimization algorithm that we
described, we propose the following feedback control law. It is
composed of two feedback loops that are executed at different
sample rates: one at times t = 0, 1, 2, . . . and another one at
times τ = 0, 1

K ,
2
K , . . ., where K is a positive integer.

At any time t each agent h ∈ C has in its memory the value
of the variables λmin,h(t), λmax,h(t), µmin,h(t), µmin,h(t),
q̂h(t), and it executes the following actions.
1) It executes the following K iterations at times τ = t, t +

1
K , t+ 2

K , . . . , t+ K−1
K :

1.1) it updates the variables µmin,h, µmax,h as

µmin,h

(
τ + 1

K

)
= [µmin,h (τ) + γ (qmin − q̂h (τ))]

∞
0

µmax,h

(
τ + 1

K

)
= [µmax,h (τ) + γ (q̂h (τ)− qmax)]

∞
0

where γ is a positive constant;
1.2) it gathers the values of the variables

µmin,k

(
τ + 1

K

)
, µmax,k

(
τ + 1

K

)
, k ∈ N (h)

from its neighbors;
1.3) it updates the variable q̂h as

q̂h
(
τ + 1

K

)
= λmin,h(t)− λmax,h(t)+

+
∑

k∈N (h)

Ghk
(
µmin,k

(
τ + 1

K

)
− µmax,k

(
τ + 1

K

))
(27)

where Ghk are the elements of the inverse of XI
GG.
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At the end of these K iterations, agent h has computed the
value of the variables µmin,h(t+1), µmin,h(t+1), q̂h(t+1).

2) It measures its voltage magnitude vh(t+ 1).
3) It updates the variables λmin,h, λmax,h as

λmin,h(t+ 1) = [λmin,h(t) + α (vmin − vh(t+ 1))]
∞
0

λmax,h(t+ 1) = [λmax,h(t) + α (vh(t+ 1)− vmax)]
∞
0

where α is a positive constant.
4) It adjusts the amount of injected reactive power qh to the

value obtained by projecting the internal variable q̂h into
the feasible set defined by (9), i.e.,

qh(t+ 1) = [q̂h(t+ 1)]
qmax,h
qmin,h . (28)

Observe that steps 2), 3), and 4) are completely local. In
order to perform step 1) each agent needs to gather information
only from its neighbors. Moreover, they need to know only
local electrical parameters of the grid via the elements of G, as
shown in the following lemma (which can be proved following
the steps in [30, Appendix A]).

Lemma 5. The inverse G of XI
GG has the sparsity pattern

induced by the Definition 4 of neighbor microgenerators, i.e.

Ghk 6= 0 ⇔ k ∈ N (h).

Moreover, the value of each element Ghk depends only on the
line impedances connecting h and k to their neighbors.

Lemma 5 is the reason why q̂G = arg minqG Lλ(qG, µ) can
be computed in a distributed way. Indeed from ∂Lλ/∂qG = 0
we get

XI
GGq̂G +

∂vG
∂qG

(λmax,G − λmin,G) + µmax,G − µmin,G = 0.

By using (7), and by left-multiplying by G =
(
XI
GG

)−1
, we

have

q̂G + λmax,G − λmin,G +G (µmax,G − µmin,G) = 0.

Therefore, the terms q̂h in (27) corresponds element-wise to
the arg minqG Lλ(qG, µ) in the linearized grid model, and a
generally good approximation otherwise.
Remark 4. The proposed DVS deals with both constraints
on vG and on qG. The voltage constraints may be violated
during the iterations of the algorithm, but they are eventually
satisfied. Instead, the reactive power constraints are treated as
saturation constraints: thanks to the projection step in (28),
they are guaranteed to be satisfied at any time t.
Remark 5. In the proposed DVS we have adopted a particular
quadratic cost of the reactive power injections, described by
the matrix XI

GG. A discussion on the different options in
terms of cost function goes beyond the scope of this paper,
as the analysis is focused on whether the different strategies
are capable of driving the systems to a feasible reactive
power injection (i.e., to the set F) or not. However, it is
worth noticing that, in the linearized model, XI

GGqG is the
voltage drop caused by the reactive power injected by the
microgenerators, which we call δvG. From this point of view,
the cost function (24a) can be rewritten as

δvᵀGGδvG.

Given that G is a Laplacian, this cost function promotes,
among feasible reactive power injections, those that cause
uniform voltage drops. Adopting a different cost function can,
in general, require the measurement and exchange of other
quantities. In [13], for example, a distributed strategy has been
proposed to minimize power distribution losses, assuming that
microgenerators can also measure voltage angles θh.

B. Convergence analysis

In this section we provide some insight on the convergence
properties of the proposed DVS. The theoretical analysis in
this section relies on the following two assumptions.

First, we assume that the inner iterations in step 1) of the
algorithm reach their steady state before executing step 2).
In fact, if the parameter K is chosen sufficiently large, these
iterations will converge arbitrarily close to the solution of the
the optimization problem in (25), and therefore

qh(t) = [q̂h(t)]
qmax,h
qmin,h ≈ q̂h(t) ≈ q∗G (29)

where q∗G is the solution of (25). The fact that qh(t) is in
general different from q∗G makes step 1) an approximate primal
optimization step in the DVS algorithm. It is worth mentioning
that when the parameter K is chosen sufficiently large, the size
of this approximation error can be made arbitrarily small, and
ultimately negligible. This has been confirmed in a number
of numerical simulations, including the numerical examples
in Section VI, and even in a preliminary experimental imple-
mentation, providing compelling evidence that the design of
a “large enough” parameter K is typically easy. In the rest of
the paper, we will assume that (29) holds as an equality.

The second assumption is the linearized grid model (7). In
fact, based on the linear form of vG(qG), the optimization
problem (24) is a quadratic program with linear constraints.
Assuming that its feasible space has a non-empty interior,
this implies strong duality (via Slater constraint qualification
[43]) and that both the optimization problem in (25) and
the optimization program in (26) have a unique solution.
Therefore, via [43, Proposition 6.1.1], both the dual functions
g(λ) and gλ(µ) are continuously differentiable, and their
subgradients are singletons.

Under these assumptions, both the iterations 1)-2)-3)-4)
and the inner steps 1.1)-1.2)-1.3) are standard gradient ascent
algorithms for the corresponding dual problems, and their
convergence directly follow from [43, Proposition 1.2.3] under
the conditions

0 < α <
2

L
and 0 < γ <

2

Lλ
,

where L and Lλ are two positive constants that satisfy
respectively

‖∇g(λ)−∇g(λ′)‖ ≤ L‖λ− λ′‖
‖∇gλ(µ)−∇gλ(µ′)‖ ≤ Lλ‖µ− µ′‖.

While the step size α used in the update step 3) can be
safely chosen to be sufficiently small, the step size γ should
be selected in a way to guarantee a fast convergence rate of
the iterations in step 1), in order to yield a close-to-optimal
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Figure 3. The IEEE 123-bus test feeder. The three-phase backbone that has
been considered in the simulations is marked as a thick line. The substations is
marked as PCC (point of common coupling). Two nodes host a microgenerator
each, both capable also of injecting reactive power in order to support the
feeder voltage profile. The load profiles and the generation profiles over 12
hours are plotted. The color code (purple and orange) is consistent across the
next figures.

solution in K steps. In order to facilitate that, we explicitly
compute an upper bound for the feasible value of γ.

Proposition 6. Consider the optimization problem in (25). The
trajectory τ → q̂G(τ) generated by the iterations B.1-2-3 of
the DVS algorithm converges to the optimal solution q∗G for
τ →∞ if

γ <
1

ρ(G)
,

where ρ indicates the spectral radius.

VI. SIMULATIONS

In order to illustrate the practical significance of these
results and their robustness with respect to both the unmodeled

grid nonlinearities and the actuation delays, we simulated the
behavior of different voltage control strategies on a quasi-
stationary nonlinear AC power flow model.

As a testbed, we adopted the test feeder proposed in [41] and
consisting in the three-phase backbone of the standard IEEE
123 distribution test feeder [44]. It is schematically reported
in Figure 3. The power demand of each bus has been obtained
by aggregating the power demand profiles available in the
DiSC simulation framework [45]. They represent the power
consumption of about 1200 individual households from the
area around the Danish city Horsens, obtained as anonymized
data from the Danish DSO NRGi. The resulting power demand
profiles for a 12-hour period (6 AM to 6 PM) have been plotted
in Figure 3, where one profile has been highlighted as an
example. Two microgenerators have been added to the grid, in
order to recreate the configuration used in Section IV-A. They
correspond to two photovoltaic units, and their generation over
the same 12-hour period is also reported in Figure 3.

The code used in this simulations is available online [46],
[47].

The resulting overvoltage contingency is illustrated in the
Uncontrolled panel of Figure 4. The two generators inject
active power with unitary power factor, i.e. with zero reactive
power, although they have a reactive power capability of 1
MVAR and 200 KVAR, respectively. In multiple buses, the
voltage magnitude exceeds the limit of 1.05 p.u.

In the panel Fully decentralized control (static), we
simulate the effect of a purely local feedback law like the one
proposed in [5], [7], [26], [27] and schematically represented
in the left panel of Figure 1. We assumed a deadband for
the voltages [0.99, 1.01] p.u. For this and for the following
control strategies, we assumed a sampling time of 5 seconds.
This family of local static feedback strategies results in voltage
violation at some buses, including one of the generator buses.

In the panel Fully decentralized control (incremental), we
simulate the effect of the purely local incremental feedback
proposed in [21] and schematically depicted in the right panel
of Figure 1. This approach does not strictly belong to the
class of local strategies defined in Section IV. However, also
in this case, voltages are not regulated below the overvoltage
limit, and therefore this numerical experiments demonstrates
the ineffectiveness of this fully decentralized control strategy.

In the panel Networked control (DVS) of Figure 4, we
simulate the strategy that we proposed in Section V, which
makes use of communication between the two microgenera-
tors. We assume a ratio K = 10 between the sampling times of
the fast and the slow part of the control law, and we allowed
a time delay of 5 seconds between the update of set-points
and the steady state of the voltages. We selected α = 10 and
γ = 1/(2ρ(G)), therefore satisfying the conditions for conver-
gence that we derived in Section V-B. Via this coordination
strategy, both agents successfully participate in the regulation
of the voltage (even if one of the two measures a feasible
voltage magnitude).

The convergence analysis of the networked control strategy
in Section V-B relies on the approximation (29). In other
words, it assumes that the variable q̂G has converged to the
solution q∗G of (25) in K iterations. In order to verify this
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assumption, we considered the same simulation as in Figure 4,
and we zoom in on a time interval in which the system was
subject to a significant disturbance of the generated active
power. For that time interval, we plot both q̂G and q∗G in
Figure 5. It is possible to see that because of the finite
number of iterations that are completed at every step, q̂G does
not converge exactly to the minimizer q∗G. It gets however
extremely close, also because the internal variables µmin,h

and µmax,h used in the iterations B.1-2-3 maintain their value
when the “slower” variables λmin,h and λmax,h are updated
(they are, in some sense, warm-started).

The difference between q̂G(t) and q∗G depends on both K
and the number of microgenerators, as the size of the commu-
nication graph affects the convergence time. We repeated the
same simulations adding increasingly many microgenerators
with no active power injection, and no reactive power capa-
bilities. These extra microgenerators do not affect the optimal
solution of the problem, but they affect the communication
graph and therefore the convergence time for dual problem.
The worst case error for different values of N and K have
been reported in the table in Figure 6.

The overall behavior of the algorithm seems very robust
with respect to approximations in the dual optimization step.
The bottom panels in Figure 6 show the voltage profile and
the reactive power profile (together with the optimal reactive
power profile q∗G) for the case of N = 48 microgenerators and
K = 5. Although the error q̂G−q∗G is significant, the resulting
perturbation on the voltage profiles is tolerable.

VII. CONCLUSIONS

We first introduced a very general class of purely local
control strategies and demonstrated via a counter-example
that all the strategies in that class fail to drive the grid to a
configuration of feasible voltages. Numerical simulations on a
standard IEEE test case with real data show that this optimality
gap can be easily observed in practice and that the phe-
nomenon persists even when accounting for the nonlinearity
of the power flow equations. By proposing both an analytical
counter-example and an openly-accessible numerical testbed
[46], we provided a simple yet effective benchmark that
researchers and practitioners can use to validate their Volt/VAR
control strategies.

In order to shed light on the crucial role of communica-
tion between microgenerators, we then proposed a distributed
voltage control strategy that relies on precisely the same
measurements and is capable of driving the system to the
desired feasible region, as shown both in the convergence
analysis and in simulations.

Essentially, this paper illustrates the potential of networked
control solutions for this application. These solutions ben-
efit from the advantage of being feedback strategies (ro-
bustness to model mismatch, rejection of disturbance, dy-
namic responsiveness, minimal computational effort). They
can guarantee optimal voltage regulation similar to a central-
ized optimization-based approach, but compared to those they
do not require full-state measurements, they allow seamless
insertion and removal of agents (plug-and-play), and they do

not assume the availability of the entire grid model at a single
location (leader-less). These points are summarized in the
following table.

Control strategy

OPF Networked Decentralized

Feedback 7 3 3
Leader-less 7 3 3
Plug-and-play 7 3 3
Low computation effort 7 3 3
Communication 3 3 7
Full-state measurement 3 7 7
Optimal regulation 3 3 Sect. V-B 7 Sect. IV-A

APPENDIX

Proof of Lemma 1

The statement can be proved by inspection, plugging (5)
into (3), together with

θ ≈ ImXp− ReXq,

and using the first of the properties (4) of X expressed in
rectangular coordinates, i.e.{

ReY ReX − ImY ImX = I − e11ᵀ

ImY ReX + ReY ImX = 0.

A. Proof of Proposition 2

Let us define the function

h(q, v) := gh(q, v)− q.
It is a continuous function, such that for every v

h(qmin, v) = gh(qmin, v)− qmin ≥ 0

h(qmax, v) = gh(qmax, v)− qmax ≤ 0

Fix v ∈ R≥0. Furthermore, h(·, v) is a strictly decreasing
function. In fact, if we consider q1 > q2, we have that

h(q1, v)− h(q2, v) = gh(q1, v)− gh(q2, v)− q1 + q2 < 0

Thus, there exists a unique configuration q such that h(q, v) =
0, i.e. gh(q, v) = q.

Proof of Proposition 3

Let v, v′ ∈ R≥0, v > v′, and let q = Fh(v), q′ = Fh(v′).
To prove that Fh(v) is weakly decreasing, let us assume that
q > q′. Then, being gh(q, ·) a non-increasing function,

q′ < gh(q, v′) + q′ − q
≤ gh(q, v) + q′ − q = q′

which is absurd.
Standard analysis results state that a non-increasing function

whose image is a connected set is continuous. Thus, in order
to prove the continuity, we just need to prove that the image of
F (v) is a connected set. To this aim, consider v, v′ ∈ R≥0, v >
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v′ and q = Fh(v), q′ = Fh(v′), q ≤ q′. For every q′ < q′′ < q,
from equation (12), we have that

gh(q′′, v) < gh(q, v) + q′′ − q = q′′ (30)

gh(q′′, v′) > gh(q′, v′) + q′′ − q′ = q′′ (31)

Since gh(q′′, ·) is a continuous function, there exists v′ ≤ v′′ ≤
v such that gh(q′′, v′′) = q′′, and thus q′′ belongs to the image
of F (v).

Proof of Proposition 6
Let us rewrite (25) as

min
qG

L(qG, λ) (32)

subject to ΦqG ≤ b
where

Φ =

[
I
−I

]
, b =

[
qmax,G

−qmin,G

]
.

Let us also rewrite the dual gλ(µ) of this problem as

gλ(µ) = Lλ(q̂G, µ) (33)

where q̂G = arg minqG Lλ(qG, µ) and

Lλ(qG, µ) = L(qG, λ) + µT (ΦqG − b). (34)

Notice that because this latter problem is an unconstrained
convex quadratic program, q̂G is a continuously differentiable
function of µ, with gradient ∇q̂G. Moreover, q̂G needs to
satisfy

∇qGLλ(q̂G, µ) = 0, (35)

or equivalently

∇qGL(q̂G, λ) + µΦ = 0. (36)

Let us compute the Hessian of gλ(µ) by differentiating (33)
twice. We first get

∇gλ(µ) = ∇q̂G∇qGLλ(q̂G, µ) + Φq̂G − b,
and, via (35),

∇gλ(µ) = Φq̂G − b.
By differentiating with respect to µ we obtain

∇2gλ(µ) = ∇q̂GΦ. (37)

By differentiating (36) with respect to µ we get

∇q̂G∇2
qGqGL(q̂G, λ) + Φ = 0

which implies

∇q̂G = −Φ
[
∇2
qGqGL(q̂G, λ)

]−1
= ΦG. (38)

Finally, by plugging (38) into (37) we obtain

∇2gλ(µ) = ΦGΦ.

A standard application of the mean value theorem allows to
conclude that

‖∇gλ(µ)−∇gλ(µ′)‖ ≤ ρ(ΦGΦ)‖µ− µ′‖
and consequently, via [43, Proposition 1.2.3], that the trajec-
tory q̂G(τ) converges for any γ < 2/ρ(ΦGΦ) = 1/ρ(G)
(where in the last equality we used the fact that ΦGΦ =[

1 −1
−1 1

]
�G and the properties of the Kronecker product [48,

Theorem 4.2.12] to show that ρ(ΦGΦ) = 2ρ(G)).
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Figure 4. Comparison of different reactive power control strategies.
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Figure 5. Detail of the difference between the approximate solution q̂G to
the dual optimization problem (25) (thin line) and the true solution q∗G (thick
line). Markers on the thin line represent the value of q̂G at integer times.
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Figure 6. Analysis of the accuracy of the finite-time solution to the dual
optimization problem (25) as a function of the number of generators N and
the number of iterations K. The lower panel illustrates the case with the
largest approximation error: N = 48, K = 5. The thick line represents the
reactive power qG, while the thin line represents the optimal solution q∗G.
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