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Abstract—Due to the raising importance of cloud computing
and infrastructure as a service (IaaS), the first markets for
the exchange of computational power over the internet are
being implemented. As of today, bandwidth constraints are not
explicitly embedded in these market mechanisms. In this paper,
the problem of optimal allocation of the computing power and
of the corresponding data flows, according to bandwidth and
computing capacity constraints, is modeled as a bilevel optimiza-
tion program. It is shown that this program, which is generally
non convex and hard to solve, has the same optimal solution
of its convex relaxation. This allows to state a fundamental
separation result, showing how the congestion control protocols
employed in the network do not affect the optimal allocation
problem, and allows to compute the shadow prices of the available
computational resources.

Index Terms—Cloud computing, network control, congestion
control, bilevel optimization, IaaS.

I. INTRODUCTION

Infrastructure as a Service (IaaS) is a form of cloud com-
puting that provides virtualized computing resources over the
Internet (e.g., Amazon Web Services). In the recent years, this
paradigm has proved to be an effective way to exploit the
economy of scale of big providers of computational services,
while allowing smaller clients to avoid upfront infrastructure
costs for their specific computational tasks.

The growing number of participating users (including con-
sumers, providers, and users with mixed behavior) has recently
led to the commoditization of cloud resources, and thus to the
standardization of the provided service performance, and to
the creation of exchange markets, e.g., the Deutsche Börse
Cloud Exchange [1] and the Universal Compute Xchange [2].

This invites the fundamental question of what is the eco-
nomic efficiency of the allocations returned by this market
mechanisms, considering the complexity of the problem of
exchanging computational services over a shared commu-
nication network. While the scheduling and distribution of
computational tasks across different computing units is made
possible by some specialized middleware (e.g. Openstack), the
control and management of the corresponding data flow over
the Internet can be a much more challenging task. In fact,
the bandwidth available for the exchange of necessary data
is affected by the data flows of other users, by the general
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Internet traffic, and also by the congestion control protocols
that are employed in the data network.

In this paper, we model this cross-layer interaction using the
tools of bilevel optimization, a generalization of Stackelberg
games. By showing that the social optimum problem is an
exact convexification of the bilevel problem, we obtain a fun-
damental separation result: the optimal allocation is provably
independent on the congestion control mechanisms employed
by the data network. This result allows to shed some light on
the economic efficiency of an allocation, via the identification
of shadow prices for the computational resources that reflect
the effect of both service costs and limited bandwidth.

II. NETWORK ARCHITECTURE AND CONGESTION
CONTROL

We consider a data network operated according to the OSI-
layer model, and in particular to the TCP/IP network protocol
stack, where TCP implements the transportation layer while
the IP implements the internet layer [3].

The network is described as an undirected graph G =
(N ,L) with |N | nodes (vertices) and |L| links (edges).

We assume that routing is fixed for the time scale of interest,
and we therefore do not model dynamic routing mechanisms.

Definition 1 (Routing matrix).
The routing matrix R ∈ {0, 1}|L|×|N|2 is defined as

R`,ij =

{
1 if ` ∈ Pij

0 otherwise,

where Pij ⊂ L is the set of links that are traversed by the
data flow from node i to node j.

A. Congestion Control

To avoid congestion in a TCP network, a distributed mech-
anism is used to find a fair equilibrium on the connections.
In practice, these distributed mechanisms control the data flow
on a path Pij based on a feedback measurement performed on
the path itself, typically the packet loss rate or the round-trip
delay. In this work, we consider the abstraction proposed in
[4], [5] where the congestion control protocol is interpreted



as a distributed algorithm for the solution of the following
Network Utility Maximization program,

max
bij≥0

∑
i,j∈N

Wij (bij)

subject to Rb ≤ B
(1)

where bij is to be interpreted as the data rate of the com-
munication from i to j, the functions Wij are concave and
strictly increasing, and B ∈ R|L| is the vector containing the
bandwidth capacity B` of each link. Here and in the rest of
the paper, we use the notation b (without indices) to represent
the vector obtained by stacking a set of scalars {bij}.

Following this abstraction, the congestion control mecha-
nisms can be interpreted as distributed primal-dual algorithms
that solve (1). For the analysis presented in this paper, it
suffices to say that different TCP protocols correspond to
different choice of physical signals as Lagrange multipliers
(e.g. packet loss in TCP Reno and queuing delay in TCP
Vegas) and different choices of the cost function Wij (e.g.,
tan−1 in TCP Reno and log in TCP Vegas).

III. PROBLEM FORMULATION

In this section, we formulate the problem of optimal al-
location of computing resources in a data network, subject
to bandwidth constraints. We first present a model for the
distribution of computational jobs, and for the corresponding
requirements in terms of bandwidth. We then formulate the
resulting social utility maximization problem, whose solution
is the optimal allocation that we are seeking. This is of
immediate interest in those scenarios where users act as
cooperative players (e.g., Worldwide LHC Computing Grid
by CERN, D-Grid Initiative by German academic institutions).
In other cases, users act as competitive players. In this latter
context, the social utility maximization problem serves as a
benchmark: we will show in Section VI that the solution of
its dualized version returns the shadow prices under which the
social optimum and the competitive equilibrium correspond.

A. Computational load

Let any computational job have the size D, counted in
operations or instructions, or any other customized metric.
We define the computational power d(t) as a service rate that
amounts to the job size,∫ tc

t0

d(t)dt = D, (2)

where the job starts at t0 and ends at tc.
Each node i of the graph G corresponds to a user.1 We

define by dij ≥ 0 the computational load that user i executes
on the computational resources of agent j. In order to do that,
user i needs to reserve a computational capacity pij ≥ 0 at
node j (corresponding for example to the reservation limits of

1In the model we do not differentiate between users that need (and therefore
buy) computational power, those that sell it, and those that do not participate
to any exchange. Such a scenario is a special case of our model.
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Fig. 1. An example of distribution of the 5 subtasks of a job across the nodes
of a data network. In this case, the task interaction graph is a star.

the corresponding virtual machine). Each node j ∈ N has a
maximal available computational capacity Pj . Clearly, it holds

0 ≤ dij ≤ pij and
∑
i∈N

pij ≤ Pj .

B. Distribution of a computational job

A job is assumed to consist of subtasks, which are program-
mer defined and are considered to be indivisible, and that can
be executed on separate computational resources available in
the network. For the distribution of the subtasks to different
nodes, the following assumptions are considered [6].
• User i’s job is managed at node i, where input data is

available and output data needs to be collected.
• Maximal concurrency is achieved, therefore tasks can be

executed in parallel.
• Subtasks need to exchange data during execution, accord-

ing to a task interaction graph (e.g. Figure 1).
• All edges of the task interaction graph correspond to an

identical requirement in terms of exchanged data.
• The communication between two subtasks allocated at

different nodes i and j happens via the data network
according to the routing matrix R, i.e. using the links
belonging to the path Pij . Communication between two
sub tasks on the same node does not use the network.

In this work, we consider the case where each job is decom-
posed according to a Data Parallel Model or a Master-Slave
Model, which corresponds to the typical goal of promoting
locality or reducing subtask interaction costs. Under these
models, the task interaction graphs is a star graph, whose root
is located at the owner node i.

By assuming a fine granularity and homogeneity in the
subtask decomposition, we interpret dij as the number of
subtasks that user i executes on node j. This corresponds
to a bandwidth requirement which is linear in the assigned
computational load, i.e.

bij = αidij

for some αi that depends on the specific job i.



In the rest of the analysis, we consider the generalization
given by the following assumption.

Assumption 1 (Intra-task interaction). Let dij be the computa-
tional load that user i executes on the computational resources
of node j. Then the communication between node i and j
amounts to

bij = fi(dij) ≥ 0 (3)

where f is a quasi-convex increasing function, with f(0) = 0.

C. Social optimum problem

To define the optimal distribution of subtasks over the
available networked computational resources, a social utility
maximization is formulated. In this problem, the sum of all
users’ utility minus the sum of all computational costs is
maximized, subject to the network bandwidth constraints.

We assume that the cost of computation is an increasing
convex cost of the reserved computational resources, either
because of energy consumption costs or because of the oppor-
tunity costs connected to the reservation. For each node j, we
then have the cost

gj

(∑
i∈N

pij

)
.

On the other hand, the utility provided to user i is an
increasing concave function of the form

Ui

∑
j∈N

dij

 .

The concavity assumption is satisfied in the very natural
scenario in which users are interested in minimizing their
completion time tc as defined in (2). In fact, given the inversely
proportional dependence of tc on

∑
j dij , the marginal utility

U ′i results to be positive and decreasing.
We therefore have the following convex program in the

nonnegative decision variables {pij , dij , bij}, i, j ∈ N .

min
{pij ,dij ,bij}

∑
j∈N

gj

(∑
i∈N

pij

)
−
∑
i∈N

Ui

∑
j∈N

dij



subject to


∑

i∈N pij ≤ Pj ∀ j ∈ N
dij ≤ pij ∀ i, j ∈ N
bij = fi(dij) ∀ i, j ∈ N
Rb ≤ B

(4)

We have the following technical result.

Lemma 1. The optimization program (4) has a unique solution
{p∗ij , d∗ij , b∗ij}, which satisfies p∗ij = d∗ij for all i, j ∈ N .

Proof: Existence and uniqueness of the solution descents
from the convexity of the cost function, Assumption 1, and the
fact that the feasible set is not empty (as pij = dij = bij = 0
belongs to it). Finally, assume d∗ij < p∗ij for some i, j. Then
a smaller pij = d∗ij would also be feasible, and would yield a
smaller cost, leading to a contradiction.

IV. BILEVEL FORMULATION

The optimization problem (4) defines the optimal allocation
of networked computational resources, but cannot be imple-
mented in a real data network. In fact, it is not possible for the
operator to directly decide on the amount of computation dij
that user i can execute on node j, as this is also determined
by the bandwidth limitations of the network. In this section,
we model that by describing the internet congestion control as
a nested optimization problem, that responds to the decided
computing resource allocation (the decision variables pij).
This leads to the following bilevel optimization problem [7],
[8], a generalization of a Stackelberg game, which is in general
non-convex.

min
{pij ,dij ,bij}

∑
j∈N

gj

(∑
i∈N

pij

)
−
∑
i∈N

Ui

∑
j∈N

dij


subject to


∑

i∈N pij ≤ Pj ∀ j ∈ N
bij = fi(dij) ∀ i, j ∈ N
b ∈ Ψ(p)

(5)

where

Ψ(p) = arg min
{bij}

 ∑
(i,j)∈N

−Wi (bij) |
[
R
I

]
b ≤

[
B
f(p)

]
(6)

Problem (5) is the upper level (leader) problem and rep-
resents the allocation layer. Problem (6) is the lower level
(follower) problem and models the internet congestion control.
The design of a solver for the allocation layer is challenging
without the explicit knowledge of the induced set Ψ(p), which
is determined by the response of the underlying data network.

Notice that the constraint dij ≤ pij is now embedded in the
lower level problem, as it affects the behavior and the steady
state solution of the network congestion protocol. In fact, also
in the absence of bandwidth constraints on a path Pij between
two nodes, the bandwidth bij will be limited by the maximum
data flow generated at the application level (in our case, by
the algorithm subtasks executed on the available computational
resources pij , thus the limit bij ≤ fi(pij)). Notice also that,
in order to maintain generality, the self-loop terms {bii} are
also included in the lower level optimization layer. In practice,
no bandwidth limit applies to these terms, and therefore bii =
fi(pii), yielding also dii = pii.

V. MAIN RESULT

We begin this section by discussing the relation between
the bilevel optimization problem (5)-(6) and the social utility
maximization problem (4).

Lemma 2 (Convex relaxation). The social utility maximization
problem (4) is a convex relaxation of the bilevel optimization
problem (5)-(6).

Proof: The statement follows from the fact that (4) is a
convex program, and that each feasible point for (5)-(6) is also
feasible for (4) (and not vice-versa).



In the following theorem, we prove that such a convex
relaxation is tight, i.e. the solution of the relaxed convex
program corresponds to the solution of the generally non-
convex bilevel program.

Theorem 3 (Tightness of the convex relaxation). Let
(p∗, d∗, b∗) be the optimal solution of the convex social utility
maximization program (4). Then (p∗, d∗, b∗) is also the global
optimal solution of the bilevel problem (5)-(6).

Proof: From Lemma 2 we know that (4) is a convex
relaxation of (5)-(6). We therefore need to prove that the
solution (p∗, d∗, b∗) belongs to the non convex feasible set
of (5)-(6), i.e. that b∗ ∈ Ψ(p∗).

Let us define F(p) as the feasible set of the lower level
optimization program introduced in (6), namely

F(p) :=

{
b

∣∣∣∣ [RI
]
b ≤

[
B
f(p)

]}
Notice that the constraint Rb∗ ≤ B is explicitly included in

the social utility maximization program (4). From Lemma 1
we know that d∗ = p∗, and therefore the constraint bij =
fi(dij) in (4) yields b∗ = f(p∗). The constraint b∗ ≤ f(p∗) is
therefore trivially satisfied, and thus b∗ belongs to F(p∗).

We have then to prove that b∗ is the minimizer of∑
(i,j)∈N −Wi (bij) over the set F(p∗). For this, we use again

the fact that b∗ = f(p∗). Based on that, any other element
b′ ∈ F(p∗) will necessarily satisfy b′ij ≤ b∗ij . Using the fact
that all the terms Wi(bij) are strictly increasing, we conclude
that Wi(b

′
ij) ≤ Wi(b

∗
ij) for any b′ ∈ F(p∗), and therefore

b∗ ∈ Ψ(p∗).
Theorem 3 is a fundamental assessment of the tractability of

the problem of optimal allocation of computational resources
in a data network. It shows that the problem, although for-
mulated as a bilevel optimization program which is general is
non-convex, is instead tractable. A further important implica-
tion follows, as stated in the following corollary.

Corollary 4 (Congestion control transparency). The optimal
solution of the problem of optimal allocation of computational
resources in a data network does not depend on the specific
congestion control protocol employed.

Proof: The result follows directly from the fact that, via
Theorem 3, the bilevel program (5)-(6) has the same optimal
solution of (4), which is independent on the specific choice of
the cost functions {Wi} employed in the congestion control
protocol.

Corollary 4 shows how it is then possible to design solutions
and distributed mechanisms for the application that we are
considering, without taking the congestion control layer into
account. This separation principle is a fundamental feature of
the layered architecture of data networks, and it is encouraging
to see that it holds in this complex application. We point
the interested reader to the discussion in [9], where a similar
result if obtained for a different network scenario (separation
of congestion control and packet scheduling).

VI. SHADOW PRICES

In order to gain more insight regarding the economical
interpretation of these results, we identify two subsets of N :
the set B ⊂ N of buyers of computational power, and the set
S ⊂ N of sellers.

Notice that problem (4), in general, cannot be solved by
the end users i ∈ B and j ∈ S , as the routing matrix R and
the bandwidth capacity of the “inner” links of the network are
not known. We therefore introduce the following assumption,
which describes quite accurately the typical structure of the
Internet [10] and of large-scale data networks, where data
traffic is routed over a large-capacity backbone [11].

Assumption 2. Each user i taking part to the problem of
optimal allocation of computational resources is connected to
the network via one link (gateway) of bandwidth Bi, while the
rest of the network is assumed to be infinite-capacity.

Based on this assumption, the social utility maximization
problem (4) can be rewritten in the equivalent form, using
also the result of Lemma 1

min
{pij ,dij ,bij}

∑
j∈S

gj

(∑
i∈B

pij

)
−
∑
i∈B

Ui

∑
j∈S

dij



subject to



∑
i∈B pij ≤ Pj ∀ j ∈ S∑
i∈B bij ≤ Bj ∀ j ∈ S∑
j∈S fi(dij) ≤ Bi ∀ i ∈ B

dij = pij ∀ i ∈ B, j ∈ S
bij = fi(dij) ∀ i ∈ B, j ∈ S.

(7)

Notice that all the parameters of program (7) are now
known, either by the sellers of by the buyers.

Let us construct the partial Lagrangian for the program (7),
where only the two equality constraints are dualized. We
obtain the partial Lagrangian

L(p, d, b, λ, µ) =
∑
j∈S

gj

(∑
i∈B

pij

)
−
∑
i∈B

Ui

∑
j∈S

dij


+

∑
i∈B,j∈S

λij(dij − pij)

+
∑

i∈B,j∈S
µij(fi(dij)− bij).

This formulation directly suggests the following interpreta-
tion. Consider the primal problem in the variables piJ and biJ
for a fixed seller J ∈ S , evaluated at the optimal primal-dual
solution (p∗, d∗, b∗, λ∗, µ∗). We have

{p∗ij , b∗ij}j=J = arg min
{pij ,bij}j=J

gJ

(∑
i∈B

piJ

)
−
∑
i∈B

λ∗iJp
∗
iJ

−
∑
i∈B

µ∗iJb
∗
iJ

subject to

{∑
i∈B p

∗
iJ ≤ PJ∑

i∈B b
∗
iJ ≤ BJ .

(8)



Similarly, the primal optimality condition for the variables dIj
for a fixed buyer I ∈ B is

{d∗ij}i=I = arg max
{dij}i=I

UI

∑
j∈S

dIj

−∑
j∈S

λ∗Ijd
∗
Ij

−
∑
j∈S

µ∗IjfI(dIj)

subject to
∑
j∈S

fI(dIj) ≤ BI

(9)

The conditions given by (8) and (9) show that the optimal
values of the dual variables {λij , µij} can be interpreted as
shadow prices for the computational resources and for the
bandwidth resources offered by the sellers to the buyers. As
shown in the following example, this analysis reveals the
complexity of the pricing mechanisms that are necessary in
these exchange markets.

A. Example

Consider a simple network of four agents, two buyers and
two sellers. The two buyers (node 1 and 2) have the same
logarithmic utility function. The gateway of node 1 has a
limited capacity, while the gateway of node 2 has unlimited
bandwidth. Moreover, the computational job of node 1 has
high bandwidth requirements while the job of node 2 is less
demanding.

The first seller (node 3) offers cheap computational power
but is bandwidth-constrained, while the second seller (node 4)
is more expensive, but has unlimited bandwidth.

The problem parameters and the resulting allocations p
are reported in Table I, together with the marginal prices q
obtained from the shadow prices λ, µ as

qij := λ∗ij + f ′i(d
∗
ij)µ

∗
ij

where f ′i is the derivative of the scalar function fi.
Some observations can be made on this simple case. For

example, the cheap but bandwidth-constrained computational
resources of node 3 are allocated to the buyer with less
communication requirements. More importantly, the proposed
shadow price analysis shows how the same computational
resource needs to be priced differently for different buyers.

VII. CONCLUSION

In this work, we have investigated the optimal alloca-
tion problem of computational capacity over a bandwidth-
constrained network controlled by congestion control mech-
anisms. We showed how the resulting optimization problem
is a bilevel program, a class of non-convex problems that
is in general hard to solve. However, we showed that the
corresponding social utility maximization problem is a convex
relaxation of the same problem, and we proved that the
relaxation is tight, i.e. the two problems have the same
optimal solution. Remarkably, this also shows the the optimal
allocation does not depend on the specific congestion control
protocol employed in the network, yielding an important
separation result for this application. The re-formulation of

Internet

Node 1
High

communication
requirements

Node 2
Low

communication
requirements

Node 3
Cheap

computation

Node 4
Expensive

computation

B1 = 1

B2 = ∞

B3 = 1

B4 = ∞

Seller (3)
g3(z) = 0.1(z + z2)

P3 = 1

Seller (4)
g4(z) = 0.2(z + z2)

P4 = 1

Buyer (1)
U1(z) = (1 + log z)

f1(z) = 4z

p13 = 0
q13 = 1.3

p14 = 0.25
q14 = 0.8

Buyer (2)
U2(z) = (1 + log z)

f2(z) = z

p23 = 1
q23 = 0.43

p24 = 0.33
q24 = 0.43

TABLE I
EXAMPLE OF OPTIMAL ALLOCATION AND MARGINAL PRICES.

the problem as a social utility maximization problem allows to
identify and compute the equilibrium prices that characterize
this complex market environment. As a future step, we plan
to investigate the existence of auction mechanisms (such as
the one proposed in [12]) that can be used to compute these
prices in a distributed, privacy preserving, and efficient way.
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