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Abstract— In this paper we address the problem of exploiting
the distributed energy resources (DER) available in a smart
micro-grid to minimize the power distribution losses via optimal
reactive power compensation. Due to their typically small
size, the amount of reactive power provided by each micro-
generator is subject to tight saturation constraints. As a
consequence, it might be impossible to achieve convergence to
the global optimum based on algorithms that rely on short-
range, gossip-type communication. We therefore propose a
randomized multi-hop protocol that guarantees convergence of
the distributed optimization algorithm also when only short-
range communications are possible, at the expense of some
additional communication overhead.

I. INTRODUCTION

A prominent part of the modernization of the electric
power distribution network consists in the development of
smart micro-grids. A micro-grid is a portion of the power
distribution network which is populated by a large number
of micro-generators, and that can be managed independently
from the rest of the grid. In particular, the power inverters that
equip each micro-generator can be controlled in a synergistic
and coordinated way in order to make the micro-grid more
reliable, to improve energy efficiency, to guarantee higher
quality of the service, and to allow the exploitation of larger
shares of renewable energy sources.

For example, the power inverters can be exploited in
order to provide distributed reactive power compensation,
one among the most important ancillary services. In order to
provide this service, each inverter can be controlled locally,
according to its own measurements (as in [1]), or can be
controlled by a central supervising unit (as in [2], [3]). Both
approaches have some drawbacks: the local approach ex-
hibits suboptimal performance due to the lack of coordination
between agents; the centralized approach scales badly with
the number of devices in the micro-grid, yields large-scale
optimization problems, is hardly reconfigurable when a new
device enters or leaves the micro-grid, and requires a very
reliable communication channel.

More recently, distributed approaches have been proposed,
for example in [4] and [5]. In these works, the coordination
between different inverters is achieved via short-range com-
munication (possibly based on the technology of power line
communication) and by exploiting the on-board intelligence
available at each device. This way, optimal behavior of the
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micro-grid can be achieved without relying on any central
unit, thus improving robustness, enabling plug-and-play pro-
cedures, and requiring limited communication resources.

This work stems from the solution proposed in [5].
The large-scale optimization problem corresponding to the
minimization of reactive power flows (and thus distribution
losses) is decomposed into small tractable subproblems, each
one involving only a pair of inverters. Iteratively, a pair of
inverters is activated, and they optimally adjust the amount of
reactive power they inject into the grid in order to minimize
losses on the power lines. The proposed algorithm can be
considered as a randomized and asynchronous version of
the block-coordinate and Gauss-Seidel descent algorithms
available in the literature on parallel optimization [6]. The
convergence and the performance of this algorithm has been
analyzed in [5] for the unconstrained case, i.e. when there are
no bounds limiting the amount of reactive power that each
inverter can inject in the grid. In practice, however, these
bounds are quite tight because of the small size of the single
devices. Extending the class of block-coordinate descent
algorithms to the constrained case is not straightforward.
In [7], convergence has been proved when the feasible set
is the Cartesian product of convex sets, but without any
linear equality constraint (which instead is present in the
application that we are considering). In [8], the authors
consider a general framework which includes the problem
that we are considering here. However, the choice of which
coordinates to update at each iteration is not randomized; on
the contrary, they are chosen in order to guarantee a sufficient
predicted descent, a la Gauss-Southwell. In [9], components
are updated pair-wise (as in this work) but at least some of
the components must be uniformly bounded away from their
limits, which is not the case in our application. Finally, in
[10], the author proves convergence of the algorithm when
the choice of the set of components that are updated at each
iteration is given by the solution of another optimization
problem (similar to what is proposed in [11]). This procedure
cannot be applied in this context, where there is no supervisor
capable of triggering the correct sequence of devices.

We propose instead an asynchronous and randomized dis-
tributed algorithm which relies only on local communications
between devices. In order to guarantee convergence, a multi-
hop communication strategy is implemented. We show that,
at the cost of a little communication overhead, the algorithm
is globally convergent to the optimum of the constrained
optimization problem.



II. MICRO-GRID MODEL

For the purpose of this paper, we model a micro-grid
as a radial graph G, in which edges represent the power
lines, and the n nodes (whose set is denoted by V) represent
both loads and generators that are connected to the micro-
grid. These include the residential and industrial consumers,
micro-generators, and also the point of connection of the
micro-grid to the transmission grid (called point of common
coupling, or PCC).

We limit our study to the steady state behavior of the
system, when all voltages and currents are sinusoidal signals
at the same frequency ω0. Each signal can therefore be
represented via a complex number whose absolute value
corresponds to the signal root-mean-square value, and whose
phase corresponds to the phase of the signal at t = 0.
Therefore the complex number y = |y|ej∠y represents the
signal y(t) = |y|

√
2 sin(ω0t+ ∠y).

In this notation, the steady state of a micro-grid is de-
scribed by the following system variables:
• uv ∈ C, v ∈ V are the grid voltages at the points where

the nodes are connected to the grid;
• iv ∈ C, v ∈ V are the currents injected by the nodes

into the grid.
Each node v of the micro-grid is characterized by a law

relating its injected current iv with its voltage uv . We model
the node corresponding to the PCC (which we assume to
be node 0) as a constant voltage generator at the nominal
voltage UN with arbitrary, but fixed, angle:

u0 = UNe
j∠u0 .

We assume instead that the voltage uv and the current iv of
every node v, but the PCC, satisfy the following law

uv īv = sv

∣∣∣∣ uvUN
∣∣∣∣ηv , ∀v ∈ V\{0}, (1)

where īv is the complex conjugate of iv , sv = pv + jqv
is the nominal complex power (pv and qv being the active
and reactive nominal power, respectively), and ηv is a
characteristic parameter of the node v. The model (1) is
called exponential model [12] and is widely adopted in the
literature on power flow analysis [13]. Notice that sv is the
complex power that the node would inject into the grid if the
voltage at its point of connection was the nominal voltage
UN . Micro-generators fit in this model with ηv = 0, as they
generally are commanded via a complex power reference
and they are capable of injecting it independently from the
voltage at their point of connection [14], [15].

We assume that all the micro-grid power line impedances
have the same inductance/resistance ratio, i.e. for each edge
e of the graph G we have

ze = |ze|ejθ.

We denote by Zeff
hk the effective impedance of the electric

network between node h and k. As the network is radial,
this corresponds to the impedance of the path connecting
node h to node k.

We adopt here the approximated model proposed in [16]
for the analysis of the micro-grid power flows. The approx-
imation is based on the fact that the micro-grid operating
point, in its regular regime, is characterized by a relatively
high nominal voltage compared to the voltage drops across
the power lines, and by relatively small power distribution
losses, compared to the power delivered to the loads. Ac-
cording to this analysis, node voltages are approximated by
an affine expression of the injected complex powers:

uv ≈ ej∠u0

(
UN +

1

UN
ejθ1vXs̄+

1

UN
λv(UN )

)
, (2)

where 1v is the vector with 1 in position v and 0 else-
where, λv(UN ) is infinitesimal for large nominal voltages
UN , s is the vector whose elements are the nominal com-
plex node powers sv, v ∈ V\{0}, augmented with s0 :=
−
∑
v∈V\{0} sv , and where the matrix X depends on the

electrical topology of the micro-grid and satisfies

(1h − 1k)TX(1h − 1k) =
∣∣Zeff
hk

∣∣ , h, k ∈ C. (3)

III. OPTIMAL REACTIVE POWER FLOW PROBLEM

Similarly to what has been done for example in [17], we
choose active power distribution losses on the power lines
as a metric for optimality of reactive power flows.

In the scenario that we are considering, we are allowed to
command only a subset C ⊂ V of cardinality |C| of the nodes
of the micro-grid. The nodes in C are the micro-generators
participating to the reactive power compensation, hence they
will be denoted as compensators.

We assume that for these agents we are only allowed
to command the amount qv of reactive power injected into
the grid, as the decision on the amount of active power pv
follows imperative economic criteria (for example, in the
case of renewable energy sources, any available active power
is typically injected into the grid to replace generation from
traditional plants, which are more expensive and exhibit a
worse environmental impact – see [18]).

Because the power electronics (inverter) of each micro-
generator is capable of processing only a maximum rated
amount Smax

v of apparent power |sv|2 = p2v + q2v , for each
of them we introduce a bound on the maximum reactive
power that can be injected by that agent into the grid:

|qv| ≤
√

(Smax
v )

2 − p2v := qmax
v . (4)

Following the approach proposed in [16] (that we do not
recall here in its details), we can express the problem of
optimal reactive power injection at the compensators as a
convex, quadratic, linearly constrained problem, in the form

min
qv,v∈C

J(q), where J(q) =
cos θ

2
qTXq,

subject to
∑
v∈V

qv = 0

q ∈ B,

(5)



where X is positive definite on the feasible subspace, while
B is a box constraint set defined as

B = {q | |qv| ≤ qmax
v , ∀v ∈ C} .

Notice that the cost function in (5) is not separable into
individual terms, and therefore most of the decomposition
methods available in the recent literature on distributed
optimization (e.g.[19], [20], [21]) cannot be directly applied.

IV. PROPOSED DISTRIBUTED ALGORITHM

In this section, we propose a fully distributed and random-
ized algorithm for the optimization problem (5).

A. Available measurements and communication graph
In the scenario that we are considering, micro-generators

are provided with measurement, processing, and commu-
nication capabilities. In particular, they are equipped with
synchronized phasor measurement units that allow them to
obtain voltage measurements at their point of connection
with respect to a common time reference.

Micro-generators can also communicate, by exploiting the
electrical grid as a communication channel, via powerline
communication (PLC). Each of them can communicate only
with a subset of neighbors which are sufficiently close in the
electrical topology. We can therefore construct a connected
communication graph H whose nodes are the elements of C
and whose edges connect compensators that can exchange
data via PLC links (see Figure 1).

We assume that each compensator h knows the electric
distance

∣∣Zeff
hk

∣∣ between itself and any neighbor k in the
communication graph H. This is a reasonable hypothesis,
since the mutual effective impedances can be obtained from
either a priori knowledge of the local grid topology, via
online estimation as in [22], or via ranging technologies over
power line communications as suggested in [23].

Notice that such architecture can be constructed either via
automatic discovery (plug and play) or via manual configu-
ration at the time of deployment. In any case, the insertion
or removal of compensators require limited reconfiguration
of a confined neighborhood of the micro-grid.

B. Gossip multi-hop algorithm
Let each compensator be provided with a timer, each

one governed by an independent, identical, Poisson pro-
cess, which triggers the compensator after exponentially
distributed waiting times. By assuming that the time required
for the execution of the algorithm is negligible with respect
to the typical waiting time of the Poisson processes, we do
not consider in this analysis the event of concurrent activation
of different clusters. With this assumption, the algorithm
execution can be described by a sequence σ(t) ∈ C, t ∈
Z≥0, where σ(t) is the only compensator triggered at the
iteration t. As the timers are identical, and because of the
Markovianity of the Poisson processes, the sequence σ(t)
results to be a sequence of independent symbols uniformly
distributed in C, with probability

P[σ(t) = h] =
1

|C|
, ∀h ∈ C.

When a compensator h is triggered, it initiates a Send
procedure, as described hereafter.

Send

i) Compensator h measures voltage uh;
ii) compensator h computes δmin

h , δmax
h as

δmin
h = −qmax

h − qh, δmax
h = qmax

h − qh;

iii) compensator h randomly chooses a neighbor ` in
the communication graph H and sends the message
uh, δ

min
h , δmax

h , |Zeff
hl | to it;

iv) compensator h waits for a response message from `;
v) compensator h receives the message δhk from `

and actuates the system:

q+h = qh + δhk.

h `

uh, δ
min
h , δmax

h , 0

δhk

On the other hand, when a compensator receives a message
uh, δ

min
h , δmax

h , d :
• if there are no other neighbors in the clustering graph
H, then Respond is executed;

• otherwise
– with probability ε > 0, Forward is executed;
– with probability 1− ε, Respond is executed.

Forward

i) Compensator ` has received the message
uh, δ

min
h , δmax

h , d from node `′;
ii) compensator ` randomly chooses a neighbor `′′ 6= `′

in the communication graph H and forwards the
message uh, δ

min
h , δmax

h , d+
∣∣Zeff
``′′

∣∣ to it;
iii) compensator ` waits for a response message δhk

from `′′;
iv) compensator ` receives the message δhk from `′′

and forwards it back to node `′.

`′

` `′′

uh, δ
min
h , δmax

h , d

uh, δ
min
h , δmax

h , d+
∣∣Zeff
``′′

∣∣

δhk

δhk



Respond

i) Compensator k has received the message
uh, δ

min
h , δmax

h , d from node `;
ii) compensator k computes δmin

k , δmax
k as

δmin
k = −qmax

k − qk, δmax
k = qmax

k − qk;

iii) compensator k measures voltage uk;
iv) compensator k computes the optimal step δhk as

δhk =
[νhk
d

]min{δmax
h ,δmax

k }

max{δmin
h ,δmin

k }
, (6)

where [·]ba = min{max{·, a}, b} and where

νhk =
|uk|2 − |uh|2

2
sin θ

+ |uh||uk| sin(∠uh − ∠uk) cos θ;
(7)

v) compensator k responds to node ` with the message
δhk ;

vi) compensator k actuates the system:

q+k = qk − δhk.

` k

uh, δ
min
h , δmax

h , d

δhk

C. Convergence

To show the effectiveness of this algorithm in solving the
optimization problem (5), we need the following lemmas.

Lemma 1: Let Phk(t) be the probability that node h and
k execute the procedures Send and Respond, respectively,
at iteration t. Then

Phk(t) = Phk > 0.
Proof: As remarked before, the probability of h exe-

cuting the procedure Send at time t is independent from the
specific time instant. Therefore Phk(t) = Phk.

The statement that Phk > 0 for all h, k descends from the
fact that the communication graph H is connected and that
ε > 0. Therefore, in the language of Markov chains, each
compensator is accessible from any other compensator via
a proper sequence of transitions (i.e., Forward steps), and
thus the probability of such sequence of transitions is strictly
greater than zero.

We introduce the maps Thk, h, k ∈ C, which corresponds
to the update of the system state q when node h and node k
execute the Send and Respond procedures, respectively:

Thk(q) = q + δhk (1h − 1k) .

The following lemmas hold.
Lemma 2: For all q and for any h, k ∈ C,

J(Thk(q)) ≤ J(q).

Moreover, J(Thk(q)) = J(q) if and only if q is already the
solution of the optimization subproblem

min
qh,qk

J(q)

subject to
∑
v∈V

qv = 0

q ∈ B,

(8)

and in this case Thk(q) = q.
Proof: Consider the generic update

q + δ (1h − 1k)

which involves only node h and k. We have

J(q + δ(1h − 1k))

=
cos θ

2
(q + δ(1h − 1k)TX(q + δ(1h − 1k))

= δ2
cos θ

2
(1h − 1k))TX(1h − 1k)

+ δ cos θ(1h − 1k)TXq +
cos θ

2
qTXq. (9)

According to the model presented in [16] and recalled in
Section II, we have that the coefficient of the δ2-term in (9)
can be expressed by using (3) as

cos θ

2
(1h − 1k)TX(1h − 1k) =

cos θ

2

∣∣Zeff
hk

∣∣ . (10)

Moreover, one can verify that νhk as defined in (7)
corresponds to

νhk = Im

[
e−jθ

1

2
(ūh + ūk)(uh − uk)

]
.

Therefore, by using (2), we have that

νhk = Im

[
e−jθ

(
UN +

1

UN
e−jθ

(1h + 1k)T

2
X̄s

+
1

UN

λ̄h(UN ) + λ̄k(UN )

2

)(
1

UN
ejθ(1h − 1k)TXs̄

+
1

UN

(
λh(UN )− λk(UN )

))]
= Im

[
(1h − 1k)TXs̄

]
+ λhk(UN )

= −(1h − 1k)TXq + λhk(UN ),

where λhk(UN ) is a scalar quantity which is infinitesimal
for large UN .

The first order term in the δ-polynomial in (9) can there-
fore be approximated by − cos θ νhk, yielding, together with
(10),

J(q+δ(1h−1k)) =
cos θ

2

∣∣Zeff
hk

∣∣ δ2−cos θ νhkδ+J(q). (11)

The expression (11) for power losses has a minimum in

δ∗ =
νhk∣∣Zeff
hk

∣∣ .
From the triangular inequality on graph electric distances,

it follows that in the algorithm execution d is always larger



or equal than
∣∣Zeff
hk

∣∣. Therefore, unless δ∗ = 0 (i.e. q is the
solution of (8) and thus Thk(q) = q), δhk as computed in
(6) always satisfies

0 < δhk ≤ δ∗

and thus, by standard convexity arguments,

J(Thk(q)) = J(q + δhk(1h − 1k)) < J(q).

Lemma 3: Let q 6= qopt, where qopt is the solution of
the optimization problem (5). Then there exists a pair of
compensators h, k ∈ C such that

Thk(q) 6= q.
Proof: If q is not the constrained minimum of the

optimization problem (5), then there exists a feasible update
∆q such that 

1T∆q = 0 (12a)
q + ∆q ∈ B (12b)
∇J(q)T∆q < 0 (12c)

where (12a)-(12b) characterize feasibility of the update ∆q,
while (12c) characterizes suboptimality of the state q with
respect to optimization problem (5) (see for example [24,
Chapter 4.2.3]). We then build a finite family of vectors
{∆q(i)} with the following iterative procedure. Let i = 1.
While ∆q 6= 0:

1) let h(i), k(i) ∈ C be two indices such that ∆qh(i) > 0
and ∆qk(i) < 0;

2) let ηi = min{|∆qh(i)|, |∆qk(i)|};
3) let ∆q(i) = ηi(1h(i) − 1k(i));
4) let ∆q be updated as ∆q ← ∆q −∆q(i);
5) let i← i+ 1.

Notice that at any iteration i, 1T∆q = 0. Therefore the
existence of the two indices h(i), k(i) is guaranteed, as long
as ∆q 6= 0. The procedure ends in no more than |C| steps,
because at each iteration at least one of the components of
∆q is set to zero. It is also easy to see that

∆q =
∑
i

∆q(i).

We now show that, for any i, ∆q(i) is a feasible update step
for the pair h(i), k(i). Indeed, let ∆q(i) = ηi(1h(i) − 1k(i)).
Notice that 1T∆q(i) = 0. According to the procedure, 0 <

∆q
(i)
h(i) ≤ ∆qh(i) and ∆qk(i) ≤ ∆q

(i)
k(i) < 0. Therefore, via

the convexity of the box constraint set B, ∆q(i) is a feasible
update step for the pair h(i), k(i).

As, according to (12c),

∇J(q)T∆q = ∇J(q)T
∑
i

∆q(i) < 0,

there must exist an element ∆q(i) such that ∇J(q)T∆q(i) <
0. Therefore, q is not the solution of the optimization
subproblem (8) corresponding to nodes h(i) and k(i), and
thus, by Lemma 2, Thk(q) 6= q.

Finally, to prove the convergence of the proposed algo-
rithm, we need to introduce the concept of set-valued maps.
A set-valued map T : X ⇒ X associates to an element
of X a subset of X . An evolution of the dynamical system
determined by a set-valued map T is a sequence {xt}t∈Z≥0

with the property that xt+1 ∈ T (xt) for all t ∈ Z≥0. A set
W is strongly positively invariant for T if T (w) ⊂ W for
all w ∈W . The following theorem holds.

Lemma 4 (Theorem 4.5 in [25]): Let (X, d) be a metric
space. Given a collection of maps T1, . . . , T`, define the set-
valued map T : X ⇒ X by T (x) = {T1(x), . . . , T`(x)}.
Given a stochastic process σ : Z≥0 → {1, . . . , `}, consider
an evolution {xn}n∈Z≥0

of T satisfying

xn+1 = Tσ(n)(xn).

Assume that

i) there exists a compact set W ⊆ X that is strongly
positively invariant for T ;

ii) there exists a function U : W → R such that U(w′) <
U(w), for all w ∈W and w′ ∈ T (w)\{w};

iii) the maps Ti, for i ∈ {1, . . . , `}, and U are continuous
on W ; and

iv) there exists p ∈]0, 1[ and h ∈ N such that, for all i ∈
{1, . . . , `} and n ∈ Z≥0

P[σ(n+ h) = i|σ(n), . . . , σ(1)] ≥ p.

If x0 ∈ W , then there exists c ∈ R such that almost surely
the evolution {xn}n∈Z≥0

approaches the set

(N1 ∩ · · · ∩N`) ∩ U−1(c),

where Ni = {w ∈ W |Ti(w) = w} is the set of fixed points
of Ti in W , i ∈ {1, . . . , `}.

With this tool, we can finally state the following conver-
gence result.

Theorem 5: Consider the algorithm described in Section
IV. If the probability ε is strictly greater than zero, then
the system is driven to the solution of the constrained
optimization problem (5).

Proof: Consider the set-valued map T = {Thk, h, k ∈
C}. Let W be the compact set J−1(q(0)). J is strongly
positively invariant for T by Lemma 2, therefore condition
i) of Lemma 4 is satisfied. By the same Lemma 2, condition
ii) is also satisfied, while condition iii) can be easily verified
by inspection.

Moreover, because of Lemma 1, condition iv) is also
satisfied, and therefore Lemma 4 applies. Thus, the evolution
of the state q almost surely approaches, as t goes to infinity,
the set

N = {q |Thk(q) = q ∀h, k ∈ C},

which, according to Lemma 3, corresponds to the singleton
{qopt}, where qopt is the solution of the optimization problem
(5).



PCC

Fig. 1. The thin lines represent the graph G, which describes the
electrical topology of the micro-grid (in this case, an adaptation of the
IEEE37 testbed). Circled nodes are compensators (belonging to C, while
the other nodes represent loads. The thick lines represent the edges of the
communication graph H, describing which compensators can communicate
via PLC.

V. SIMULATIONS

In this section we present numerical simulations of the
proposed randomized algorithm. To do so, we considered a
4.8 kV testbed inspired by the standard testbed IEEE 37 [26].
We however assumed that load are balanced, and therefore
all currents and voltages can be described in a single-phase
phasorial notation.

As shown in Figure 1, some of the nodes (including the
PCC node 0) belong to the set of compensators, i.e. they
are capable of injecting a commanded amount of reactive
power. The amount of total reactive power injected by each
compensator is limited to a portion of the total rating of
the same node in the IEEE37 testbed. The nodes which are
not compensators, are a blend of constant-power, constant-
current, and constant-impedance loads, with a total power
demand of about 2 MW of active power and 1 MVAR of
reactive power (see [26] for the testbed data).

The length of the power lines range from a minimum of 25
meters to a maximum of almost 600 meters. The impedance
of the power lines differs from edge to edge (for example,
resistance ranges from 0.182 Ω/km to 1.305 Ω/km). However,
the inductance/resistance ratio exhibits a smaller variation,
ranging from ∠z(e) = 0.47 to ∠z(e) = 0.59. This justifies
our assumption that ∠z(e) can be considered constant across
the network.

Power distribution losses in this grid are reported in the
following table, where Jopt has been obtained via numerical
optimization performed on the exact micro-grid model, and
represent the minimum losses that can be achieved by
properly choosing the amount of reactive power injected by
each compensator (and retrieved from the PCC).
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Fig. 2. Multiple instances of the algorithm when ε = 0, i.e. there
is no multi-hop strategy. Different randomly generated initial conditions
correspond to different steady state configurations of the compensators, none
of which results to be optimal.

Losses without compensation 133.7 kW
Fraction of delivered power 5.2 %

Minimum losses Jopt 99.2 kW
Fraction of delivered power 3.9 %

Losses reduction 25.8 %

We now simulate the behavior of the proposed algorithm
when ε = 0, i.e. there is no multi-hop strategy. Notice
that the algorithm in this form corresponds to a possible
implementation of the algorithm proposed in [27] for the
unconstrained case. It is possible to see in Figure 2 that
the algorithm do not converge to the optimum, due to the
presence of saturation limits.

We now consider the case in which ε > 0, i.e. with
the proposed multi-hop strategy. It is possible to see from
Figure 3 that the algorithm converges to the optimum for
any choice of ε greater that zero. The speed of convergence
of the algorithm, however, depends on the choice of ε:
larger ε’s seems to correspond to faster performance, at the
price of an increased communication overhead and longer
iteration times. A fair comparison of the rate of convergence
for different probabilities ε requires the knowledge of the
delays caused by each step of the multihop communication.
The optimal trade-off between these aspects depends on the
specific communication and control architecture deployed in
the micro-grid.

VI. CONCLUSIONS

We proposed an implementation of the distributed ap-
proach proposed in [5] for the optimal reactive power com-
pensation in smart micro-grids. The algorithm proposed in
this paper deals effectively with the tight saturation limits that
characterize the power inverters dispersed across the micro-
grid. In order to guarantee convergence of the algorithm to
the optimal state (minimal power distribution losses), a multi-
hop coordination protocol has been introduced. The resulting
algorithm is randomized, asynchronous, and robust to inser-
tion or removal of nodes, with minimal reconfiguration.

The convergence results is also of interest per se: the same
results apply to generic convex quadratic problems subject to
one linear constraint and with a separable feasible set. Many



0 50 100 150 200 250 300

100

110

120

130

iteration

lo
ss

es
J

[k
W

]
ε = 0

ε = 0.1

ε = 0.5

0 50 100 150 200 250 300

0.1

1

10

iteration

re
si

du
al

lo
ss

es
J
−
J

op
t

[k
W

]

ε = 0

ε = 0.1

ε = 0.5

Fig. 3. Montecarlo analysis of the behavior of the algorithm for different
values of ε. As soon as ε is greater than zero, the algorithm converges to
the optimum. Also the rate of convergence depends on the choice of ε. In
this comparison we assume that one iteration corresponds to a complete
iteration of the algorithm, regardless of how many hops are required for its
completion.

different applications can be casted into this framework,
including learning in support vector machines, portfolio
selection problems, load balancing in grid of processors, and
others.
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