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Abstract

We considered the problem of minimizing reactive power flows in a smart microgrid. First we
modeled this problem as a linearly constrained quadratic optimization, in which the decision variables
are the amount of reactive power that compensators inject into the network. Then, we designed a
distributed algorithm in which agents are clustered into overlapping subsets, according to a given
communication graph that allows them to coordinate and to exchange information. At each time, one
subset is triggered, and agents belonging to it update their states in order to minimize the reactive
power flows on the grid. We showed that, by sensing the network at their points of connection,
agents can perform this minimization with just the data that they can gather from the other agents
belonging to the subset. We characterized convergence of this algorithm in term of conditions on the
subsets and on the randomized triggering sequence. Moreover, we studied the rate of convergence,
obtaining also a convenient upper bound. We finally analyzed the rate of convergence for some
specific topologies of the grid and for some choices of the agents communication topologies.

1 Introduction

Distributed optimization has historically been intended as the problem of dispatching part of a large
scale optimization algorithm to different computational units, e.g. [10, 1].

More recently, distributed optimization has been applied to complex, large-scale systems. Large-scale
systems consist in a large, sometimes unknown and time-varying, number of agents. These agents can
usually communicate, they interact with an underlying physical system by sensing and actuating it, and
none of them have a complete knowledge of the system state and parameters.

When dealing with distributed optimization in this context, we face the problem of designing an
algorithm for the agents that allows them to drive the system in a state that minimizes some global
cost function while enforcing some feasibility constraints (see for example [7] and references therein).
The behavior of each agent must necessarily depend only on local data and measurements, and on the
information that each node can gather from the nodes that are in its communication neighborhood.

A notable “success story” in this sense is the application of distributed optimization to the Internet:
since the work of [6], large-scale data networks have been probably the preferred testbed for these
algorithms.

In this work, we focus on the problem of optimal reactive power compensation in power distribution
networks. This application is part of the extremely important framework of ancillary services in smart-
grids ([8], [5]), which can be considered among the most interesting and intriguing testbeds at the
moment.

The problem belongs to the class of single-commodity network flow problems. We show in Section 2
that optimal reactive power compensation can be modeled as a quadratic optimization problem with a
linear constraint, in which the decision variables are the amounts of reactive power that are injected by
the agents, connected to different nodes of the power grid.

Because of a coupling constraint and because the cost function is not separable, coordination among
agents is required. In Section 3 we show how it is possible to reduce the need for global coordination
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Figure 1: The controller structure of [9].

by clustering the agents into groups and by defining some optimization subproblems that have to be
executed iteratively.

In Section 4 we characterize the convergence of the algorithm by giving conditions on the clustering
choices and on the randomized execution of the subproblems. In Section 5 we analyze the speed of
convergence of this algorithm, giving a convenient bound for it and comparing different clustering choices
for some network topologies (both analytically and numerically).

Finally, in Section 6, we derive some conclusions and we list some possible future direction of inves-
tigations, motivated by the results of this work.

2 Problem description

We define a smart microgrid as a portion of the electrical power distribution network that connects to
the transmission grid in one point and that is managed autonomously from the rest of the network.

In particular, ancillary services are taken care by some microgrid controllers, whose objective is
to operate the microgrid in an optimal way while satisfying some constraint on how the microgrid
interfaces with the rest of the network. Among them, we focus on the problem of optimal reactive power
compensation. This problem has been described in greater detail in [2], and will be quickly reviewed in
this section.

Both residential and industrial users belonging to the microgrid may require a sinusoidal current
which is not in phase with voltage. A convenient description for that consists in saying that they demand
reactive power together with active power, associated with out-of-phase and in-phase components of the
current, respectively.

Reactive power is not a “real” physical power, meaning that there is no energy conversion involved
nor fuel costs to produce it. Like active power flows, reactive power flows contribute to power losses
on the lines, cause voltage drop, and may lead to grid instability. It is therefore preferable to minimize
reactive power flows by producing it as close as possible to the users that need it.

One possible approach has been proposed in [9], and is sketched in Figure 1.
It consists in a centralized controller that measures the reactive power flow at the input port of the

microgrid, i.e. where the microgrid connects with the main grid. According to this measurement, the
controller produces a reference for the amount of reactive power that has to be produced inside the
microgrid. This reference has to be split by a power sharing unit (PSU) among some devices connected
to the network that can produce a commanded amount of reactive power (compensators), in a way that
minimizes reactive power flows inside the microgrid. In this paper we focus on the optimization problem
faced by the PSU, therefore assuming that the total amount of reactive power to be produced is fixed
and given.

Let us introduce a mathematical model for this problem. Let the electrical connections in the micro-
grid be described by a tree of N̄ agents. Each agent injects a certain amount of reactive power into the
network. N of them (the compensators) can be commanded to inject a given amount of reactive power,
while the other nodes (users) inject (or are supplied with, if negative) a fixed and unknown amount (see
Figure 2). Flows fi on the tree edges are oriented outbound from the tree root and indexed as the child
node they point to. Reactive power obeys regular flow conservation equations.
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As power losses are a quadratic function of the reactive power flowing on a line, the optimization
problem of having minimal power losses corresponds to the cost function

F (f2, . . . , fN ) =

N∑
i=2

kif
2
i (1)

where ki is the resistance of the edge i (which goes linearly with the length of the line).
Define q as the vector of all the amounts of reactive power injected by the compensators, and by

q′ those injected by the users that cannot be commanded. From the conservation of reactive power
constraint, any flow fi can be expressed as the sum of some of the reactive power injected into the
network by those agents. In other words we can determine the matrices K and K ′ with entries in {0, 1}
such that

f = Kq +K ′q′

This, together with the global flow conservation law 1T q+1T q′ = 0, allow us to rewrite the optimization
problem (1) as

min
q

F (q) = qT
M

2
q +mT q

subject to 1T q = c,

(2)

where

M = 2KT diag(k2, . . . , kN )K,

mT = 2q′
T
K ′

T
diag(k2, . . . , kN )K,

c = −1T q′.

The problem of minimizing reactive power flows inside a microgrid has therefore been expressed as a
quadratic, linearly constrained, optimization problem, whose analytic solution is:

q∗ = −M−1m+
1TM−1m+ c

1TM−11
M−11. (3)

The size of this problem (i.e. the number of compensators) can be very large, as the electronic interface
of any distributed generator (wind turbines, combined heat and power generators, micro hydroelectric,
solar panels) can also produce reactive power at no additional cost. Each of these units is capable of:

• sensing the electric network at its point of connection to the grid;

• performing some amount of computation and data processing;

• communicating with other agents, according to some communication graph that may or may not
coincide with the electric network;

• actuating the system, by injecting a certain amount of reactive power.

The agents may have a partial knowledge of the problem parameters M and m (which depend on the
electrical network topology and on the reactive power demand), while no agent knows them entirely.

For these reasons, in the next section we will explore the possibility of solving (2) via a distributed
algorithm.
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3 Optimization problem decomposition

Let the agents be divided into ` possibly overlapping sets C1, . . . , C`, with
⋃`
i=1 Ci = {1, . . . , N}. This

family of subsets can be interpreted as a hypergraph defined over the node set {1, . . . , N}.
Nodes belonging to the same set are able to communicate each other (they form a clique in the

communication graph), and they are therefore capable of coordinating and sharing measurements and
local knowledge of the problem parameters M and m. We assume that, by using this information, nodes
belonging to the same set are capable of driving their state in a new feasible state that minimizes F (q),
solving the optimization subproblem in which all nodes that are not in Ci keep their state constant:

arg min
∆q

F (q + ∆q)

subject to ∆q ∈ Si,
where

Si :=

q ∈ RN :
∑
j∈Ci

qj = 0 , qj = 0 ∀j 6∈ Ci

 .

One possible way in which nodes in Ci can solve this optimization subproblem is described hereafter.
Let A,B ⊆ {1, . . . , N} be two nonempty set of indices. Define MAB as the submatrix of M obtained

by selecting the rows indexed by A and the columns indexed by B. Let the same definition hold for a
vector, i.e. vA is the subvector of v obtained by selecting the elements indexed by A. Let moreover C̄i
be the set complement {1, . . . , N}\Ci.

The optimization problem faced by the nodes in Ci can then be rewritten as

min
qCi

qTCi
MCiCi

2
qCi +

(
qC̄iMC̄iCi +mT

Ci
)
qCi

subject to 1T qCi = c− 1T qC̄i .

(4)

It is easy to see that agents in Ci can reach the optimal solution by adding to qCi the increment ∆qCi
which is equal to

∆qCi = −M−1
CiCi∇FCi +

1TM−1
CiCi∇FCi

1TM−1
CiCi1

M−1
CiCi1,

where M−1
CiCi is the inverse of submatrix MCiCi and

∇FCi = MCiCiqCi +MCiC̄iqC̄i +mCi

is the subvector of the gradient of F (q) corresponding to the agents belonging to Ci.
It has been shown in [2], that an estimate of the gradient ∇F (q) = Mq+m can be obtained by sensing

the network when in the state q. More precisely, it has been shown that, under a certain assumption on
the impedance of the lines, the steady state voltage measurement u ∈ RN approximates ∇F (q) up to a
common additive term, namely

u ≈ ∇F (q) + α1,

with α unknown.
Nodes in Ci can therefore solve their corresponding optimization subproblem by performing the update

∆qCi = −M−1
CiCiuCi +

1TM−1
CiCiuCi

1TM−1
CiCi1

M−1
CiCi1,

as the uncertain term α1 get canceled in the expression.
The data that any node k in Ci has to know are then its corresponding row in M−1

CiCi , the voltage
measurements uCi from the other nodes in Ci, and its own state qk.

Notice that the update law requires only local information or information that can be gathered
inside the subset Ci (which is a clique in the communication graph). This is possible because we are
able to estimate the gradient, that otherwise would depend on the whole system state, from some local
measurements. Moreover, the elements of MCiCi depends only on the length of the electric paths that
connect nodes in Ci, and therefore we can assume that this information is available and shared among
the nodes of the same cluster.

The proposed optimization algorithm will therefore consists of the following, repeated steps:
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i) a set Ci is chosen according to a sequence of symbols σ(t) ∈ {1, . . . , `};

ii) agents in Ci sense the network and obtain, directly or via some filtering, an estimate of the gradient;

iii) they determine a feasible update step that minimizes the given cost function, possibly by coordinat-
ing their actions and communicating;

iv) they actuate the system by updating their state (the injected reactive power).

The iterated algorithm will then results in the following discrete time system for q

q(t+ 1) = Tσ(t)[q(t)] := arg min
q

F (q)

subject to q − q(t) ∈ Sσ(t),
(5)

with initial conditions q(0) such that 1T q(0) = c.
The following notation will be useful in the rest of the paper. Define the N ×N matrices

Ωi = ICi −
1

|Ci|
1Ci1

T
Ci

where |Ci| is the cardinality of the set Ci, ICi is the diagonal matrix having diagonal entries 1 in positions
belonging to Ci and zero elsewhere and 1Ci is the column vector having entries 1 in positions belonging
to Ci and zero elsewhere. Notice that

Ωi =
1

2|Ci|
∑
h,k∈Ci

(eh − ek)(eh − ek)T

where ei is the column vector having entry 1 in position i and zero elsewhere. Observe that Si = Im Ωi.

4 Convergence results

To study the convergence of the proposed algorithm and its speed, we introduce the auxiliary variable
x = q− q∗, where q∗ is given in (3). By substitution, it can be shown that the optimization problem (2)
is equivalent to

min
x

V (x) = xT
M

2
x

subject to 1Tx = 0,
(6)

and that the subproblems described in the previous section are equivalent to the subproblems

min
∆x

V (x+ ∆x)

subject to 1T∆x = 0,

∆x ∈ Im Ωi.

(7)

In this notation, it is possible to explicitly express the solution of the individual subproblems as a
linear function of the starting point x(t):

x(t+ 1) = Fix(t), Fi = I − (ΩiMΩi)
]M, (8)

where ] means pseudoinverse.
The discrete time system (5) in the x coordinates results then to be a linear time varying system of

the form
x(t+ 1) = Fσ(t)x(t). (9)

It is easy to verify from the properties of the pseudoinverse that ker(ΩiMΩi)
] = ker Ωi and Im(ΩiMΩi)

] =
Im Ωi. The matrices Fi are projection operators, i.e. F 2

i = Fi, and they are orthogonal projections with
respect to the inner product 〈·, ·〉M , defined as 〈x, y〉M := xTMy. In other words, 〈Fix, Fix − x〉M =
xTM(Fix − x) = 0. Moreover, they are self-adjoint matrices with respect to the inner product 〈·, ·〉M ,
i.e. FTi M = MFi.

The following results characterize the uniqueness of the equilibrium for all maps Ti[x] = Fix.
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Lemma 1. Consider the family of linear transformations {Fi} as described in (8). x̄ = 0 is the only
point in ker1T that is invariant for all Fi’s if and only if

Im[Ω1 . . .Ω`] = ker1T .

Proof. Let us prove the reverse implication first. If Im[Ω1 . . .Ω`] = ker1T , then we can express x̄ as

x̄ =
∑
i

Ωiyi.

Moreover, as Fix̄ = x̄ for all i, then Mx̄ ∈ ker Ωi. We therefore have

x̄TMx̄ =
∑
i

yTi ΩiMx̄ = 0,

and so, since M is positive definite, x̄ = 0.
Suppose conversely that

ker


1T

I − FT1
...

I − FT`

 = 0

and take any x̄ ∈ ker1T . Then there exist a scalar α and vectors yi such that

Mx̄ = α1 +
∑
i

(I − Fi)T yi

= α1 +

T∑
i

M(ΩiMΩi)
]yi

Then

x̄ = M−1α1 +

T∑
i

(ΩiMΩi)
]yi

Now observe that 1T x̄ = α1TM−11, which, since M−1 is positive definite, implies that α = 0 and so
x̄ ∈ Im[Ω1 . . .Ω`]. The converse inclusion is trivial.

The condition Im[Ω1 . . .Ω`] = ker1T is then a necessary condition for the convergence of the algo-
rithm. Notice that this condition is equivalent to the fact that L+ 11T is positive definite, where

L := [Ω1 . . .Ω`] diag{2|C1|I, . . . , 2|C`|I}[Ω1 . . .Ω`]
T

=
∑
i

2|Ci|Ωi =
∑̀
i=1

∑
h,k∈Ci

(eh − ek)(eh − ek)T

=

N∑
h,k=1

(eh − ek)(eh − ek)T
∑̀
i=1

δCi(h)δCi(k),

and where the symbol δCi(·) means the characteristic function of the set Ci, namely a function of the
nodes that is 1 when the node belongs to Ci and is zero otherwise. The matrix L can be interpreted
an the Laplacian matrix of a weighted graph G having nodes {1, . . . , N} and weights on the edge h, k
equal to the number of the sets Ci which contains both h and k. As we did before, we can interpret the
family of sets {C1, . . . , C`} as an hypergraph H. It is quite easy to see that the hypergraph H with edges
Ci is connected if and only if G is a connected graph. From these arguments we can state the following
proposition.

Proposition 2. The condition Im[Ω1 . . .Ω`] = ker1T holds if and only if H is a connected hypergraph.

We characterize now the convergence of the algorithm under the following assumption on the sequence
σ(t).

Assumption 3. The sequence σ(t) is a sequence of independently, uniformly distributed symbols in
{1, . . . , `}.
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Let us review the main tool that we need for this, namely the formalism of set-valued maps and the
Invariance Principle for these maps.

A set-valued map T : X ⇒ X associates to an element of X a subset of X. T is non-empty if T (x) 6= ∅
for all x ∈ X. An evolution of the dynamical system determined by a non-empty set-valued map T is a
sequence {xt}t∈Z≥0

with the property that xt+1 ∈ T (xt) for all t ∈ Z≥0. A set W is strongly positively
invariant for T if T (w) ⊂W for all w ∈W . The following theorem holds.

Theorem 4 (Th. 4.5 in [3]). Let (X, d) be a metric space. Given a collection of maps T1, . . . , T`, define
the set-valued map T : X ⇒ X by T (x) = {T1(x), . . . , T`(x)}. Given a stochastic process σ : Z≥0 →
{1, . . . , `}, consider an evolution {xn}n∈Z≥0

of T satisfying

xn+1 = Tσ(n)(xn).

Assume that

i) there exists a compact set W ⊆ X that is strongly positively invariant for T ;

ii) there exists a function U : W → R such that U(w′) < U(w), for all w ∈W and w′ ∈ T (w)\{w};
iii) the maps Ti, for i ∈ {1, . . . , `}, and U are continuous on W ; and

iv) there exists p ∈]0, 1[ and h ∈ N such that, for all i ∈ {1, . . . , `} and n ∈ Z≥0

P[σ(n+ h) = i|σ(n), . . . , σ(1)] ≥ p.

If x0 ∈W , then there exists c ∈ R such that almost surely the evolution {xn}n∈Z≥0
approaches the set

(J1 ∩ · · · ∩ J`) ∩ U−1(c),

where Ji = {w ∈W |Ti(w) = w} is the set of fixed points of Ti in W , i ∈ {1, . . . , `}.
We can then state the following.

Theorem 5. Consider the discrete time system (9), under Assumption 3. If Im[Ω1 . . .Ω`] = ker1T ,
then

x(t)→ 0 as t→∞ almost surely

for all x(0) ∈ RN .

Proof. Consider the maps Fi(x) = Fix and the set-valued map T (x) = {F1(x), . . . , F`(x)}. Let W be
the compact set V −1(x(0)). V is strongly positively invariant for T as V (Fix) ≤ V (x) for all x, i (as
Fix solves the optimization subproblems initialized in x). As Fi’s are orthogonal projection matrices
for the norm 〈·, ·〉M , V (Fix) = V (x) implies Fix = x (as V (x) = ‖x‖2M/2), and then Fix 6= x implies
V (Fix) < V (x). Moreover, because of Assumption 3, for all n, i we have

P[σ(n+ 1) = i|σ(n), . . . , σ(1)] = P[σ(n+ 1) = i] =
1

`
> 0.

Theorem 4 then applies. Because of Lemma 1, the intersection of the fixed points of the maps Fi reduces
to x = 0, and therefore x(t)→ 0 almost surely as t→∞.

5 Rate of convergence

Consider the performance metric

R = sup
x(0)∈ker 1T

lim sup v(t)1/t

where v(t) = E [V (x(t))]. R describes the exponential rate of convergence to zero of v(t) and so also the
exponential rate of convergence of q(t) to the optimal solution q∗. Using (8), we have

v(t) =
1

2
E
[
x(t)TMx(t)

]
=

1

2
E
[
x(t)TΩMΩx(t)

]
=

1

2
E
[
x(t− 1)TFTσ(t−1)ΩMΩFσ(t−1)x(t− 1)

]
=

1

2
x(0)TE

[
FTσ(0) · · ·FTσ(t−1)ΩMΩFσ(t−1) · · ·Fσ(0)

]
x(0).
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Let us then define
∆(t) = E

[
FTσ(0) · · ·FTσ(t−1)ΩMΩFσ(t−1) · · ·Fσ(0)

]
.

Via Assumption 3, we can derive the following linear system:

∆(t+ 1) = E
[
FT∆F

]
= L(∆(t)), ∆(0) = ΩMΩ

Ξ(t) = Ω∆(t)Ω,
(10)

and express the expected cost function as

E [V (x(t))] = v(t) =
1

2
x(0)TΞ(t)x(0).

Let denote by F the N2 ×N2 matrix associated with the linear transformation L:

vec (∆(t+ 1)) = F vec (∆(t)) ,

where vec(·) is the operation of vectorization. We then have

F = E
[
FT ⊗ FT

]
,

which is self-adjoint with respect to the inner product 〈·, ·〉M−1⊗M−1 . Therefore F has real eigenvalues.
We can define the function

λL(i) : {1, . . . , N2} → R

that returns the i-th eigenvalue of F. We assume that the function is monotonically non increasing,
i.e. λL(i) ≥ λL(i + 1) for all i. We can represent this map as an N2-dimensional ordered vector
(in decreasing order, with possible repetitions) λL = [λL(1) · · ·λL(N2)]T . Let moreover ∆L(i) be an
eigenvector associated with the eigenvalue λL(i).

By decomposing ΩMΩ into
∑
i αi∆L(i) we can then express the convergence rate R as

R = max {|λL(i)| | αi 6= 0, Ω∆L(i)Ω 6= 0} . (11)

The following proposition relates the convergence result of Theorem 5 with the approach of this
section, showing how the same conditions for convergence also guarantee asymptotic stability of the
dynamics of (10).

Proposition 6. Let Im
[
Ω1 · · ·Ω`

]
= ker1T . Then R < 1.

Proof. Let us define Li as the linear transformation Li(∆) = FTi ∆Fi. The N2 eigenvalues of Li are
λ(FTi ⊗ FTi ), and therefore belong to the set {0, 1}. As FTi ⊗ FTi is self-adjoint, it follows that ‖FTi ⊗
FTi ‖2 ≤ 1. By using the fact that L(∆) is a convex combination of the elements of {Li(∆)}, we have

max{|λL(i)|} ≤ ‖E
[
FT ⊗ FT

]
‖ ≤ 1.

Let us then consider λL(i) such that |λL(i)| = 1, and let x = vec(∆L(i)) be the corresponding eigenvector
of F. We have

‖x‖ =
∥∥E [FT ⊗ FT ]x∥∥ ≤ E

[∥∥FT ⊗ FTx∥∥] ≤ ‖x‖.
We therefore must have ∥∥FTi ⊗ FTi x∥∥ = ‖x‖ ∀i.

FTi ⊗ FTi has only 0 and 1 eigenvalues, and eigenvectors v
(i)
h ⊗ v

(i)
k , where v

(i)
h,k are right eigenvectors of

Fi. Therefore we must have
(FTi ⊗ FTi )x = x ∀i

and then
x = vh ⊗ vk, ΩTi vh = ΩTi vk = 0 ∀i.

As
Im
[
Ω1 · · ·Ω`

]
= ker1T ⇒

⋂
i

ker ΩTi = Im1,

we have vh = vk = 1, and therefore the only eigenvector of L corresponding to an eigenvalue of norm 1
is ∆L(1) = 11T . As it is not observable (Ω11TΩ = 0), we conclude that R < 1.
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Computing R as defined in (11) is in general not simple. In the following, we will derive an upper
bound for R that can be computed from F̄ = E [F ]. We first state a few technical lemmas.

Lemma 7. Let P,Q ∈ RN×N and P ≥ Q. Then Lk(P ) ≥ Lk(Q) for all k ∈ Z≥0.

Proof. From the definition of L, we have

xT [L(P )− L(Q)]x = xT
[
E
[
FTPF

]
− E

[
FTQF

]]
x

= E
[
xTFT (P −Q)Fx

]
≥ 0.

By iterating these steps k times we then obtain Lk(M) ≥ Lk(N).

Lemma 8. The following holds for all ∆:

ΩLt(Ω∆Ω)Ω = ΩLt(∆)Ω.

Proof. Proof is by induction. The statement is true for t = 0, as Ω2 = Ω. Suppose it is true up to t. We
then have

ΩLt+1(∆)Ω = ΩL(Lt(∆))Ω

= ΩL(ΩLt(∆)Ω)Ω

= ΩL(ΩLt(Ω∆Ω)Ω)Ω

= ΩLt+1(Ω∆Ω)Ω.

Lemma 9. Let F̄ = E [F ]. If Im
[
Ω1 · · ·Ω`

]
= ker1T , then all the eigenvalues of F̄ have absolute value

not larger than 1, and its only eigenvalue on the unitary circle is λ = 1, with associated left eigenvector
1 and right eigenvector M−11.

Proof. The fact that all eigenvalues lie inside or on the unit circle follows from the fact that F̄ is the
convex combination of matrices Fi that satisfies ‖Fi‖M ≤ 1 for all i’s. Consider then an eigenvector x
such that ‖x‖ = ‖F̄ x‖. We have

‖F̄ x‖ ≤ E [‖Fix‖] ≤ ‖x‖,
and therefore ‖Fix‖ = ‖x‖ for all i’s. As Fi are projection matrices, it means that Fix = x and then
Mx ∈ ker ΩTi ,∀i. Similarly to what we have done in the proof of Proposition 6, using the fact that
Im
[
Ω1 · · ·Ω`

]
= ker1T , we necessarily have x = M−11. By inspection we can verify that the left

eigenvector corresponding to the same eigenvalue is 1.

We can then state the following result.

Theorem 10. Consider the linear system (10) and the rate of convergence R defined in (11). Define

β = max{|λ| | λ ∈ λ(F̄ ), λ 6= 1}

where F̄ = E [F ]. Then R ≤ β.

Proof. Let us first prove that ΩL(ΩMΩ)Ω ≤ βΩMΩ. Indeed, we have

xTΩL(ΩMΩ)Ωx = E
[
xTΩFTΩMΩFΩx

]
= E

[
xTΩFTMFΩx

]
= xTΩM1/2E

[
M1/2FM−1/2

]
M1/2Ωx,

where we use the fact that ΩFΩ = FΩ and that FTi MFi = MFi.
E
[
M1/2FM−1/2

]
= M1/2F̄M−1/2 is symmetric and, by Lemma 9, it has only one eigenvalue on the

unit circle (precisely in 1), with eigenvector M−1/21. As M1/2Ωx ⊥M−1/21 for all x, we have

xTΩL(ΩMΩ)Ωx ≤ βΩMΩ,
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with β = max{|λ| | λ ∈ λ(F̄ ), λ 6= 1}.
From this result, using Lemmas 7 and 8, we can conclude

ΩLt(ΩMΩ)Ω = ΩLt−1 (L(ΩMΩ)) Ω

= ΩLt−1 (ΩL(ΩMΩ)Ω) Ω

≤ ΩLt−1 (βΩMΩ) Ω

= βΩLt−1 (ΩMΩ) Ω

≤ · · · ≤ βtΩMΩ,

and therefore R ≤ β.

Before analyzing the tightness of the bound for some specific cases, we state a result that allows us
to compute R when the spectra of L and F̄ are available (analytically or numerically).

Let define O as the non observable space for the system (10):

O =
{

∆ ∈ RN×N | Ω∆Ω = 0
}
.

We can then introduce the rate

RO = max {|λL(i) | ∆L(i) /∈ O} . (12)

The following proposition holds.

Proposition 11. Let R and RO be defined by (11) and (12) respectively. Then

R = RO.

Proof. For any eigenvector ∆L(i), there exists γ > 0 such that ∆L(i) ≤ γM . We then have ΩLt(∆L(i))Ω ≤
γΩLt(M)Ω, and therefore λL(i)tΩ∆L(i)Ω ≤ γΩLt(M)Ω. If ∆L(i) /∈ O, then we must have λL(i) ≤ R,
therefore RO ≤ R. As of course RO ≥ R, we conclude that R = RO.

Remembering that λL ∈ RN2

and λF̄ ∈ RN are the ordered vector of possibly repeated eigenvalues of
L and F̄ , we can state the following result, illustrated also in Figure 3.

Theorem 12. The elements of the vector

λ′F̄ = [λF̄ (2), . . . , λF̄ (N)]

appear twice in the vector
λ′L = [λL(2), . . . , λL(N2)],

and so R is the largest element in absolute value of the remaining ones in λ′L.

Proof. Via Lemma 8 it is possible to show that O is an invariant set:

ΩL(∆)Ω = ΩL(Ω∆Ω)Ω = 0 ∀∆ ∈ O.

As the dimension of O is 2N − 1 (the dimension of the kernel of Ω ⊗ Ω), there must exist 2N − 1
eigenvectors of L in O. These eigenvectors can be constructed from the eigenvectors of F̄T . Indeed,
consider N linearly independent vectors v1, . . . , vN such that F̄T vi = µivi with 1 = µ1 ≥ · · · ≥ µN . We
have for all i

L(1vTi ) = E
[
FT1vTi F

]
= 1vTi E [F ] = µi1v

T
i

L(vi1
T ) = E

[
FT vi1

TF
]

= E [F ] vi1
T = µivi1

T .

For all these eigenvectors we have Ωvi1
TΩ = Ω1vTi Ω = 0. We therefore constructed a basis of 2N − 1

linearly independent eigenvectors of O. One of them, ∆L(1) = 11T , corresponds to the eigenvalue
λL(1) = 1. The remaining 2(N − 1) correspond to the eigenvalues λF̄ (2), . . . , λF̄ (N), taken twice.
According to Proposition 11, R is then the largest among the eigenvalues left when removing (twice)
[λF̄ (2), . . . , λF̄ (N)] from [λL(2), . . . , λL(N2)].

In the following, we will analyze the rate of convergence R and the bound β for different networks
and different decomposition choices. In some of them (namely for the 1-dimensional case) it is possible
to compute them analytically, gaining some insight on how they scale with the number of nodes. For a
more general case, the rate of convergence has been studied numerically and compared with simulations.
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λF̄ 1 λ2 λ3 · · · λN

λL 1 λ2 λ2 λ3 λ3 R · · · · · · · · · · · ·

Figure 3: Representation of the eigenvalues of L and of F̄ , according to Theorem 12.

1 2 3 N

1 2 3 N 1 2 3 N

Figure 4: Three possible clustering choices (1-step, circle, complete) illustrated via their corresponding
hypergraphs H (in dashed line). Edges of H connect nodes that are allowed to update their state together
(each edge corresponds to a different subproblem). The graph in continuous line describes the physical
system.

5.1 1-dimensional case

Consider the specific case of a 1-dimensional graph, i.e. an electrical network consisting in one single
line with compensators equally distributed at unitary distances along the line1. Loads (passive agents)
can be connected everywhere in this line, as their location and their demands are uninfluential on the
matrix M , and therefore on the speed of convergence of the optimization algorithm.

We consider three different decompositions of the optimization problem, corresponding to different
clustering of the nodes into subsets. In all of them we assume that compensators are allowed to update
their state in pairs. As proposed in Section 4, this can be conveniently described by an hypergraph H
(a graph in this case) where an edge connecting node i with node j corresponds to the optimization
subproblem in which only the states qi and qj are updated.

We will consider the three following graphs H (see Figure 4), corresponding to different clustering
choices:

• edges of H connect compensators which are adjacent in the electric line (1-step);

• edges of H connect compensators which are adjacent in the electric line and moreover the first
agent is connected with the last agent (circle);

• edges of H connect any pair of compensators (complete).

The Hessian M for the 1-dimensional electric network takes the form

M = M0 −


0 1 2 · · · N−1
1 1 2 N−1
2 2 2 N−1
...

...
N−1 N−1 N−1 · · · N−1

 ,

where M0 = m011
T and therefore it can be safely ignored, as xTM0x = 0 for all x ∈ ker1T .

For the 1-step case, the i-th element of {Fi}N−1
i=1 corresponds to the subproblem in which node i and

1The hypothesis of equally spaced compensators on the line allows easier comparison between strategies and simplifies
the analytical results, but it not critical. Indeed, some of the rates and bounds are independent from the distance between
compensators. These cases will be pointed out later, when they appear in the text.
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node i+ 1 are allowed to update their state:

Fi =



1
. . .

1
−1 · · · −1 0
1 · · · · · · · · · 1

. . .

1


.

It is possible to analytically compute F̄ , which results to be a lower triangular matrix with elements on
the diagonal (and eigenvalues):

λF̄ =

[
1, 1− 1

N−1
, . . . , 1− 1

N−1︸ ︷︷ ︸
N−1

]T
.

In this specific case it is also possible to compute the matrix F associated with the linear transformation
L, which results to be an upper triangular N2 ×N2 matrix whose elements on the diagonal are

λL =

[
1, 1− 1

N−1
, . . . , 1− 1

N−1︸ ︷︷ ︸
3(N−1)

, 1− 2

N−1
, . . . , 1− 2

N−1︸ ︷︷ ︸
(N−1)(N−2)

]T
.

From the analysis of the previous section, we can then state that

β1step = R1step = 1− 1

N − 1
.

Interestingly, both β1step and R1step do not depend on the length of the electric paths between adjacent
compensators.

Consider now the case in which the graph H is a circle, i.e. every node can communicate with its
closest neighbors on the line and in addition an edge connects the first and the last node.

In this case the set of matrices {Fi}Ni=1 includes the Fi’s of the previous case (1-step), together with

FN =



0 1
N−1 − 1 2

N−1 − 1 · · · 0

1
. . .

1
1 1− 1

N−1 · · · 1− N−2
N−1 1


.

Also in this case, by exploiting the block-triangular structure of the resulting F̄ , it is possible to list
its eigenvalues:

λF̄ =

[
1, 1− 1

N
, . . . , 1− 1

N︸ ︷︷ ︸
N−2

, 1− 2

N

]T
,

and therefore obtain

βcircle = 1− 1

N
.

βcircle too does not depend on the length of the paths between compensators.
In this case, however, λL (and therefore R) cannot be easily expressed analytically as we did for

the 1step case. We therefore computed Rcircle numerically, together with the both the bound βcomplete

and the exact rate Rcomplete for the third clustering choice, in which every couple of nodes is allowed to
communicate.

In Table 1 it is possible to compare the rate of convergence of these different clustering (or decom-
position) choices for different values of N , and to realize how the bound is tight. The tightness of the
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N = 10 N = 100 N = 500

1− β 1−R 1− β 1−R 1− β

1-step 0.11111 0.11111 0.010101 0.010101 20.040× 10−4

circle 0.10000 0.10572 0.010000 0.010051 20.000× 10−4

complete 0.03129 0.05196 0.000427 0.000560 0.204× 10−4

Table 1: Exact convergence rate R and bound β for different network lengths N and different commu-
nication topologies.

bound justifies our choice of including in the table also the a larger network (N = 500), for which the
problem of computing the exact convergence rate R results to be numerically intractable.

It is worth noticing that the well studied problem of randomized gossip algorithms for average consen-
sus can be casted into the framework of this paper by choosing M = I. These results are therefore quite
interesting in the fact that they contrast with the phenomena generally observed in gossip consensus
algorithms (e.g. [4]), in which long-distance communication, by decreasing the diameter of the graph,
tends to be extremely beneficial for the rate of convergence.

5.2 General case

The convergence rate and its bound based on F̄ have also been computed for a more general case. We
considered a tree of height 6, with 33 nodes and an average of 2.4 children for every node that is not a
leaf.

We implemented two clustering choices: in the first one, only nodes that are neighbors on the tree
can communicate (1-step); in the second one, every pair of node is allowed to communicate (complete).

We obtained (numerically) the following values for the convergence rates and the bound β:

β1step = 0.9688, R1step = 0.9688,

βcomplete = 0.9967, Rcomplete = 0.9937.

In the upper part of Figure 5 we plotted the signal v̄(t) corresponding to the cost function averaged
over 100 realizations, for the two strategies. In the lower part, instead, we plotted the function v̄(t)1/t,
together with the computed rates of convergence (and bounds).

Even in this case, we can see how adding long distance links (i.e. enabling communication between
agents with are connected to distant points of the distribution network) seems to be detrimental for
the convergence speed of the algorithm. On the contrary, it looks like the optimal strategy consists in
choosing a clustering hypergraph which resembles (or is the same in the case of clusters of two nodes)
the graph describing the physical interconnection of the electric network.

6 Conclusion

The randomized algorithm proposed in this work seems to be an effective way to tackle the problem
of optimal reactive power flows, as it requires local knowledge of the problem structure and of the
system state at the agent level, and it exploits physical features of the system to reduce the need for
communication (via the gradient estimation from the voltage measurements).

The main degree of freedom in the algorithm implementation consists in the choice of the clusters of
cooperating nodes. The analysis on the convergence rate that has been carried out in the paper allows
comparison between different choices, producing some interesting observations that will be the subject
of future investigation. In particular, it seems that clustering nodes that are close in the power network
is beneficial for the speed of convergence of this algorithm, and therefore the design problem of building
a communication and coordination graph among nodes seems to be tightly coupled with the structure
of the physical system.

Moreover, this work can be considered a valuable starting point for the design of a dynamic optimiza-
tion algorithm, to tackle the more realistic problem in which reactive power demands are time-varying,
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Figure 5: Algorithm behavior when applied to the general case described in Section 5.2. The continuous
line refers to the 1-step communication strategy, while the dashed line refers to the complete one.

compensators are subject to operating limits, and the estimation of the gradient of the cost function
consists in an appropriate filtering of the voltage measurement signals.
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