Simulation of river morphodynamics induced by the 1996 Lake Ha! Ha! breakout flood

BASEMENT Users' Meeting - January 30th, 2025

Andrea Antonella Graziano - PhD at University of Calabria (Italy)

Introduction

Several benefitsSignificant risk

Concrete dams

Embankment dams

Introduction

Kakhovka Dam failure (Ukraine), June 2023

Derna Dams failure (Libya), September 2023

Case study: Lake Ha! Ha!

- Located in the Canadian province of Quebec
- Reservoir 12 km long
- Surface area of 8.1 km²
- Purpose: energy production by means of two run-of-river hydropower stations along the Ha! Ha! River

Case study: Lake Ha! Ha!

- Reservoir made by two separated but connected **lake basins**
- Impounded by a **concrete-gravity dam** 8.2 m high
- Two small **earthfill dykes** located on the right side of the lake
- Downstream river 34 km long from the Lake Ha! Ha! to the mouth (Ha! Ha! Bay)
- Catchment of 610 km^2
- Contributing area of the reservoir representing 37.5% of the total catchment area

Source: Capart et al. (2007)

Source: Brooks & Lawrence (1999)

1996 Lake Ha! Ha! breakout flood

- From July 19 to 21,1996: 48hour precipitation totals of 210 mm affected the eastern part of the Quebec province
- Precipitation values 2 to 3 times greater than the maximum recorded values

48-hour precipitation totals for eastern Quebec, Canada, from 8:00 a.m. July 19 to 8:00 a.m. July 21, 1996. <u>Source:</u> Lapointe et al. (1998)

1996 Lake Ha! Ha! breakout flood

- Lake Ha! Ha! level rise up to a maximum of 380.65 m a.s.l.
- Overtopping of one of the two earthfill dykes by 0.26 m
- Consequent erosion of the cut-away dyke and drainage of the lake
- Incision of a **new outlet channel** bypassing the concrete dam

Source: Brooks & Lawrence (1999)

1996 Lake Ha! Ha! breakout flood

The new outlet at the Lake Ha! Ha! reservoir that was eroded through the Cut-away dyke, (a) looking downstream and (b) looking upstream. <u>Source:</u> Brooks & Lawrence (1999)

1996 Lake Ha! Ha! breakout flood

Peak discharge estimated at some **1010 m³/s** based on the reconstructed time history of the lake level drop (Capart et al., 2007)

8 times over the 100-year return period flood (130 m³/s)

Downstream impacts of the flood

Flow direction

10

Downstream impacts of the flood Eaux Mortes E 1.5 to 7.0 0 200 m Deposition (m) ection -1.5 to 1.5 Change Undetectable .5 to -4.5 -4.5 to -13.5 Erosion (m) Widened and -13.5 to -32.5 . Pre-flood river bed incised channel New channel. 1 000 -750 Brasdittan km 12.5 km 16 Flow direction Rivière des Cèdres Cross Section B - B' Elevation (m) - - Pre-flood 180 170 160 150 Chute à Perron 150 200 250 100 (Perron Falls) Distance (m) Original channel (abandoned) Tributary Cross section C - C' 210 Elevation (m) - - Pre-flood 200 Post-flood 190 Small channel created 180 during flood (abandoned) 170 Flow 0 200 400 100 300

Source: Brooks & Lawrence (1999)

direction Source: Lapointe et al. (1998)

Distance (m)

Downstream impacts of the flood

Flow direction

Source: Capart et al. (2007)

Erosion governed by important **rock outcrops**

12

References

- Lapointe, M. F., Secretan, Y., Driscoll, S. N., Bergeron, N., & Leclerc, M. (1998). Response of the Ha! Ha! River to the flood of July 1996 in the Saguenay Region of Quebec: Largescale avulsion in a glaciated valley. *Water Resources Research*, 34(9), 2383–2392. <u>https://doi.org/10.1029/98WR01550</u>
- Brooks, G. R., & Lawrence, D. E. (1999). The drainage of the Lake Ha!Ha! reservoir and downstream geomorphic impacts along Ha!Ha! River, Saguenay area, Quebec, Canada. *Geomorphology*, 28, 141–168. <u>https://doi.org/10.1016/S0169-555X(98)00109-3</u>
- Capart, H., Spinewine, B., Young, D. L., Zech, Y., Brooks, G. R., Leclerc, M., & Secretan, Y. (2007). The 1996 Lake Ha! Ha! breakout flood, Québec: Test data for geomorphic flood routing methods. *Journal of Hydraulic Research*, 45(SPEC. ISS.), 97–109. <u>https://doi.org/10.1080/00221686.2007.9521836</u>

Detailed dataset useful for the testing and comparative assessment of geomorphic flood routing methods

Literature simulations

1D morphodynamic models

Mahdi & Marche (2003) El kadi Abderrezzak & Paquier (2009)

2D morphodynamic models

Duan et al. (2023)

BASEMENT application

- Version 4.1.0
- **BASEHPC** module (High Performance Computing)
- New feature: mixed-size bedload transport model

$$(1-p)\frac{\partial z_B}{\partial t} + \sum_{g=1}^{N} \left(\frac{\partial q_{s,gx}}{\partial x} + \frac{\partial q_{s,gy}}{\partial y} - S_{s,g} \right) = 0 \quad \longrightarrow \quad \text{Hirano-Exner model (Hirano, 1971)}$$
$$q_s = \sum_{g=1}^{N} \left[f_g \psi \, 8 \left(\theta_g - \xi_g \theta_{cr} \right)^{1.5} \sqrt{(s-1)gd_g^3} \right] \quad \longrightarrow \quad \text{Extension of the Meyer-Peter \& Müller}$$
(1948) formula to non-uniform sediment (see e.g. Ribberink, 1987)

Sediment mixtures discretized by means of N classes, each one denoted by a subscript "g" and characterized by a sediment diameter d_g

Computational mesh

- Topographic information: pre-event DEM (Capart et al., 2007)
- Resolution: 10 m
- Computational domain discretized in 126,541 triangular elements having a maximum area of 100 $\rm m^2$
- Tool: BASEmesh plugin (QGIS)

Hydraulic boundary conditions

Upstream: recontructed discharge hydrograph

(Capart et al., 2007)

Downstream: constant water surface elevation of 7 m a.s.l.

(Capart et al., 2007)

Fixed bed

- Bedrock surface reconstructed through the observation of the rock outcrops (Capart et al., 2007)
- Fixed bed mesh having the same structure of the computational mesh
- Tool: BASEmesh plugin (QGIS)

Bed material

- Information about d_m (0.5 mm, 0.1 mm) and GSD (2.7, 1.6) retrieved by Mahdi & Marche (2003) and El Kadi Abderrezzak & Paquier (2009)
- Two sediment mixtures defined based on the available information

Mixt	ure 1	Mixture 2	
d_g (mm)	<i>f</i> _g (%)	d_g (mm)	<i>f</i> _g (%)
0.185	32	0.063	32
0.500	36	0.100	36
1.350	32	0.160	32

<u>Assumption:</u> GSD centred around the median diameter

Bedload transport

- MPM multi
- Pre-factor 1.5

(El kadi Abderrezzak & Paquier, 2009; Duan et al., 2023)

Morphological boundary conditions

• Transport capacity (both upstream and downstream)

Model results

Evolution of the thalweg longitudinal profile

21

Submitted paper

Graziano, A. A., Halso, M. C., Boes, R. M., Macchione, F., & Vetsch, D. F. (submitted in November 2024), Flood hazard assessment due to dam breaching considering river morphodynamics. *Natural Hazards* (<u>under review</u>).

Thank you for listening!

andreaantonella.graziano@unical.it