

Morphodynamische 2D-Modellierung des Geschiebesammlers Schlierenrüti BASEMENT Anwendertreffen, 30. Januar 2020

Morphodynamische 2D-Modellierung des Geschiebesammlers Schlierenrüti | 30.01.20 | CAL, EHD

Inhalt

- Wasserbauprojekt Sarneraa Alpnach I
- Ziel der morphodynamischen 2D-Modellierung
- _ Numerisches Modell
- Berechnungsresultate
- _ Schlussfolgerungen und Ausblick
- _ Fragen

Landeskarte (Swisstopo, 2014) mit Verortung Sarneraa

Basler & Hofmann

Übersicht über die Projekte an der Sarneraa (Kanton Obwalden)

Morphodynamische 2D-Modellierung des Geschiebesammlers Schlierenrüti | 30.01.20 | CAL, EHD

Ist-Zustand Sarneraa und Geschiebesammler Schlierenrüti (Bildquelle: Kanton Obwalden)

_ Projektziele

- Erfüllung der
 Schutzziele
 (Hochwasserschutz)
- Reaktivierung des Geschiebetriebs durch Sanierungsmassnahmen am Geschiebesammler Schlierenrüti (Anforderungen GSchG)

und mehr

_ Projektziele

- Erfüllung der Schutzziele (Hochwasserschutz)
- Reaktivierung des Geschiebetriebs durch Sanierungsmassnahmen am Geschiebesammler Schlierenrüti (Anforderungen GSchG)

und mehr

Basler & Hofmann

Situationsplan des Genehmigungsprojekt WBP Sarneraa Alpnach I im Bereich der geplanten Teilöffnung (Kanton Obwalden)

Ziel der morphodynamischen 2D-Modellierung

Randbedingungen

- _ Modellierung im Rahmen eines Innovationsprojekts von Basler & Hofmann
- _ Modellierung innerhalb des Projekts durch HZP mit Hydro_GS
- _ Rauigkeiten, Ganglinien und Korngrössenverteilungen wurden vom Projekt übernommen

_ Ziel

- Anwendbarkeit / Anwendungsgrenzen des morphodynamischen 2D-Modells (BASEMENT) f
 ür Geschiebesammler eruieren
- _ Ablagerungs- und Erosionsmuster sowie morphologische Prozesse simulieren
- _ Geschiebedurchgängigkeit im Sammler qualitativ und quantitativ erfassen

Numerisches Modell – Topografie

Initialzustand Modellierung

Numerisches Modell – Berechnungsgitter

Berechnungsgitter für die morphodynamische 2D-Modellierung

_ Gesamtes Modell

- _ Fläche: 247'809 m²
- _ Elemente: 157'280
- Durchschnittliche
 Elementgrösse: 1.6 m²
- Geschiebesammler
 - _ Fläche: ca. 45'000 m²
 - _ Elemente: ca. 30'000
 - Durchschnittliche
 Elementgrösse: 1.5 m²

Basler & Hofmann

Numerisches Modell – Rauigkeiten

10

_ Bereichsweise Definition der Rauigkeit

_ Potenzgesetz nach Strickler

Bereich	k _{St} [m¹/³/s]
Zulauf Grosse Schliere	20
Geschiebesammler	27
Waldflächen im Geschiebesammler	15
Sarneraa	30

Rauigkeiten nach Strickler im morphodynamischen Modell

Numerisches Modell – Ganglinien

Abflussganglinien Grosse Schliere und Sarneraa

Generische Ganglinie Grosse Schliere

Geschiebeeintrag in Sammler Grosse Schliere – 6'000 m³/Jahr

Modell 2: Blockweiser Eintrag

Abfluss- und Geschiebeganglinien für die morphodynamische Modellierung

Basler & Hofmann

Numerisches Modell – Korngrössenverteilung

- Definition Korngrössenverteilung auf Grundlage von Geschiebeproben
- Diskretisierung der Kornverteilungen durch 8
 Kornklassen

Definition der Korngrössenverteilung

Basler & Hofmann

Numerisches Modell – Modellparameter und Performance

- Transportformel: Meyer-Peter & Müller (1948) adaptiert für den fraktionsweisen Geschiebetransport nach Hunziker (1995), 8 Kornfraktionen
- _ gravitativer Transport aktiv ($\gamma_{dry} = 35^{\circ}$, $\gamma_{wetted} = 30^{\circ}$, $\gamma_{deposited} = 20^{\circ}$)
- _ lateraler Transport aktiv (Kurveneffekte und Quergefälle)
- _ «tuning» mit «morph_cycle = 10»

_ Performance:

- _ Workstation mit Intel® Xeon® Gold 5122 @ 3.6 GHz, 4 threads aktiv
- _ Rechenzeit: ca. 70 Tage
- _ modellierter Zeitraum: 15 Tage/Jahr x 4 Jahre = 60 Tage
- _ Real Time Speed (RTS) = 0.86

Berechnungsresultate – Sohlenänderung Δz

Entwicklung der Sohlenänderung im morphodynamischen Modell bei proportionaler Geschiebezugabe

Basler & Hofmann

Berechnungsresultate – Sohlenänderungen Δz

Sohlenänderung nach dem 4. Jahr bei proportionaler Geschiebezugabe

Sohlenänderung nach dem 4. Jahr bei blockweiser Geschiebezugabe

Vergleich der Sohlenänderung nach dem 4. Jahr bei proportionaler Geschiebezugabe und bei blockweiser Geschiebezugabe

Morphodynamische 2D-Modellierung des Geschiebesammlers Schlierenrüti | 30.01.20 | CAL, EHD

Berechnungsresultate – Geschiebeaustrag

Kumulierter Geschiebeaustrag pro Jahr [m³]
 Geschiebeaustrag [kg/s]

Vergleich der Geschiebeausträge beim Auslauf aus dem Geschiebesammler sowie beim Auslauf der Sarneraa (Modellrand) bei proportionaler und blockweiser Geschiebezugabe

Basler & Hofmann

Berechnungsresultate – Korngrössenverteilung Zugabe vs. Austrag

Berechnungsresultate – Plausibilisierung

_ Orthofotos

 Gerinneverlagerung kann auch im bestehenden Sammler beobachtet werden

_ Modellresultate Projekt (HZP)

- _ Austrag Sarneraa in den ersten 4 Jahren: 1'500-2'000 m³
- _ Austrag Sarneraa in den Jahren 5-8: Abnahme auf 500-1'000 m³

Orthofotos verschiedener Jahre des Geschiebesammlers Schlierenrüti (Swisstopo)

Basler & Hofmann

Schlussfolgerungen und Ausblick

- Anwendbarkeit des morphodynamischen 2D-Modells f
 ür Geschiebesammler ist gegeben
- Morphologischen Prozesse im Sammler (Erosion, Auflandung, Gerinneverlagerung) können im morphodynamischen 2D-Modell gut abgebildet werden
- _ Beurteilung der Durchgängigkeit schwierig
- _ Kalibrierung / Validierung fehlt (fehlende Naturmessdaten), nur vereinfachte Plausibilisierung erfolgt mit anderem numerischen Modell und Orthofotos
- _ Belastbarkeit Resultate muss mit Sensitivitätsanalysen weiter untersucht werden

Ausblick Sensitivitätsanalyse

- _ Abflussganglinien
- Sedimenteintrag (Menge und Korngrössenverteilung bzw. Diskretisierung Verteilung)
- _ Berechnungsnetz
- _ Rauigkeitsbeiwerte bzw. Rauigkeitstyp im Modell (Strickler, Chézy u.a.)
- _ Morph cycle

. . .

- _ Transportformel
- _ Reibungswinkel für gravitativen Transport

Fragen

Carmen Lageder carmen.lageder@baslerhofmann.ch, +41 44 387 15 70

Daniel Ehrbar daniel.ehrbar@baslerhofmann.ch, +41 44 387 18 28

Christoph Rüedlinger christoph.ruedlinger@baslerhofmann.ch, +41 44 387 15 32

Vielen Dank! Basler & Hofmann

Resultate HZP

24

Abb. 9: Zustand nach 5 Jahren, berechnet mit der neuen Software-Version Hydro_GS-2d