

Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie

Basement-Anwendertreffen 2016

Abb. 1: Zusammenfluss Limmat und Sihl, Aug. 2005, Quelle: AWEL

Hybride Geschiebemodellierung der Sihl am HB Zürich

Masterarbeit FS15

Andrea Irniger

Betreuung: Florian Hinkelammert Leitung: Prof. Dr. Robert Boes

Mittwoch, 27. Januar 2016

Übersicht

1. Motivation und Ziel

2. Methodik

3. Resultate & Diskussion

- Qualität des numerischen Geschiebemodells
- Optimierung Abflusskapazität

4. Fazit

Wo liegt das Problem?

Motivation

Abb. 2: Übersichtskarte Zürich

Lage der Stadt Zürich

Anordnung Hauptbahnhof

Abb. 3: Sihldurchlässe, VAW (2015)

- Potentielle Auflandungstendenz
- Hochwasserschutzdefizit
 Handlungsbedarf

3

Massnahmen: Modellversuch

Motivation

Wieso ein Modellversuch? Situation 1 Brücken 2 Trennmauer 3 Durchlässe Image: Upper Strömungsverhältnisse mit Geschiebetrieb Numerische Modelle (BASEMENT)

Strömung

Tiefengemittelte
 Flachwasser gleichung

Geschiebetransport

- Empirische Ansätze
- → Kalibrierung
 → Nicht alle Prozesse modellierbar

Abb. 4: Projektperimeter

Ziel

Motivation

Aufbau eines numerischen Geschiebemodells mit der Software BASEMENT (Version 2.4)

Szenarienanalyse

3 Verbesserung des Modellverständnisses

Hybrides Geschiebemodell

Methodik

1. Definition

Kopplung des physikalischen Modells (Modellversuch) mit einem numerischen Modell

2. Aufbau

Abb. 5: Aufbau des hybriden Geschiebemodells

6

Elementeigenschaften

Methodik

Hydraulik:

- Manning-Strickler
- Rauigkeiten nach RELLSTAB (2013)

Geometrie:

Sohle:

beweglich mittlere, ebene Sohle aus Vermessung (2006) vorbelastet mit HQ₍₂₀₀₅₎

Böschung / Umland: Wände der Durchlässe: Brückenpfeiler: fixiert als Modellränder modelliert entfernt

Randbedingung

Hydraulik

RB0_H Hydrograph Sihl

RB0_H Hydrograph Limmat (externe Quelle)

Methodik

RBU_H HQ-Beziehung

Geschiebetransport

RB0_G Geschiebezugabe als externe Quelle Zugabe gemäss Modellversuch * 1.28

Fixierte Sohle / Böschung **Bewegliche Sohle** Zugabe, fixierte Sohle, Winkel des gravitativen Transports = 5°

Abb. 6b: Flächenguelle

RBU_G IODown

27.01.2016

BASEMENT-Model

Methodik

1. Kalibrierung:

- Gerinnezustand 2006
- Ganglinie der Vorbelastung des Modellversuchs mit Spitzenabfluss HQ₍₂₀₀₅₎=280 m³/s

2. Parameterwahl

- Turbulenzmodell:
- Geschiebetransport:

Zerogradient, f_t =5 (Berchtold 2015) Meyer-Peter & Müller (1948) D_m=5.5 cm

- θ_c : 0.055 (van Rijn, 1984) 0.110 auf der Trennmauer
- Local Slope Lateral: OFF

Trennmauer

Methodik

Überschätzung des Transports

Abb. 7: Situation Trennmauer mit Blick Richtung Gessnerbrücke in Realität (li) und Modell (re)

Zweck:	Konzentration der Hauptströmung und Aufrechterhaltung der Transportkapazität
Funktion:	Überströmt ab Q _{Sihl} =140 m ³ /s (mit Geschiebe)
Ansatz:	- Fixiert - Erhöhung von θ_c zur Reduktion des Transports

Abb. 8: Sohlenlage in QP 0.383 am Ende der Vorbelastung

Hybride Geschiebemodellierung der Sihl am HB Zürich

Methodik

Überblick

Tab. 1: Untersuchte Szenarien

	V0:	V1:	V2:
	Gerinne 2006	- Durchlässe betoniert	- Trennmauer entfernt
		- Sohle abgesenkt	
		- Trennmauer entfernt	
Vorbelastung (Q_{max} = 280 m ³ /s)	Kalibrierung	Validierung-1	Validierung-1
$HQ_{100}(Q_{max} = 360 \text{ m}^3/\text{s})$	Х	x	x
$HQ_{300} (Q_{max} = 450 \text{ m}^3/\text{s})$	Validierung-2	X	X
$HQ_{max,oF}(Q_{max} = 490 \text{ m}^{3}/\text{s})$	X	X	X
$HQ_{max,oF,N-1} (Q_{max} = 490 \text{ m}^{3}/\text{s})$	X	X	Х
Langzeit			x
Langzeit mit Mehrkorn			x

Hybride Geschiebemodellierung der Sihl am HB Zürich

12

Hybride Geschiebemodellierung der Sihl am HB Zürich

13

Sohlenveränderungen

Hybride Geschiebemodellierung der Sihl am HB Zürich

14

Sohlenveränderungen

Hybride Geschiebemodellierung der Sihl am HB Zürich

Sohlenveränderungen

27.01.2016

16

Hybride Geschiebemodellierung der Sihl am HB Zürich

Abb. 12a: Differenz Δz bei V1

400

Meter

27.01.2016

Wasserspiegellagen

Modellqualität Q=490 m³/s

Abb. 13: Mittleres Längenprofil am Ende der Hochwasserspitze HQ_{max,oF} (490 m³/s)

Hybride Geschiebemodellierung der Sihl am HB Zürich

Optimierung Abflusskapazität

Szenarien, Q=490 m³/s

Abb. 14: Mittleres Längenprofil am Ende der Hochwasserspitze $HQ_{max,oF}$ (490 m³/s)

Fazit

Fazit

1. Grenzen des numerischen Geschiebemodells

Infolge der

- Vereinfachung der Topographie
- Vereinfachung des Transports (Einkornmodell)
- Mittelung über die Tiefe (2D-Ansatz)

können lokal nicht alle Erosions- und Auflandungsprozesse korrekt nachgebildet werden.

2. Modellqualität

Das erstellte Geschiebemodell bietet die Möglichkeit die **mittleren** Sohlen- und Wasserspiegellagen zusätzlicher Szenarien schnell und mit zufriedenstellender Genauigkeit zu berechnen.

3. Optimierungsmöglichkeit

Der Einfluss der Trennmauer auf die Abflusskapazität und die mittleren Sohlenveränderungen ist vernachlässigbar.

20

/ersuchsanstalt für Wasserbau, Hydrologie und Glaziologie

Ende

Vielen Dank für Ihre Aufmerksamkeit!

27.01.2016

Hybride Geschiebemodellierung der Sihl am HB Zürich

Abb. 15: Modellversuch in der VAW–Halle Quelle: ETH

Quellen

Quellen

BERCHTOLD, T. (2015): Numerische Modellierung von Flussaufweitungen. . Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, Nr. 231. (R.M. BOES, ed.) ETH Zürich.

RELLSTAB, T. (2013): Numerische 2D-Modellierung der Sihldurchlässe am HB Zürich mit BASEMENT. ETH Zürich: Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie (VAW).

VAN RIJN, L. (1984): Sediment Transport, Part I: Bed Load Transport. Journal of Hydraulic Engineering, S. 1431-1456.

VETSCH, D., ROUSSELOT, P., VOLZ, C., PETER, S., EHRBAR, D., GERBER, M., VEPREK, R. (2014): System Manuals of BASEMENT, Version 2.3. Laboratory of Hydraulics, Hydrology and Glaciology (VAW). ETH Zurich. Available from http://www.base-ment.ethz.ch.

23

27.01.2016 Abb. 16: Berechnete Δz – Langzeit Einkorn (links), Mehrkorn (rechts)

Langzeit – Stabilität der Sohle

V2 (ohne Trennmauer)

Kalibrierung Mehrkornmodell

Geometrie:	V2: Ohne Trennmauer
Ansatz:	Hunziker (1995) mit Hiding-Exponent -1.5
Fraktionen:	8 Fraktionen zwischen 0-20 mm bis 150-200 mm

Modellqualität bei Q=280 m³/s (Vorbelastung):

- Reduktion der mittleren Abweichung der mittleren Sohle von ± 6.6 cm auf ± 5.4 cm
- Geringere Auflandung oberhalb der Durchlässe
- Transport in den Durchlässen weiter flussabwärts

Langzeitanalyse

- 10 Jahre (2004-2014)

27.01.2016