

2D-Modelling of Dam Breaches: Case Studies Zurich

Basement User Meeting, 26.01.2023

Content

_ Introduction

_ Method

- _ Results and Discussion of Case Studies
- _ Outlook

Introduction

Basler & Hofmann

Introduction: Legal Basis

Water Retaining Facilities Act WRFA and Water Retaining Facilities Ordinance WRFO regulate the safety of water retaining structures from construction phase through to operating phase

Criteria:

- Size (dam height > 10 m or dam height > 5 m and volume > 50'000 m³)
- _ High risk potential (danger to human lives and/or extensive property)
- _ If subjected to WRFA and WRFO:
 - _ Increased demands on dam stability and flood safety
 - _ Increased demands on maintenance and monitoring

Introduction: High Risk Potential

Obligation to check the high risk potential for all small dams in Switzerland

Basler & Hofmann

Introduction: Water Retaining Structures in Zürich

Introduction: Previous Studies

_ Pöyry:

- Use of empirical formula for breach discharge, dependent on breach geometry (standard breach, instant failure, volume is not considered)
- Empirical estimation of flood wave propagation and intensity based on CTGREF (1D) or BEFFA (2D)

_ Case Studies

 Assessment of flood wave propagation and intensity with 2D-modeling

Basler & Hofmann

Introduction: Case Studies

Commissioned by the canton of Zurich,
 Amt f
ür Landschaft und Natur (ALN)

Maps.zh.ch, 2022

Introduction: Brauiweiher

Maps.zh.ch, 2022

Reservoir Capacity V	110'000 m ³
Dam Height H	3.1 m
Historical Use	ice production for a brewery, reservoir
Current Use	nature reserve

Introduction: Stöckweiher

Intensity 8 m²/s (Pöyry)

Reservoir Capacity V	50'000m ³
Dam Height H	5.5 m
Historical Use	hydropower
Current Use	nature reserve

Basler & Hofmann

Automated Mesh Generation (1)

 Goal: Efficient export of breaklines and points for mesh generation from cadastral survey

Automated Mesh Generation (2)

Automated Mesh Generation (3)

FME-Tool:

- _ 1. Open FME Workbench
- _ 2. Attach Input data (Perimeter und Land Coverage)
- _ 3. Define folder for Output data (Break Lines and Region Points)

_ 4. Run FME

Automated Mesh Generation (4)

QGIS:

- 1. Adjust Input Data (Breaklines, Region Points) if necessary
 - Breaklines and Region Points contain the attribute «Type», where the object category is recorded
- 2. Generating mesh using XL-Mesh (BASEmesh)

Compulsory laye	ers		
Model boundary	Perimeter		•
Optional lavers			
Breaklines	breaklines		•
U Di Cultarica		37037	· · ·
Regions		urcuz	
Kegiona		may area	· · ·
		Mat ID	-
		hale	•
Vertices	region points	noie	•
veruces	region_points		
TRIANGLE parar	meters		
-V (verbose)): detailed statistics during	mesh generation	
✓ -D: Conform	ning Delaunay - insertion of	r Steiner points	
-q: Quality n	Minimum triangle angle	fidegrees	20
-Y: Prohibite	insertion of Steiner points	on mesh boundary	20
Expert ontio	ons	on mean boundary	
Relative sna	anning tolerance		6
	apping tolerance		·v •
String Definition			
Breaklines		breaklines	▼
Stringdef	field	area2	v
Relative sna	apping tolerance		-6 🜩
Elevation layers	(for interpolation)		
Elevation m	lesh		
Nodes ve	ector layer		V.
Elements	vector layer		Ψ.
Digital eleva	ation map		
	yer	Raster	~
Raster la			

Geometric breach

- Implementation of standard breach as geometric adjustment in mesh
- Initial state = reservoir is filled up to full supply level
- _ No reservoir inflow

Basler & Hofmann

Use of BASEMENT Version 3.2

- Computation on GPU
 - _ GPU: RTS = 60
 - _ CPU: RTS = 3
 - _ Computation on GPU is 20 times faster
- Implementation of culverts using h-Q-relation
- Modelling of log jams by adjusting h-Q-relation

😂 BASEMENT				-	-		Х
About Help							
	Scenario Directory: D:/FSI/Basement_Anwend	ertreffen/BasementV3]	
Setup	Define Simulation Run Console 🗵						
	Parameter	Value	Validation				^
Simulation	[0]	"water_depth"					
	[1]	"water_surface"					
Results	[2]	"flow_velocity"					
	[3]	"spec_discharge"					
	[4]	"ns_hyd_discharge"					
	✓ TIME						
	end	3600.0					
	out	0.0					
		0.0					
	Standard Hardware	High-performance Hardware		Options			
	Single-threaded on CPU	○ GPU only		Number of CP	U cores:	1	
	Multi-threaded on CPU (recommended)	GPU, single-threaded on CPU (reco	mmended)	Precision	Doub		,
				Frecision.	Doub		
BASEMENT		51% Configuration File: simulatio	n.json Resu	lts File: results.h	5	Abort	

Results and Discussion of Case Studies

Basler & Hofmann

Comparison of Hydrographs - Brauiweiher

Comparison of Hydrographs - Stöckweiher

Comparison of Hydrographs

- \succ small volumes & large dam heights \rightarrow smaller discharge than standard breach
- \succ large volumes & small dam heights \rightarrow larger discharge than standard breach
- > In accordance with findings from VAW / L. Vonwiller

Comparison of Results Brauiweiher

BASEMENT User Meeting | 26.01.2023 | Franziska Siegenthaler

Basler & Hofmann

Comparison of Results Stöckweiher

Basler & Hofmann

Comparison of Results: Maximum Intensity

BASEMENT User Meeting | 26.01.2023 | Franziska Siegenthaler

Basler & Hofmann

Measures taken

Brauiweiher:

- Construction of new spillway as an 8 m wide free overflow section
- No risk of log jams
- In case of dam breach, the relevant dam height is the height of the spillway
- Reduced breach discharge
- New 2D model shows reduced intensity < 2.0 m²/s
- > No high risk potential in Weisslingen
- No subjection to WRFO

Basler & Hofmann

Measures taken

_ Stöckweiher:

No possibility to reduce intensity below required threshold at building at the foot of the dam

Subjection to WRFO

Development of Monitoring & Emergency Regulations

Outlook

Outlook

Free data and software

- Land Coverage, Elevation (swissALTI3d), BASEbreach, BASEmesh with QGIS, BASEMENT, Paraview)
- _ Efficient mesh generation due to automation
- Valuable and reliable information regarding flood wave propagation and risk potential
- _ Basis for the planning of mitigation measures for small dams regarding WRFO
 - Comparison of costs of measures vs. costs with WRFO
 - In many cases, moderate measures can guarantee safety of retaining structures with minimal expense while preserving the use as nature reserve

Basler & Hofmann

Franziska Siegenthaler, Project Engineer, Basler & Hofmann franziska.siegenthaler@baslerhofmann.ch, +41 44 387 16 83

Daniel Ehrbar, Project Leader, Basler & Hofmann daniel.ehrbar@baslerhofmann.ch, +41 44 387 18 28

Lukas Schmocker, Project Leader, Basler & Hofmann lukas.schmocker@baslerhofmann.ch, +41 44 387 16 24

Thank you! Basler & Hofmann, Esslingen

