ETH zürich

M. Nieto (2021)

Current and future development of BASEMENT software

David F. Vetsch 8th BASEMENT Users Meeting January 26, 2023

Contents

- Objectives of the meeting
- Recent progress
- Roadmap 2023
- User Survey December 2022

Objectives of the meeting

- Users are in the focus
 - exchange of experience
 - tell others about your success stories and pitfalls
 - participate to have a vivid discussion
 - networking -> at next COVID-free meeting

- Exchange between users and development team
 - share requirements and problems with us
 - modelling challenges in engineering practice
 - support focussed optimization of models

© www.ClipProject.info

Key tasks of current development phase (2018 - 2023)

Key Tasks Development BASEMENT 18-23							
concepts	develo & mainte	knowledge transfer					
(A)	state-of-the-art models	new models	(C)				
40%	40	20%					

(A) concepts for engineering practice / practice-oriented concepts (poc)

- objectives:
 - show scope and limits of model application based on examples
 - support best possible model application, i.e. generation of meaningful results
 - discuss plausibility and interpretation of results
 - best practice and pointing out the relevant theoretical correlations

(A) concepts for engineering practice: application-oriented concepts (AOC)

• AOCs in preparation:

1D	1	2	3
Example	River Widenings	Alpine River	Dam Removal
Focus	change in channel width and longitudinal grain sorting	bed stability under steep and unsteady conditions	limitation of local erosion at sills and ramps
Key aspects	longterm evolution, dynimic equilibrium, effect of tributaries	mixed-sized sediment, limitations of Hirano model	impact of non-erobdible bed on rediment transport and grain sorting

(B) development & maintenance

- BASEmesh v2.2
 - efficient generation of quality meshes larger than 1'000'000 elements
 - workflow for mesh generation considering buildings (e.g. several 1000)
 - cleanup functionality with wiki description
 - mesh renumbering

supported versions:

QGIS Version		Codename	Tested on
3.10	LTR	A Coruña	3.10.14
3.16	LTR	Hannover	3.16.16
3.22	LTR	Białowieża	3.22.9
3.24		Tisler	3.24.1
3.26		Buenos Aires	3.26.3

see release note for further details: https://gitlab.ethz.ch/vaw/public/basemesh-v2/-/releases/2.2.0

(B) development & maintenance

- BASEchange (basemesh.basechange)
 - create mesh for river reaches
 - 1D trapezoidal channel geometry
 - export as 1D or 2D mesh
 - command line interface
 - input via CSV file supported

l	∃ 5 • ੇ	- &	Input_BAS	Echange.csv [S	chreibgeschütz	rt] - Excel	David Floria	n Vetsch 🛛 🖻			
D	atei Start	Einfügen Zei	chnen Seiten	layout Forme	ıln Daten Ü	berprüfen Ar	nsicht Hilfe	Acrobat 🛛 🖓	Sie wüns (Freigeber	n
Ein Zwis	fügen 💉	Calibri F K U +		E = et	v Standard	Beding Beding Als Tal Zellen For	gte Formatierur belle formatiere formatvorlagen matvorlagen	ng ▼ Pinfü n ▼ N× Lösc I▼ H Form Zell	igen ▼ ∑ ▼ hen ▼ ↓ ▼ nat ▼	Az∓ - ,	~
J2	0 *	: ×	$\sqrt{-f_x}$								~
	А	В	с	D	Е	F	G	н	I.	J	
1	km	bed_width	slope	bank_slope	height	num_cs	ks	ksb	midpoint_sh	ift	٦Г
2	0	22.12	0.000	0.72	6.01	2	32	20	0.5		
3	0.078	18.30	0.011	1.45	5.44	2	32	20	0.5		
4	0.127	16.44	0.011	1.76	3.65	2	32	20	0.5		
5	0.129	16.66	0.037	1.48	4.95	1	32	20	0.5		
6	0.175	16.06	0.021	2.08	5.11	2	32	20	0.5		
7	0.196	16.83	0.002	1.52	3.37	1	32	20	0.5		
8	0.201	16.16	0.003	1.67	3.24	1	32	20	0.5		
9	0.282	22.27	0.010	1.29	4.43	2	32	20	0.5		
10	0.387	22.17	0.018	2.01	4.61	3	32	20	0.5		
11	0.477	18.84	0.017	1.77	4.91	3	32	20	0.5		
12	0.573	21.33	0.012	1.93	4.48	3	32	20	0.5		
13	0.697	24.80	0.010	2.72	3.53	3	32	20	0.5		_
14	0.793	24.89	0.011	2.06	4.02	3	32	20	0.5		_
15	0.893	21.05	0.014	1.61	4.04	3	32	20	0.5		-
16											-
17											-
18		Input_BASE	:hange	(+)		:	•				
Bere	eit				🔓 Anzei	geeinstellungen] 🖽 –	-	+ 100	%

https://gitlab.ethz.ch/vaw/public/basemesh-v2/-/wikis/Command-line/BASEchange

ETHzürich

Recent Progress

(B) development & maintenance

- Lateral diversion
 - comparison of different modelling approaches
 - focus on effect on morphodynamics

Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie

- extension of 1D approach (momentum sink)
- publication and example files will be available soon

Lateral overflow

Lateral diversion

Lateral retention area

or flood corridor

Local deposition

Sediment aggradation

9

(B) development & maintenance

- BASEbreach
 - parameter models for simulation of dam failure
 - estimation of the outflow hydrograph
 - GUI supports comparison of the different approaches
 - Monte-Carlo simulation for uncertainty quantification
 - open source under GPL

3	l Ma	icchione Pe	eter Pete	rCal								
Dam Geometry				Plot	Variabl	le	breach disch	arge [m3/s	l ~		Re	set Viev
Height	[m]	571.7	?		H							
Bottom level	[m]	565.8	?		ľ							ach
Crest width	[m]	4.5	?		40						Awel	
Embankment slope	[-]	3	?		ŀ	٨					Macchione Peter	
Limit breach erosion				n3/s]	20	Λ					PeterCal	
Maximum breach width	[m]		?	rge [i	50	IV				L		
Reservoir				lischa	ļ	IA -						
Storage volume	[m3]	42900	2	ach c	20 -							
Basin shane	[[[]]]	15	2	bre	ŧ							
	[-]	1.5			10	$ \rangle$						
Inflow rate	m^3/s]	0	2		E							
					0							
Initial Conditions					0		2500	5000	7500	10000	12500 15000)
Breach level	[m]	569.25	?						time [s]			
Reservoir level	[m]	570.25	?	0 s	_							
Show Advanced Settings				~		1	Enabled	Discha	rged [m3]	Peak	Current	
Differential Equation Solver				Stand	dard B	reacn		N/A		36 5117	N/A 0.577261	
Solver		rk4_classic ~	?	Maco	chione			0		2.84557	0.461435	
		0.001		Peter	1			0		2.30877	1.92571	
Relative precision at peak												

https://gitlab.ethz.ch/vaw/public/basebreach/-/wikis/home

Hzürich

Recent Progress

(B) development & maintenance

Consolidation of versions 2 and 3: "2+3=4"

Motivation:

- reduce maintenance effort
- keep features of version 2
- one workflow, one GUI

(C) knowledge transfer

- main focus on the development of the AOCs
- instructions and application of BASEMENT software in gradate courses at ETH Zurich:
 - Experimental and Computer Laboratory I
 - River Morphodynamic Modelling

Retrospect: Roadmap 2022 (main features only)

Version	Date	Comments	Status
3.2	Q1 2022	turbulence model, suspended load	\checkmark
3.3	Q2 2022	mixed-size sediment transport	postponed
3.4	Q2 2022	BASEveg	\checkmark
3.5	Q3 2022	temperature model	postponed
4.0	Q3 2022 -> release Q1 2023	consolidation of v2.8 and v3	\checkmark
BASEbreach v1.0	Q1 2022	stand-alone, open source, GPL	\checkmark
BASEchange v1.1	Q2 2022	arbitrary river course	\checkmark
BASEtools	Q2 2022	consolidation of various tools	open
POC bed load	Q4 2022	first version (draft)	\checkmark

Roadmap 2023 (main features only)

Version	Date	Comments	
4.0	Q1 2023	consolidation of v2.8 and v3	
4.1	Q1 2023	mixed-size sediment transport	r bel
4.2	Q2 2023	temperature model	
4.3	Q3 2023	Lagrangian tracers	A A A A A A A A A A A A A A A A A A A
POC bed load (1D)	Q2 2023	release	ACO TO DO DO DO DO
POC morphodynamics (2D)	Q4 2023	first version (draft)	

User Survey December 2022

- Survey for users of mailing list (2800 addresses), 15th to 23rd December 2022
- Survey about field of application, output formats, potential features, training materials
- Number of replying participants: min 45, max 134, mean ca. 80

General information about BASEMENT users

Use of BASEMENT Versions

General information about BASEMENT users

General information about BASEMENT users

Use of Morphodynamics

New Processes

New Processes

Internal Structures

Miscellaneous

Topic as a session in a workshop

Self-Training Materials

BASECHAIN Special Outputs

BASEPLANE Special Outputs

BASEPLANE Special Outputs

■Never ■Seldom ■Often ■Always

BASEPLANE File Formats

BASEsub Special Outputs

BASEsub File Formats