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@ Lagrangian modelling: motivation & background
@ Applications: focus on eco-hydraulics
LJE Implementation within BASEMENT

D1 Modelling showcase
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Introduction and Motivation Yy

» Transport processes in rivers include
— Pollutant
— Sediments
— Plastic
— Organic material
— Wood
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https://x.com/IEEPennState/status/17045321188087523507s'
https://x.com/LeicesterGeog/status/12699158458930176007s:

https://x.com/AGU_EPSP/status/11334118980812595267s
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Introduction and Motivation

4 )

Understanding mechanism of transport (and
deposition) is key to quantify fluxes and budgets

Large wood dynamics Organism migration
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Eulerian vs Lagrangian approaches

Eulerian approach Lagrangian approach

> Flow field cell-wise - single particles motion through a
flow field
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Eulerian vs Lagrangian approaches
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Residence times

 Calculate budget and fluxes \/ x

« Spatially-explicit variables \/ Calculate trajectories

— 3D motion of particle with interactions
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Some applications

» Use of Lagrangian approaches find applications in
— River-floodplain connectivity
— Organism (e.g. larval) drift
— Macro- and micro-plastic transport
— Wood transport and accumulation
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ABSTRACT:  Large woody material (WM transported by rivers may be entrapped at crit

al stream geometry configurations (e

bridges) and therefore dramatically increase the destructive power of floods. This was the case in a Spanish mountain river where a

flood event with a high degree of LWM transport took place in 1997. The

m o this study was to simulate a bridge clogging process

and reconstruct the wood deposit patterns, modelling individual pieces of wood maving with the water flow and interacting among

them and with the bridge. A two-dimensional numesical

the transport of LWM and its cffect on

hydrodynamics. Different scenarios for the wood transport rate allowed us to study the influence of inlet boundary conditions on

bridge clogging. For the studied event, the scenario which best reproduced the bridge clogging effect and flood characteristics
was one in which 60% of the total wood entered before the peak discharge. This dropped to 30% at the peak itself, and finally fell
to 10% during the recession curve. In addition, the accumulation patterns of LWM aloag the reach were computed and compared
with post-event field photographs, showing that the model succeeded in predicting the deposition patterns of wood and those areas
prone 10 form wood jams. Copyright © 2013 John Wiley & Sons, Ltd.

KEVWORDS: Large woody material; fber 200 model; bridge clo

Introduction

Large woody material WM plays an important role in river
ecosystens by influencing hydrology, hydraulics, sedimentology,
and morphology (Lassetre and Harris, 2001 Gurnel ef af, 2002
WMontgomery, 2003; Seo ef af, 2008). In addition, an extensive
Titerature now exists describing the influence of wood on siream
(Gippel and White, 2000; Martin and Benda, 2001
Gregory et al,, 2003), since wood may provide a habitat for fish
erine species (Carlson ef al, 1990; Jackson and Sturm,
2002; Langford et al,, 2 and references cited therein) and
regulates water flows and nutrient fluxes (Welty ef af., 2002
Recent research has focused on the mobilizati
material during floods, since transported woody material can

of woody

represent a substantial increase in the destructive powe of floods
(Diehl, 1997 Fischer, 2006; Lyn et al, 2007; Waldner et al,
2007; Comit et al, 2008; Mao et al, 2008; Mazzorana e al,
2009; Comiti et at,, 2012). WM may reduce the capacity of
bridge openings, contribute to scour, and increase lateral forces
on bridges. The main results of these phenomena are a quick
r effects with bed aggrad
ocal scouring processes, ultimately evolving
tomards enbankementbridee co alapse and floodelain Inunda:
tions. As a result, flooded areas may be different from those
predicted in the absence of wood (Ruiz-Villanueva et ., 2012

ion, flow

diversions

o hydrodynamics; woody debris

In this context, it has been demonstrated that wood removal
could fail, in part because of new inputs of wood (Young, 1991
Gippel, 1995; Dudley et al, 1998]. For this reason, the problem
has been redefined as the inability of infrastructures to allow
LWM 10 pass (Lassettre and Kondol, 2012).

In forested mountain catchments, most trees fall into the
stream as a result of a variety of mechanisms such as mass
wasting, channel migration and bank undercutting (May and
(.n'«\n'll 2003; Swanson, 2003), windthrow and fire (Benda
2003; Rosso et al, 2007) or natural tree mortality
AB\'nlLI et al, 2003). During floods, the number of wood p
likely 0 be transpoed may increase significantly (Nakamura
et al,, 2000). A better understanding of LWM entrainment, o
the process by which woody material is wmyxwu-:l 1o the river,
s thercfore needed (May and Gresswell, 2003; Br
Kershner, 2004; Mazzorana ef al, 2009; Ri
Ruiz-Villanveva et ., 2012b).

There are few direct obsenvations andjor measurements of
the conditions of wood entrainment and transport during floods
icar et al., 2009). Physical
1 flume experiments have been used to overcome:
these constraints, contributing greatly to our peesent knowledge
of LWM transport (Braudrick and Grant, 2000; Braudrick et af,
2001; Bocchiola et al,, 2002; Haga, 2002; Schmocker and
Hager, 2011). Some others have used one-dimensional (1D}
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Plant dispersal by water

« Key mechanism for maintaining plant
biodiversity in freshwater systems

|t allows plant to colonize new areas and
connect distant communities

» Seeds as of Tamarix and Salix are adapted to
be transported in water

They can be modelled
- as tracer or very small

particles
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Floodpain vegetation at Moesa river, Graublnden (photo: Sabine F.)
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Modelling plant seed dispersal

BASEMENT v3.2
(Eulerian)

Lagrangian module
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Implementation in BASEMENT

» Governing equations:

\ \_> \—>\ \\

— One-way coupling: size is low enough to disregard momentum transfers :: \ ur Fy \
between them and the surrounding fluid ~ 0

NN NN

VA

— Tracer approach: particles advected according to the fluid velocity field (2DH) Vol mp}p
el B
Lagrangian Eulerian / / / uf

— Particle approach: particles with momentum conservation (2DH + 1DV) y / Y ¥

mpxy, = Fp g+ Fy ¥ ¥ ¥ K ¥

¥ ¥ ¥¥ys

— Vertical motion: computed from settling and suspension closures (1DV) ¥ ¥ ¥ ¥ ¥Kx

Z, =W+ Ty VY Y Y4
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Implementation in BASEMENT

» Technical implementation:

— BASEMENT is an unstructured mesh solver:
including meshless methods requires considerable
adaptation of the existing code base

— A structured ‘virtual’ mesh is used in order to index
the underlying triangular mesh, acting as a proxy
between the Lagrangian kernels and Eulerian data

— Lagrangian particle position can be directly mapped
to the structured mesh, then a geometrical search
algorithm probes the triangular cell for flow data
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Implementation in BASEMENT

» Technical implementation:
— Fully parallelized in all backends of BMv3

— Low memory requirement, thousands of particles can
be used with <1GB of additional memory

— Low computational overhead, less than 25% increase
in CPU simulations and less than 20% increase for GPU
(comparable number of particles and cells)

— Dedicated output (xdmf) for particle-based results

ETH; UI’ ] Ch WA BASEMENT Users Meeting 2024
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Implementation in BASEMENT

» Technical implementation:
— Fully parallelized in all backends of BMv3

— Low memory requirement, thousands of particles can
be used with <1GB of additional memory

— Low computational overhead, less than 25% increase
in CPU simulations and less than 20% increase for GPU

(comparable number of particles and cells)

— Dedicated output (xdmf) for particle-based results

Eulerian velocity field  Lagrangian velocity field
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Alpine Rhine case
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Alpine Rhine case — output quantities

lag_velocity Magnitude
lag_id

1.8e+03
[ 1500

— 1000

lag_age

— 500

I 0.0e+00

particle velocity (m/s) unique particle 1D particle age (s)

since insertion
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Conclusion and outlook

« Combination of Eulerian and Lagrangian approaches
» Generalizable for several particle types
 Low computational overhead, normally less than 10% increase in compute time

* Dedicated output format for particles (e.g. in ParaView)

» The implementation of a Lagrangian framework in BMv3 will bring advanced
capabilities for fluvial debris modelling:

small particles large debris
one-way coupling two-way coupling
(early tests)
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Thank you for your attention!

caponi@vaw.baug.ethz.ch
conde@vaw.baug.ethz.ch
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