Downstream propagation of water and sediment hydrographs due to the hypothetical failure of a real earthen dam

Introduction

Dam failures

Artificial floods

Catastrophic events!

Kakhovka Dam failure (Ukraine), June 2023

Derna Dams failure (Libya), September 2023

Introduction

Concrete dams

sudden collapse (partial or total) of the dam body

Introduction

Triggering mechanisms

- Different initial phase
- Formation of a top
 breach in both cases
- Breach enlargement governed by the transport capacity of the outflow discharge

Dam-breach numerical modelling

Aimed at:

- 1. Outflow hydrograph generation
- 2. Downstream flood wave propagation

...addressed separately

Case study: Castagnara Dam (Calabria, Italy)

Characteristics of the dam-reservoir system:

• Dam height:

 $Z_M = 85.5 \text{ m}$

Water volume stored up to the dam crest: $W_M = 38 \text{ Mm}^3$

Outflow hydrograph generation

Macchione (2008) simplified physically based model

\rightarrow Main assumptions:

 $_{\odot}$ Shear stress-based erosion law dependent on parameter v_e = 0.07 m/s

 \circ Triangular breach characterized by shape parameter tan β

 $\overline{7}$

Breach shape scenarios assumed for the case study

> Hypothetical failure simulated according to different breach shape scenarios: (1) $\tan \beta = 0.2$; (2) $\tan \beta = 0.5$

• Same released water volume: 38 Mm³

Different total volume of sediments (without porosity): 614218 m³ vs 491309 m³

Goal

- > Evaluate the changes in bed elevation due to input sediment deposition
- Compare the results given by the assumed breach shape scenarios
- No data to calibrate the model
- > Sensitivity analysis of the results to the variability of some crucial parameters

Bedload transport formula \rightarrow Meyer-Peter and Muller (1948)

$$q_B = \psi 8(\theta - \theta_{cr})^{1.5} \sqrt{(s-1)gd^3}$$

$$\theta = \frac{h\sqrt{S_{fx}^2 + S_{fy}^2}}{(s-1)d} \longrightarrow \begin{array}{c} \text{Shields parameter} \\ \text{(dimensionless bed shear} \\ \text{stress)} \end{array}$$

 $\theta_{cr} = 0.047 \longrightarrow$ Critical value of the Shields parameter

 $s = \rho_s / \rho_w$ \longrightarrow Sediment density coefficient

- d is the sediment diameter (average diameter of the Castagnara dam body: d = 0.05 m)
- ψ is a pre-factor used to scale the bedload transport formula

Sensitivity analysis of the results to the Meyer-Peter and Muller pre-factor: MPM factor (ψ) = 1, 2, 3, 4, 5, 7, 10

Case study location and potential flooded area

Computational domain

- From the dam toe to the seashore
- Area: 72.4 km²

Model set up

0 100 200 m String definitions Computational mesh

Set up of break lines and string definitions

- Break lines set up in order to create four regions:
 - 1. Thalweg region
 - 2. Main channel
 - 3. Floodplain
 - 4. Rest of the domain
- Set up of 29 string definitions (1 Inflow XS; 27 Output XS;
 1 Outflow XS)

Computational mesh

- 380582 cells
- Maximum area of cells: 100 m² (regions 1 and 2), 400 m² (region 3), 700 m² (region 4)

Results – <u>Temporal evolution of sediment deposition</u>

$Results - \underline{Final\ sediment\ distribution}$

Scenario 1

- No deposition at the Inflow XS
- Maximum deposition height of
 27.5 m given by MPM factor =1
- As MPM factor increases:
 - Deposition heights decrease
 - > The sediment is transported
 - more and more downstream

$Results-\underline{Final\ sediment\ distribution}$

Scenario 2

- Small depositions at the Inflow XS
- Maximum deposition height of
 - **25.5** m given by MPM factor =1
- As MPM factor increases:
 - Deposition heights decrease
 - > The sediment is transported

more and more downstream

Maximum deposition height

Average deposition height

Maximum deposition distance from the dam

MPM factor = 1t=0 bottom t=0 bottom t=0 bottom t=15 min water surface t=30 min water surface - t=60 min water surface t=30 min bottom t=15 min bottom t=60 min bottom t = 15 min $t = 30 \min$ $t = 60 \min$ MPM factor = 5t=0 bottom ···· t=0 bottom • t=0 bottom t=15 min water surface t=30 min water surface t=60 min water surface t=30 min bottom t=15 min bottom t=60 min bottom many m MPM factor = 10t=0 bottom t=0 bottom t=0 bottom t=30 min water surface t=15 min water surface t=60 min water surface t=30 min bottom t=15 min bottom t=60 min bottom Vary V

Results – **Bottom and water surface longitudinal profiles** – <u>Scenario 1</u>

Results – Bottom and water surface longitudinal profiles – <u>Scenario 2</u>

Results – <u>Final bottom</u> <u>longitudinal profiles</u>

Scenario 1 compared to Scenario 2

Results more sensitive to the MPM factor than to the breach shape scenario

Thank you for listening!

andreaantonella.graziano@unical.it