

Morphodynamic modelling of complex river morphologies based on the results of the physical model of the Alpine Rhine

Gabriel Zehnder, Florian Hinkelammert-Zens¹ BASEMENT User Meeting 2024

¹ Hunziker, Zarn & Partner AG

Alpine Rhine flood protection project: International reach km 65 to km 91

Quelle: IRKA

Quelle: www.rhesi.org

Perimeter

Numerical 2D simulations of the Alpine Rhine

- Hydraulic simulations of the whole reach (26 km) : definition of the boundary conditions
- Morphodynamic simulations: reproduce riverbed changes → forecast
 ! Wide range of river width and morphology !

Basement v3.1

Physical model 1:50

braided riverbed (b \approx 360 m)

Morphodynamic Simulations

Overview of the morphodynamic simulations

Main goal: reproduce the bed elevation changes of an experiment from the physical model

Calibration:

- 1 experiment
- bed forming discharge of HQ₅
- define all the parameters

Validation:

- 3 experiments
- HQ_{300} in the two different reaches
- annual hydrograph with Q < HQ_2
- validate the defined parameter

evaluation criteria:

- sediment balance
- development of the mean bed elevation
- deposition and erosion areas and heights

Model setup – BASEMENT v3.1

- Upstream and downstream boundaries \rightarrow same as in the physical model
- <u>Uniform bed material</u> (d_m)
- Mobile bed: 6 m
- Investigated Parameter
 - Curvature effect (Engelund 1974)
 - Bed load direction due to lateral bed slope (Talmon et al. 1995)
 - Gravitational bank collapse angle
 - Pre-factor of bedload formula
 - Flat initial bed vs. initial morphology
 - Grid resolution
 - Downstream boundary height (IODown)

Calibration - mesh

- Mobile bed
- Fixed groynes
- fixed bed stabilisation «Rollierung»
- Additional inflow and outflow sections

elements 270'000 min. area 0.42 m² max. area 10 or 100 m²

RTS ≈ 5

Calibration – grid resolution

≈ 20 cells per cross section max. area 100 m^{2,} 120'000 elements

≈ 100 cells per cross section max. area 10 m^{2,} 270'000 elements

→ General morphology is independent of the gridresolution

Calibration - downstream boundary

Calibration - final parameter set

ETH zürich

d)

3

Validation – HQ_{300}

physical model

numerical model

Validation – HQ_{300}

physical model

Validation – hydrograph 2011

Discussion

Calibration

alternating bars

alternating bars

braided morphology

Validation

braided morphology

HQ5 short pre-stress HQ300 long pre-stress HQ300 fully developed morphology 2011 partly developed morphology

- + areas of erosion and deposition (except with low discharge)
- + good sediment balance
- + development of the mean bed elevation
- local processes and scours better resolved in physical model

Model limitations:

- \rightarrow Armoring and heterogeneity in the physical model vs. uniform grainsize in the numerical model
- \rightarrow Depth-averaged 2D-model

ETH zürich

Gabriel Zehnder Projektingenieur zehnder@vaw.baug.ethz.ch

ETH Zürich Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie (VAW) Hönggerbergring 26 8093 Zürich

www.vaw.ethz.ch

im Auftrag

