BASEMENT

Topology and generation of a computational grid Aurélie Koch

2019 - 01 - 24

FHO Fachhochschule Ostschweiz

Outline

- 1. New topology
- 2. Generation of a computational mesh for BASEMENT version 3.0

Topology: example of a trapezoidal channel

• Geometry

Table 1: Geometry of the trapezoidal channel

Length	500 [m]
Bed width	20 [m]
Bank height	4 [m]
Bank crest width	2 [m]
Bank slop	⅓ [-]
Bed slope	0.2 [%]

• Quality mesh

Table 2: Features of the quality mesh

Number of cells	8'871 [-]
Number of vertices	4'594 [-]
Min. triangle angle	28 [°]
Bed max. area	10 [m²]
Bank max. area	15 [m²]

Topology: computational mesh

Figure 1: 3D view of the trapezoidal channel BASEMENT version 2.8

Figure 2: 3D view of the trapezoidal channel BASEMENT version 3.0

ETHzürich

Topology: elevation interpolation

Figure 3: Schematic sketch of the elevation interpolation methods a) BASEMENT version 2.x b) BASEMENT version 3.x

- Using computational mesh of v2.8 with v3.0
- Interpolation
 - Mean
 - \circ Median
 - Minimum
 - Maximum
 - Weighted

• Trapezoidal channel

Figure 5 : Stage-discharge relationship of the trapezoidal channel at the cross section x = 150 m from downstream

• Trapezoidal channel

Figure 6 : Cross section of trapezoidal channel at x = 150 m for a finer mesh resolution

Figure 7 : Stage-discharge relationship of the trapezoidal channel at the cross section x = 150 m for a finer mesh resolution

• Trapezoidal channel

Figure 8 : Cross section of trapezoidal channel at x = 150 m with only one breakline defined at the bank crest

Topology: summary

Table 3: Summary of features for the computational mesh in BASEMENT

Version 2.8	Version 3.0		
Triangular and quadrilateral cells	Triangular cells		
Dual mesh (cell vertex and cell centered)	Cell centered mesh	Version 2.x	Version 3.
Variable bottom elevation over the cell	Constant bottom elevation over the cell		
Computational mesh in 2dm format with material indices and stringdefs defined separately in *.bmc file	Computational mesh in 2dm format including material indices and stringdefs	2dm stringdef	MyMesh.2dn
Domain differentiation with elment_ids	Domain differentiation with regiondef		

Topologie: conclusions

- New Topology
- Breaklines are considered differently
- Use of interpolated grid for v3.0 possible, but no common rule
- Create new model for v3.0 from scratch (grid generation and calibration)

Generation of a computational mesh for BASEMENT v3.x

QGIS version 2.18 (not yet 3.x) -

- **BASEmesh** plugin: new version 1.44 (release with BASEMENT v3.0) -
- Two procedures:

Common procedure for **small** meshes (< 50'000 - 100'000)

New procedure for large meshes

A Small meshes

- Same procedure to generate .2dm file (BASEmesh)
- 2. Modify the .2dm

A Small meshes

 Same procedure to generate .2dm file (BASEmesh)

	2. Moo	dify the	.2dm			2dm
MESH2I E3T E3T 	D #crea 1 2 	ted auto 1155 137 	omatically 861 3166 	via me 1154 2145 	eshModel 2 3 	tool
ND ND	3510 401 3511 292	.701104 .228530	0.719666 35.734722	0.803 2.584	3402 1457	

Figure 9 : 2dm file resulting from the meshing process with BASEmesh

Add manually!

	MESH2 NUM M	D #creat ATERIALS P	ed aut	omaticall M 1	y via me	eshModel	tool
	E3T	1	1155	861	1154	2	
	E3T	2	137	3166	2145	3	
\geq				•••			
	•••			•••		•••	
	ND	3510 401.	701104	0.71966	6 0.803	3402	
	ND	3511 292.	228530	35.73472	2 2.584	1457	
	NS 3	6 34 65 12	3 654	-7 String	def_name	9	

Figure 10 : modified 2dm file for simulation with BASEMENT v 3.0

A Small meshes

- Same procedure to generate .2dm file (BASEmesh)
- 2. Modify the .2dm
- 3. Elevation interpolation methods
 - Mean
 - Median
 - Minimum

model.json

- Maximum
- Weighted

A Small meshes

- Same procedure to generate .2dm file (BASEmesh)
- 2. Modify the .2dm
- 3. Elevation interpolation methods
- 4. Simulation in BASEMENT v3.0

B Large meshes

- 1. Define attributes
- 2. Quality mesh with BASEmesh 1.44

BASEmesh - Quality meshing - [Preview]	×	
	Status messages Help	
Compulsory layers		
Model boundary		
Optional layers		
Breaklines		
dividing constraint		
maximum area		
material index		
holes		
☐ Vertices		
TRIANGLE parameters		
-V (verbose): detailed statistics during mesh generation		
-D: Conforming Delaunay - insertion of Steiner points -q: Quality mesh generation using minimum triangle angle		
Minimum triangle angle (degrees)		
-Y: Prohibits insertion of Steiner points on mesh boundary		
Expert options		Select the output
Relative snapping tolerance -6		/ directory
_OUTPUT		
	Browse	
Conly generate poly file (large meshes)	Load mesh points result file Delete temporary files created by Triangle	
	0% Close Generate	

Figure 11 : Quality meshing for large meshes, screenshot of BASEmesh GUI

B Large meshes

- 1. Define attributes
- 2. Quality mesh with BASEmesh 1.44
- 3. Open a command window inside the output directory
- Execute the BASEmesh python script
 BASEmesh.py to generate the 2dm

python /.../BASEmesh.py

B Large meshes

- 1. Define attributes
- 2. Quality mesh with BASEmesh 1.44
- 3. Open a command window inside the output directory
- 4. Execute the BASEmesh python script

BASEmesh.py to generate the 2dm

5. Simulation in BASEMENT v3.0

Thank you

Questions?