Numerische Modellierung von Naturgefahren mit dem Softwaresystem BASEMENT Workshop vom 6. Oktober 2006 an der VAW ETH Zürich

2D-BASEplane

Davood FARSHI

E

Edgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Inhalt

Einführung
Mathematische Beschreibung
Programmfunktionen
Zusammenfassung
Fragen

Einführung

BASEMENT

Schematischer Prozess einer Überflutung

Mathematische Beschreibung

FWG
 Geschiebetransport
 Numerisches Modell

BASEMENT

Flachwassergleichungen - FWG

3D Navier-Stokes bzw. Reynold's Gleichungen

tiefengemittelt

Flachwassergleichungen

Annahmen:

- 1) Vertikale Beschleunigung ist gleich null.
- 2) Hydrostatische Druckverteilung
- 3) Kleines Gefälle

Flachwassergleichungen - FWG

at in the states

 $\mathbf{U}_t + \nabla \cdot (\mathbf{F}, \mathbf{G}) + \mathbf{S} = 0$

$$\mathbf{U} = \begin{pmatrix} \zeta \\ uh \\ vh \end{pmatrix} \qquad \mathbf{F} = \begin{pmatrix} uh \\ u^2h + \frac{1}{2}gh^2 - \frac{vh}{\partial u}\partial x \\ uvh - \frac{vh}{\partial v}\partial x \end{pmatrix} \qquad \mathbf{G} = \begin{pmatrix} vh \\ uvh - \frac{vh}{\partial u}\partial y \\ v^2h + \frac{1}{2}gh^2 - \frac{vh}{\partial v}\partial y \end{pmatrix}$$

Geschiebetransport

Globale Massenerhaltung

$$(1-p_B)\partial Z_B/\partial t + \sum_{g=1}^{ng} \left(\nabla \cdot \left(q_{B_g,x}, q_{B_g,y} \right) - Sl_g \right) = 0$$

Sortierungsgleichung

$$(1-p_B)\partial(h_m\beta_g)_B/\partial t + \nabla \cdot (q_{B_g,x}, q_{B_g,y}) + Sf_g - Sl_g = 0$$

Schliessbedingungen

$$q_{B}=f\left(\tau_{B},d_{g}\right)$$

$$sf_g = -(1-p_B)\partial(\beta(z_B-h_m))/\partial t$$

Numerisches Modell

FVM
Diskretisierung
Fluxberechnung
Trocken & Benetzt
Quellterm
Mehrschichtenmodell
Randbedingung

Finite-Volumen-Methode (FVM)

Fluxberechnung

BASEMENT

Trocken & Benetzt

Trocken & Benetzt

BASEMENT Quellterm $\int_{\Omega} S_{Bx} d\Omega = -g \int_{\Omega} h \frac{\partial z(x, y)}{\partial x} d\Omega = -g \frac{\partial z(x, y)}{\partial x} \int_{\Omega} h d\Omega = -g \frac{\partial z(x, y)}{\partial x} Vol_{water}$ Ω Fall 2: Fall 1: h $Vol_{water} = \left(\frac{h_1 + h_2 + h_3}{3}\right) \cdot \Omega$ $Vol_{water} = \frac{\Omega_{ab1} \cdot h_1}{3}$

Mehrschichtenmodell

$$(1-p_B)\partial Z_B/\partial t + \sum_{g=1}^{ng} \left(\nabla \cdot \left(q_{B_g,x}, q_{B_g,y}\right) - SI_g\right) = 0$$

$$(1-p_B)\partial \left(h_m\beta_g\right)_B/\partial t + \nabla \cdot \left(q_{B_g,x}, q_{B_g,y}\right) + Sf_g - SI_g = 0$$

$$sf_g = -(1-p_B)\partial \left(\beta(z_B - h_m)\right)/\partial t$$

$$q_{B,i+1/2} = (\varphi_{up}) q_{B,L} + (1 - \varphi_{up}) q_{B,R} - 0.5\alpha_s \left(\Delta z_{B,R} - \Delta z_{B,L}\right)$$
$$\alpha_s = \alpha_c \cdot \max\left(V_{B,L}, V_{B,R}\right) \qquad V_B = 7.5\left(\sqrt{\theta_g} - C_0\sqrt{\theta_{cr,g}}\right)\sqrt{(s-1)gd_g}$$

Programmfunktionen

Programmfunktionen

Hydraulische Berechnung

Morphologische Berechnung

Input Datei

HYDRAULICS

Randbedingung

BASEMENT

Anfangsbedingung

Quellterme

Parameter

Input Datei

MORPHOLOGY

Sohleneigenschaft

BASEMENT

Anfangsbedingung

Quellterme

Parameter

Allgemeine Ausgaben:

Wassertiefe Wasserspiegellage Geschwindigkeiten Sohlschubspannung Sohlenlage scenario_dpt.sol
scenario_wse.sol
scenario_vel.sol
scenario_tao.sol
scenario_Zel.sol

Spezifische Ausgaben:

Zeitlicher Verlauf von ausgewählten Elementen > Scenario_ElemNum_thnd.out Abfluss durch ausgewählten Abschnitt > scenario_Cross.out Kontrollausgabe von ausgewählten Elementen > scenario_ElemNum_HydControl.out Kornverteilung von ausgewählten Elementen > scenario_ElemNum_Sed_GrSize.out Geschiebetransport von ausgewählten Elementen > scenario_ElemNum_Sed_GrBedLoad.out

2D)instationäre Strömungen

Annahmen der FWG

Vernachlässigung der vertikalen Beschleunigung

Sekundärströmung sind grundsätzlich nicht berücksichtigt.

Unstrukturiertes Gitter

Hybrides Gitter (Drei- und Viereckzellen)

BASEMENT

Unstrukturiertes Gitter

"Nicht jedes Gitter ist ein gutes Gitter!"

Randbedingungen:

Wand

BASEMENT

Randbedingungen:

Zufluss

Randbedingungen:

Randbedingungen:

Abfluss 1) Überfall – Wehr

Randbedingungen: Abfluss 2) Nullgradient V, Zs V, Zs V, Zs

BASEMENT

Sohlenbeschaffenheit

Rauheit – Mannings Formel $S_f = \frac{n^2 u \sqrt{u^2 + v^2}}{u^{4/3}}$

Morphologische Berechnung

Geschiebetransport

Mehrschichtmodell mit einem Aktivschicht

Ein- und Mehrkornmodell

Deckschicht und Sortierungsprozess

Morphologische Berechnung

BASEMENT

Sohlenbeschaffenheit

Sedimenteigenschaft

Mehrkorn- und Mehrschichtmodell

Morphologische Berechnung

Mehrkorn- und Mehrschichtmodell

BASEMENT

Kornverteilung

Morphologische Berechnung

Om

Zwei-Korn-modell (im Falle Ein-Korn-Berechnung)

Testfall 1 – Becken mit unebener Sohle

Testfall 2 – Dammbruch in einer 90° Rinne

(Soares et al., UCL, Belgium - 1999)

Testfall 3 – Malpasset Dammbruch

BASEMENT

Wassertiefekonturen und Geschwindigkeitsvektoren nach 300 s

Morphologische Berechnung

Testfall 1 – Sonis Experiment

Sedimentzugabe führt zur Auflandung

Morphologische Berechnung

Testfall 2 – Guenters Experiment

Deckschichtbildung in einer Rinne

Zusammenfassung

Mathematische und numerische Grundlagen des SUB-SYSTEMs BASEplane

BASEMENT

Systemfunktionen und Berechnungsmöglichkeiten

Einige Ergebnisse der Funktionen

Danke Für Ihre Aufmerksamkeit!

Davood Farshi farshi@vaw.baug.ethz.ch