
WWW based computation services: Transfer of power system
applications to the WWW

Rainer Bacher Tina Orfanogianni
Rainer.Bacher@eeh.ee.ethz.ch, Tina.Orfanogianni@eeh.ee.ethz.ch

Swiss Federal Institute of Technology (ETH), CH 8092 Zürich, Switzerland

Abstract: This paper describes the necessary software
engineering and development steps to transfer a “legacy”
power system application, i.e. an ASCII input file and
output file based program without user interactions, to
the World Wide Web (WWW). An Optimal Power Flow
(OPF) program is used as an example of such a “legacy”
application. The paper describes development efforts on
the WWW-client and on the WWW-server side. Also, a
discussion of changes to an existing OPF code is given.
The paper discusses the complexity of development ef-
forts together with advantages and disadvantages of the
presented approach both for the WWW-OPF developer
and the WWW-OPF user.

Keywords - Internet power applications, WWW (World
Wide Web), Legacy Applications, Software upgrade

1 Introduction

In the past many software applications have been de-
veloped based on the computer and software technology
available at that time. Huge efforts have been put into
sophisticated software packages such as optimal power
flows, state estimation, load prediction software, etc. The
programming language for these application is usually
FORTRAN[-90], C or C++.

Many of these applications are based on simple input and
output principles, see Fig. 1.

In Fig. 1, a set of ASCII-Files define the input (i.e. the
values for the model parameters) of the application. The
application produces during and at the end of the appli-
cation run ASCII-output only. Usually no or only a few
simple user interactions - usually at the beginning of the
program execution - are possible.

Technology is advancing rapidly and especially the GUI
(Graphical user interface), the access to databases has
changed in recent years and will even change at a faster
speed in the future. In addition the computer hardware is

Legacy Application

ASCII
Output
Dataset 1

ASCII
Output
Dataset 2

ASCII
Output
Dataset 3

ASCII
Input
Dataset 1

ASCII
Input
Dataset 2

ASCII
Input
Dataset 3

Figure 1: ASCII Input and output of legacy applications

getting faster and cheaper. Perhaps the biggest innovation
has been the internet which connects many millions of
computers.

These innovations influence the features of power applica-
tions and as a consequence their development processes.
One cannot disregard the fact that new user interaction
environments have been created, that computers are used
in a much more interconnected way and that computing
power is shared for CPU intensive applications.

Thus, the legacy power applications must be adapted to
these environmental and technological changes. As a soft-
ware developer of an application with complex algorith-
mic background, one is aware that often, much time and
money has been invested in these applications in the past.
As a consequence it is not possible to restart development
from scratch, even when environments where the applica-
tion is embedded, change drastically.

However, in order to have some continuous adaptation
to software environment and technology changes, some
changes must be done. If this adaptation does not hap-
pen, the software developer will - at some point in the
near future - get stuck with his legacy software, due to
incompatibility with the new environments. Very high
investment will be needed for a late adaptation of these
application to changed environments.

In order to avoid these future incompatibilities and in
order to avoid huge future investments, we propose to
adapt some of the “legacy” applications to the WWW-
environment.

This paper describes the necessary software engineering
steps to make a “legacy” power system application such
as a conventional Optimal Power Flow program available

to any WWW (World Wide Web) user in the world who
has access to the internet. The main motivations for such
a project are:

• Continued usage and upgrade of “legacy” software in
a modern environment.

• Offering computational services for complex classes
of problems (possibly combined with a usage charge)
over the internet.

• Exposing developed software prototypes to users in
the world and getting “real-world” feedback.

We assume that such a “legacy” application is a FOR-
TRAN or C (OPF) program which needs one or more
ASCII data files as input. An example for an input is
an IEEE format file for an AC power flow. In addition
there are program control parameters (for example gen-
eral limits for voltage magnitudes, optional control of area
exports, choice of a rectangular/polar coordinate system)
which the program user can set in order to manipulate
certain execution options of the program. The “legacy”
program is not interactive: It reads the user-defined in-
put data and parameters from ASCII input files followed
by the execution of complex algorithmic steps. Finally
the server-side “legacy” application outputs result data
in ASCII-format.

The paper describes the various steps for a WWW devel-
oper who wants to port this “legacy” application to the
WWW with minimal changes to the application code it-
self. Figure 2 shows the software environments in which
these developments are done:

WWW
browser

WWW
Server

CGI
Program

HTTP

Power
application
program

Figure 2: Main environments for the WWW-application
developer and user

We assume that a WWW Server is available. In the
project described in this paper the free Apache WWW
server (http://www.apache.org/) Version 1.2.6 is used.
All steps to install the WWW server software have been
successfully executed. Also, we assume all default options
of the Apache-Server software are activated and available.

Different ways exist to bring “legacy” software to the in-
ternet. The effort varies mainly depending on the features
used when interacting with the internet and in the graphi-
cal appearance on the WWW browser. Today, Java could
be used to develop and provide advanced graphical and
WWW interaction features. In this paper, however, we

concentrate on software development with minimal devel-
opment efforts on all pieces of software. Also, we do not
want to use any special, non-standard software pieces ex-
cept the basic WWW server and browser features1.

The three places where development needs to take place
are (see Fig. 2) in the CGI2-program, in the WWW-
browser and in the “legacy” power application pro-
gram.

The three mentioned software pieces must interface to the
WWW Server (Apache) in such a way that a modern,
WWW based power application usage environment results
with minimal coding efforts for the developers.

These steps include

• HTML development for the WWW pages on the
client side, i.e. an input file for the WWW browser
(section 2).

• PERL code development for parsing the uploaded
file which arrives at the WWW server side. PERL
code development for starting the “legacy” applica-
tion (the OPF) on the server side. These steps are
summarized as CGI program development (section
3).

• FORTRAN code (used in this paper as the main de-
velopment language of the OPF legacy application)
development for changing the “legacy” FORTRAN
application (minimal changes) including generation
of WWW-HTML-output and creation of other out-
put files (possibly taken as input for a follow-up run)
(section 4).

The paper ends with conclusions in section 5, a list of
references and a short biography of the authors.

2 WWW browser developments: WWW
client html-file

Fig. 3 shows a typical entry screen for access-
ing the WWW interface of an Optimal Power
Flow application, accessible via the internet at
http://www.eus.ee.ethz.ch/services/power apps/Adopfform.html 3.

This WWW page is developed and stored on the WWW-
server, but “downloaded” and used by the WWW-OPF
user at the client-side WWW browser.

1One must be aware that this statement is based on mature tech-
nology available at the time of writing this paper.

2The Common Gateway Interface (CGI) allows the passing of a
URL (Uniform Resource Locator) request to a service invoked by
the WWW server. When a URL begins with “http:” the WWW
client browser gets all information from the WWW server using a
protocol named HTTP. A WWW server based service invoked via
CGI writes data to its standard output and the web server passes
that data directly back to the client WWW-browser.

3The string “Adopf” comes from the fact that for the OPF, a
software engineering approach based on the ADIFOR - Automatic
differentiation (Ad) of Fortran programs - has been taken ([1, 2]).

Figure 3: Entry Screen for WWW optimal
power flow user parameters and application start:
http://www.eus.ee.ethz.ch/services/power apps/Adopfform.html.

Lower part: “SUBMIT”-button to start WWW based
OPF program on WWW-server

HTML allows developers to create FORMS on the client
computer. FORMS allow users to enter information us-
ing text boxes, check boxes, etc. Every HTML FORM
specifies a WWW service in its URL, e.g. “/cgi-
bin/services/power apps/power apps.pl”. When the user
pushes the SUBMIT-button for a form, the WWW
browser sends the form data to the specified WWW ser-
vice on the WWW server. The WWW service handles all
data that the user has entered on the FORM.

The web browser delivers information to the WWW ser-
vice as a collection of FORM variables, passed as a block
of data. This block of data must be analyzed and sepa-
rated again, see section 3 of this paper.

On the FORM of Fig. 3, the user can give all essential
parameters of an optimal power flow. The parameters can
be divided into two types: On the one hand, the user pro-
vides the name of an ASCII data file with data related to
the network to be optimized. The format of this data file
is “standardized”, e.g. [3] can be used. In this datafile
the user enters all parameters related to actual network
topology N-port model parameters such as e.g. resistance
for lines, transformers and desired voltage amplitudes con-
trolled at generators or active / reactive powers at loads.

On the other hand, the user enters study related param-
eters such as a user defined name for the optimization
study to be done next, the “standardized format” of the
datafile mentioned before and some options related to the
algorithm implemented in the OPF program which will be

executed after pushing the “SUBMIT”-button at the end
of the WWW page, see lower part of Fig. 3. These options
include the type of mismatch equations (Current mis-
match, power mismatch), the choice of complex type vari-
ables (rectangular or polar), the name of an optional file
with data related to an efficient start of the optimization
algorithm (the program routine MINOS [4] is used as part
of the OPF algorithm) and some optimization inequality
and objective function related values which are not part of
the “standardized” network data mentioned before. Typi-
cal values include global upper and lower limits for voltage
magnitudes, a choice between various objective functions
(network or area losses; Future development: Bid based
power exchange cost minimization/profit maximization,
independent system operator bid based network security
achievement, etc.).

A typical html-file (extracts from this file) for the WWW-
CLIENT-PAGE looks as follows:

<html>

<head>

<TITLE>ETH Zürich: Optimal Power Flow</TITLE>

</head>

<body bgcolor=white>

...

<form ENCTYPE="multipart/form-data" method=post

action="/cgi-bin/services/power_apps/power_apps.pl">

...

Case string: <input type="text" size=40 name="casestr">

...

<input type="checkbox" name="password_desired" >

Autogenerated Password desired

...

2. Give the input data file and the format:

Input File: <INPUT TYPE="file" SIZE=45 NAME="NetFilename1">

...

Format of input file:

<SELECT NAME="Data format">

<OPTION SELECTED>IEEE common format

<OPTION> PTI format

</SELECT>

...

3. Select the options for this OPF study

Mismatch

<input type="radio" name="mismatch" value="Current">Current

<input type="radio" name="mismatch" value="Power" checked>Power

Minimum LoadVoltage

<input type="text" size=10 value="0.9" name="Min Load Voltage">

...

<INPUT size=30 TYPE=submit value="Start OPF (warning: after

pushing, you will have to wait some time) " >

<INPUT TYPE=reset>

</form>

...

</body>

</html>

The developer of this client-side WWW page must under-
stand the syntax and contents of the various fields. Hy-
perlinks can easily be added to this page to access WWW-
help screens for usage of fields, buttons, network data and
optimization theory of the provided WWW based OPF
program.

3 CGI programming

3.1 User OPF data upload

Upon pushing the “SUBMIT”-button, the following steps
occur4: First, all data given in the CLIENT-WWW-
PAGE including the contents of the files whose names
have been given, is collected by the browser executable
into one file.

The contents of this file have a structure which allows the
separation of all fields (i.e. their names and types) defined
on the WWW-client page together with their values given
by the WWW-client user. A part of this file looks as
follows:

-----------------------------295482227830232

Content-Disposition: form-data; name="casestr"

test

-----------------------------295482227830232

Content-Disposition: form-data;

name="NetFilename1"; filename="ieee14.dat"

09/25/93 UW ARCHIVE 100.0 1962 W IEEE 14 Bus

BUS DATA FOLLOWS 14 ITEMS

1 Bus 1 HV 1 1 3 1.060 0.0 0.0 0.0

2 Bus 2 HV 1 1 2 1.045 -4.98 21.7 12.7

...

14 Bus 14 LV 1 1 0 1.036 -16.04 14.9 5.0

-999

BRANCH DATA FOLLOWS 20 ITEMS

1 2 1 1 1 0 0.01938 0.05917 0.0528 0

1 5 1 1 1 0 0.05403 0.22304 0.0492 0

...

13 14 1 1 1 0 0.17093 0.34802 0.0 0

-999

LOSS ZONES FOLLOWS 1 ITEMS

1 IEEE 14 BUS

-99

INTERCHANGE DATA FOLLOWS 1 ITEMS

1 2 Bus 2 HV 0.0 999.99 IEEE14 IEEE 14 Bus

-9

TIE LINES FOLLOWS 0 ITEMS

-999

END OF DATA

-----------------------------295482227830232

Content-Disposition: form-data; name="Data format"

IEEE common format

-----------------------------295482227830232

Content-Disposition: form-data; name="mismatch"

Power

-----------------------------295482227830232

...

-----------------------------295482227830232

Content-Disposition: form-data; name="Min Gen Voltage"

0.9

-----------------------------295482227830232

Content-Disposition: form-data; name="System_losses_min"

At whole network

-----------------------------295482227830232

On the server, a “PERL-CGI-PROGRAM” must be
started which takes this file apart. The main points
are: Detection of the separator string “295482227830232”,

4The steps described are seen from a power systems engineer
using software environments and not from a software specialist who
sees details of all software layers.

detection of name of each field (e.g. “Min Gen Volt-
age”) and its contents (”0.9”) for all fields, extraction
of the contents of the file “name=”NetFilename1”; file-
name=”ieee14.dat”” to the server disk.

Often, due to the high flexibility in string manipulation,
a perl script is doing this job. Note that the name of
this perl script is given as an attribute of the FORM-tag
on the CLIENT-WWW-PAGE (see section 2, the string
“/cgi-bin/services/power apps/power apps.pl”).

3.2 Internet USER data upload

One must be aware that upon pushing the “SUBMIT”-
button, more data is uploaded than just the field and file
data mentioned in the subsection before. In addition we
always get the four following inforation pieces:

1) HTTP_USER_AGENT:

Mozilla/2.0 (compatible/ MSIE 3.01/ Windows 95)

2) HTTP_ACCEPT:

image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

3) REMOTE_HOST: gate.acompany.ch

4) HTTP_ADDR: 194.777.666.555

Especially information 4) is important: It identifies the
computer on the internet where the access comes from, i.e.
this is the address of the computer where the “SUBMIT”-
button is pushed. This variable represents one piece of
information to identify the WWW-OPF user. From 1) we
can see what type of operating system the WWW-client is
using (here: Windows 95), also, we see the type of internet
browser (Microsoft Internet Explorer V3.01).

3.3 Summary of server side steps: CGI-
Programming

To summarize, the CGI-perl script does the following jobs:

1. Split / parse user WWW-client-form data, 2. Create
server directory based on client data, date and time, pass-
word 3. Save uploaded file information in a server-side file
which can be read by the OPF application. 4. Save up-
loaded field information into files compatible5 with the
OPF application. 5. Start the OPF application (Follow-
ing steps done within the OPF program): 5a. Read OPF
input files, i.e. uploaded files (step 3) and saved uploaded
field information (step 4). 5b. Execute the OPF algo-
rithm. 5c. Produce WWW-compatible output: Create
html-files and main html-page with links to the html-OPF
output; The main page is sent back to the WWW-client.

One must mention that the CGI-PERL-PROGRAM can
generate at any time html-output which can either be
written to the disk of the server or directly to the “WWW-
CLIENT-SCREEN”. As a consequence, the CGI-PERL-
Programmer must design the information which goes back
to the WWW-OPF-user after the “SUBMIT”-button has
been pushed and after the OPF has been computed. In
the current OPF design we send back one screen with a
hyperlink to subscreens, see Fig. 4.

5meaning: in such a way that the application can read it directly
with known ASCII-formats

Figure 4: Overview output screen of WWW optimal
power flow

Figure 5: Zoom into upper
left part of Fig. 4

By clicking on one of the
hyperlinks of the zoomed
window of Fig. 5, one
can access all uploaded
and computed informa-
tion, e.g. files which are
stored on the server in a
user-specific subdirectory.
This directory place can
optionally be password-
protected. If no password
is set, then in principle
everybody can look at all
user data. Due to the fact,
however, that the server di-
rectory name (and also the
WWW-address) is created
using the WWW-client side
computer name (e.g. the
variable HTTP ADDR)
and the time when the
job was created on the server, it is very difficult
for non-authorized users to find e.g. the unique URL
http://www.eus.ee.ethz.ch/upload/WWW OPF mycomputer 9811-

02143153/Output/solution.html.

3.4 Interfaces: Summary

In principle the developer of all code pieces of a WWW
based OPF must take care of the following interfaces:
1) Mapping the names and field contents to OPF-known
strings and data formats. 2) Based on user parameters
given in the WWW-CLIENT-PAGE, the OPF code devel-
oper must take care that the code actually considers the
user defined parameters. 3) The CGI-PERL-PROGRAM

must take care of passwords, user identifications, secure
access to OPF generated output, setup of OPF-WWW
compatible output screens including hyperlinks to server-
side stored files.

4 Power application software develop-
ment

From the steps given before one can see that only a few
changes are necessary to make the original OPF code com-
patible to the WWW.

In principle, the input is not changed at all: This means
that the PERL-CGI-PROGRAM must make the conver-
sion from the uploaded field data (name and contents of
field) to one or more ASCII files which the OPF program
can read.

The only change is the output of the OPF program. Al-
though in principle also pure ASCII-Files can directly
be read by WWW browsers by just clicking on such an
ASCII-file, it is advantageous to create some html-files
within the OPF program in order to have a better ap-
pearance. One of the main advantage of the WWW is
the use of hyperlinks even within a document. For exam-
ple, the OPF output can be structured in such a way that
first all buses (and branches connected to these buses)
of an area are output. If the other bus of a branch is
in another area one can easily create a hyperlink to this
other area. Of course, this means that the OPF output
code developer must modify the OPF program to produce
html-compatible output strings.

In the case of this OPF application one main solution.html
file is created which includes hyperlinks as described
above. In addition, the users gets all information which
the OPF application produces as if run on a local machine.
Also, MINOS-related optimization data can be inspected
by interested WWW-OPF users.

In addition, a hyperlink to a file of type .tar.gz is available:
This file includes in compressed form the whole job (all
uploaded data, all OPF output data). The WWW-OPF-
user can download this file to the WWW-client-computer.
There, all data can be inspected without network connec-
tion to the OPF-WWW-server.

5 Conclusions

The presented approach allows a power system engineer
to transfer a “legacy” application such as an OPF to the
WWW. The word “legacy” mainly refers to the type of
input and output of these applications: They should be
ASCII-based. Also, the “legacy” program just executes
based on these ASCII files. No other input or command
is needed to drive the OPF execution through possible
subparts: All information must be given in ASCII-files
before the OPF run is started.

A developer must learn to design and program html-pages:
This includes learning about the use and programming of
user definable inputs such as buttons, input fields, etc.
This is a relatively easy task. In addition, one has to write

a [e.g. PERL based] CGI-PROGRAM. This job, however,
can be supported by downloading example files from the
internet and extending these files as needed. The main
software problem consists of splitting several uploaded
files and field information in the correct way. One must be
aware that WWW-CLIENTS can be UNIX-, WINDOWS
and MAC-based systems. As a consequence, the uploaded
information type is not always exactly the same: For ex-
ample, sometimes, a carriage-return is included, special
characters appear in various forms, etc. Also, one must
be aware that not all versions of WWW-browsers have the
same capability. For example, some older versions do not
allow file uploading. The CGI-PERL-PROGRAM should
theoretically take into account all types of WWW-clients:
Doing a perfect job here represents an enormous work and
is almost impossible.

The main advantages of a WWW based application such
as an OPF are as follows:

Advantages for the OPF software developer: 1. Of-
fering computational services for complex classes of prob-
lems (possibly combined with a usage charge). 2. Expos-
ing developed prototype and commercial software to the
world (for free or for a charge) and getting “real-world”
feedback. 3. Continued usage of “legacy” software in a
modern environment. 4. Easy possibility to offer differ-
ent versions of an OPF-software, i.e. only one software
installation for each version for an undetermined num-
ber of users. 5. After an initial high effort, easy, fast,
automatic and individualized “account” creation: Each
pushing of the “SUBMIT”-button creates an individual
account. The client-side user (and not the server) is re-
sponsible for managing different version of network input
and output data sets. 6. Possibility to send e.g. warning-
messages (E-mail) of type “User at 129.234.56.78 has just
been running a successfully converging OPF” (or oppo-
site) if somebody is using the WWW-OPF-server.

Advantages for the OPF software user: 7. No in-
stallation of any OPF-related executable software, i.e. the
user always has the latest software available without in-
dividual installation. 8. Usage based charge, i.e. no use
means no cost.

The main disadvantages are:

Disadvantages for the OPF software developer:
9. Restriction to WWW based interactions, file and
field data uploads. 10. No real interaction of the
WWW-CLIENT-browser to the internal state of a run-
ning SERVER-side OPF program. Each pushing of the
“SUBMIT”-button creates an individual job. Successive
jobs cannot share memory data automatically.

Disadvantages for the WWW-OPF user: 11. The
WWW-OPF user gives away his/her data: The user must
rely on the WWW-server-administrator that data secrecy
is given and that the server-side setup works. 12. The
WWW-OPF user shows some of his/her capabilities of
handling OPF complexity: The OPF-server could al-
ways observe all steps which the client-side user executes.

Again, the user must trust the WWW-OPF-service orga-
nization that user behavior and data is not publicized.

The WWW, associated communication services, software
standards and environments are rapidly changing. These
changes will certainly lead very soon to changes to the
concepts as presented in this paper. The main goal of this
paper is to show, that already today (1998), only a few
steps and little additional knowhow about a few software
technologies are needed to transfer a “legacy” application
with minimal changes to existing code and minimal new
code development to the WWW. Offering such a service
leads to a dynamic process: If the service does not sat-
isfy the requirements of the users, it will just not be used
any more. However, if the service is on a high profes-
sional level, if it does not cost much, if the user trusts
the OPF-WWW-service provider that uploaded data is
handled with enough care and secrecy, and if the inter-
net access is fast, there is no reason that such a service
could not be used by professionals outside of the academic
world.

References

[1] Tina Orfanogianni and Rainer Bacher. Using Auto-
matic Code Differentiation in Power Flow Algorithms.
IEEE Transactions on Power Systems, (PE-828-PWRS-0-
2-1998), 1998.

[2] Tina Orfanogianni and Rainer Bacher. Increased OPF
code development efficiency by integration of general
purpose optimization and derivative computation tools.
Submitted to IEEE PICA’99, Santa Clara, CA.

[3] IEEE Commitee Report. Common format for exchange of
solved power flow data. IEEE Trans. Power Apparatus and
Systems, PAS-92(6):1916–1925, Nov./Dec. 1973.

[4] Bruce A. Murtagh and Michel A. Saunders. MINOS 5.4
User’s Guide (preliminary). Technical report, Departement
of Operations Research Stanford University, 1983. Revised
Jan. 1987, Mar. 1993.

Rainer Bacher received the Dipl.El.-Ing. degree in electri-
cal engineering in 1982 and the Dr.sc.techn. degree in 1986,
both from the Swiss Federal Institute of Technology (ETH) in
Zürich, Switzerland. After his doctorate he joined the Energy
Management Systems Division of Control Data Corporation in
Minneapolis, U.S.A. In 1989 he joined Colenco Ltd., a Swiss
consulting company. Also in 1989 he started as a lecturer
and part-time senior researcher at the power system group
at the ETH. In 1993 he was appointed assistant professor of
Energy Management Systems at the department of electrical
engineering at the ETH Zürich. He is a member of technical
committees for PSCC 93, 96, 99 and PICA 93, 95, 97, 99 (Vice
Technical Chairman). He can be reached at Internet e-mail:
Rainer.Bacher@eeh.ee.ethz.ch

Tina Orfanogianni received the Dipl.El.-Eng. degree in elec-
trical engineering in 1995 from the National Technical Uni-
versity of Athens (NTUA), Greece. She is currently do-
ing her PhD in the area of power system optimization us-
ing FACTS devices. She can be reached at Internet e-mail:
Tina.Orfanogianni@eeh.ee.ethz.ch

