Secondary Control Strategies for DC Islanded Microgrids Operation

A. Martinellia,b, A. La Bellaa, R. Scattolinia

a DEIB, Systems and Control Group, Politecnico di Milano
b now with Automatic Control Laboratory, ETH Zürich
Islanded DC microgrids

Microgrid
Electrical network composed by loads, accumulators, and distributed generation units (DGUs)

Islanded
Not connected to the main electrical grid

Key problems
- *Voltage stability* at the primary level of each DGU
- *Reference value management* at the secondary level of each DGU

Microgrid: set of dynamical systems (DGUs) that interact over a graph. Topology is captured by

\[\mathcal{L} = \begin{pmatrix} \deg(v_1) & \{0, -1\} \\ \{0, -1\} & \deg(v_N) \end{pmatrix} \in \mathbb{R}^{N \times N} \]
Microgrid: set of dynamical systems (DGUs) that interact over a graph. Topology is captured by

\[
\mathcal{L} = \begin{pmatrix}
\text{deg}(v_1) & \{0, -1\} \\
\{0, -1\} & \text{deg}(v_N)
\end{pmatrix} \in \mathbb{R}^{N \times N}
\]
Example: Decentralized scheme based on local PI regulators. Reference tracking is guaranteed if control gains are chosen according to passivity-based considerations.
Example: Decentralized scheme based on local PI regulators
Reference tracking is guaranteed if control gains are chosen according to passivity-based considerations

Stability guaranteed as long as limits on duty cycle and internal current are satisfied. Need for higher layer management
Centralized architecture (1/3)

Strategy: update $V \rightarrow V^*$ without invalidating primary stability. A sufficiently long updating window is required

- Which are the global desired performances?
- How to design the CP so to take them into account?
Intuition: write every relevant quantity as a function of V

\[
\text{CP: } \min_V \quad \alpha J(V) + \beta N(V) + \gamma D(V) \\
\text{s. t. } \underline{V} \leq V \leq \overline{V} \\
I \leq I(V) \leq \overline{I} \\
0 \leq d(V) \leq 1 \\
\alpha, \beta, \gamma \geq 0,
\]
Intuition: write every relevant quantity as a function of \mathbf{V}

Joule losses

Deviation from nominal values

“Current sharing”

CP: $\min_{\mathbf{V}} \alpha \mathcal{J}(\mathbf{V}) + \beta \mathcal{N}(\mathbf{V}) + \gamma \mathcal{D}(\mathbf{V})$

s. t. $\underline{\mathbf{V}} \leq \mathbf{V} \leq \overline{\mathbf{V}}$

$I \leq I(\mathbf{V}) \leq \overline{I}$

$0 \leq d(\mathbf{V}) \leq 1$

$\alpha, \beta, \gamma \geq 0$,

A. Martinelli, A. La Bella, R. Scattolini

ECC 19 | June 26th, 2019 | Naples, Italy
Intuition: write every relevant quantity as a function of V

$$\text{CP: } \min_V \alpha J(V) + \beta N(V) + \gamma D(V)$$

s. t.:
- $V \leq V \leq \bar{V}$
- $I \leq I(V) \leq \bar{I}$
- $0 \leq d(V) \leq 1$
- $\alpha, \beta, \gamma \geq 0$,

Voltage limits: $V \leq V \leq \bar{V}$

Deviation from nominal values: $I \leq I(V) \leq \bar{I}$

“Current sharing”: $0 \leq d(V) \leq 1$

Internal current limits: $\alpha, \beta, \gamma \geq 0$

Duty cycle saturation: $0 \leq d(V) \leq 1$
The CP has a quadratic cost function in V and $3N$ linear constraints, which is computationally cheap.

Benchmark for the following distributed approach.
Let’s introduce **Multiagent Constrained Optimization Problems (MCP)** \(^3\)

\[
\text{MCP} = \langle X, D, F \rangle
\]

\[
X = \{x_1, \ldots, x_n\} \quad \text{optimization variables}
\]

\[
D = \{D_1, \ldots, D_n\} \quad \text{finite domains}
\]

\[
f_i : D_h \times \cdots \times D_j \rightarrow \mathbb{R}^+ \cup \{\bot\} \quad \text{local utility functions}
\]

\(^3\) F. Fioretto et al., *Journal of Artificial Intelligence Research* (2018)
Let’s introduce Multiagent Constrained Optimization Problems (MCP)\(^3\)

\[
\text{MCP} = \langle X, D, F \rangle \\
X = \{x_1, \ldots, x_n\} \quad \text{optimization variables} \\
D = \{D_1, \ldots, D_n\} \quad \text{finite domains} \\
f_i : D_h \times \cdots \times D_j \to \mathbb{R}^+ \cup \{\bot\} \quad \text{local utility functions}
\]

A complete assignment \(\sigma\) is a value assignment \(\bar{X} \in D\) such that

\[f_i(\sigma) \neq \{\bot\}, \quad \forall f_i \in F\]

\(^3\) F. Fioretto et al., *Journal of Artificial Intelligence Research* (2018)
Let’s introduce **Multiagent Constrained Optimization Problems (MCP)**\(^3\)

\[\text{MCP} = \langle X, D, F \rangle\]

- \(X = \{x_1, \ldots, x_n\}\) optimization variables
- \(D = \{D_1, \ldots, D_n\}\) finite domains
- \(f_i : D_h \times \cdots \times D_j \rightarrow \mathbb{R}^+ \cup \{\perp\}\) local utility functions

A **complete assignment** \(\sigma\) is a value assignment \(\bar{X} \in D\) such that

\[f_i(\sigma) \neq \{\perp\}, \quad \forall f_i \in F\]

The **solution** of MCP is the complete assignment that minimizes

\[\sigma^* = \arg\min_{\sigma} \sum_{f_i \in F} f_i(\sigma)\]

\(^3\) F. Fioretto et al., *Journal of Artificial Intelligence Research* (2018)
Idea: the CP can be equivalently formulated as an MCP

- Define $X = \{V_1, \ldots, V_n\}$
- Decompose global functions of CP into a set of local functions f_i
 (we can represent both the cost function and the constraints)

$$\implies \sigma^* = V^* \quad (1)$$
Idea: the CP can be equivalently formulated as an MCP

- Define $X = \{V_1, \ldots, V_n\}$
- Decompose global functions of CP into a set of local functions f_i (we can represent both the cost function and the constraints)

$$\implies \sigma^* = V^* \quad (1)$$

Notice that (1) only holds when D_i are dense enough to contain the optimal solution! More generally, MCP is equivalent to solve a discretized version of CP

$$\implies \text{Quality of the solution depends on the density of } D$$
The advantage of MCP lies in the existence of efficient solution search protocols, such as the Distributed Pseudotree Optimization Procedure⁴:
The advantage of MCP lies in the existence of efficient solution search protocols, such as the Distributed Pseudotree Optimization Procedure\(^4\):
The advantage of MCP lies in the existence of efficient solution search protocols, such as the Distributed Pseudotree Optimization Procedure:\(^4\):

\[\text{[UTIL]}\]

\(<\text{Send utility message}>\)

The advantage of MCP lies in the existence of efficient solution search protocols, such as the Distributed Pseudotree Optimization Procedure4:

\begin{itemize}
\item \texttt{<Compute local utility>}
\end{itemize}

4 A. Petcu and B. Faltings, \textit{International Joint Conference on Artificial Intelligence} (2005)
The advantage of MCP lies in the existence of efficient solution search protocols, such as the **Distributed Pseudotree Optimization Procedure**\(^4\):

The advantage of MCP lies in the existence of efficient solution search protocols, such as the Distributed Pseudotree Optimization Procedure\(^4\):

\[\text{<Evaluate optimal aggregate utility>}\]

The advantage of MCP lies in the existence of efficient solution search protocols, such as the Distributed Pseudotree Optimization Procedure⁴:

The advantage of MCP lies in the existence of efficient solution search protocols, such as the Distributed Pseudotree Optimization Procedure\(^4\):

- Fully distributed procedure
- Trade-off between solution quality and computation time \(\mathcal{O}(d^w)\)

Strategy (event-based): Identify a surrounding cluster which can internally adsorb the disturbance without affecting outer nodes.
Strategy (event-based): Identify a surrounding cluster which can internally adsorb the disturbance without affecting outer nodes

Cluster exploration
Many ways, most straightforward is k-step reachability set
Structural condition

We need to impose a structural condition on the cluster

\[
\mathcal{L} = \left(\begin{array}{c|c}
\mathcal{C} & \mathcal{Y} \\
\hline
\mathcal{Y}' & \mathcal{\overline{C}} \\
\end{array} \right)
\]

Proposition: A necessary condition for current redistribution is:

\[
\text{rank}(\mathcal{Y}) < |\mathcal{C}|
\]
Structural condition
We need to impose a structural condition on the cluster

\[\mathcal{L} = \begin{pmatrix} \mathbb{C} & \mathbb{Y} \\ \mathbb{Y}' & \overline{\mathbb{C}} \end{pmatrix} \]

Proposition: A necessary condition for current redistribution is:

\[\text{rank}(\mathbb{Y}) < |\mathbb{C}| \]

How to adsorb the disturbance
Local version of CP, with additional constraint to avoid disturbance propagation outside the cluster
Example: secondary management

Overloading node

(a) Load $I_{l,1}$.

(b) Output voltage V_1.

(c) Internal current I_1.

(d) Duty cycle d_1.
Example: secondary management

Overloading node

(a) Load $I_{I,1}$.
(b) Output voltage V_1.
(c) Internal current I_1.
(d) Duty cycle d_1.

\mathbb{C}
Thank you for your attention!