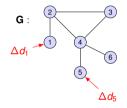
ETH zürich

Control of networked systems by clustering: the degree of freedom concept

Andrea Martinelli • John Lygeros Automatic Control Laboratory • ETH Zurich 21st IFAC World Congress • July 11-17, 2020

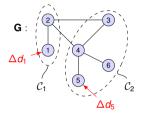
Uncontrolled propagation of local disturbances may lead to catastrophic effects on the dynamics of the whole network^{1,2}



¹Sandell et al. (1978) *IEEE TAC* ²Hespanha et al. (2007) *Proc. of the IEEE*

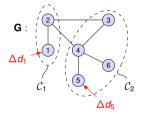
Uncontrolled propagation of local disturbances may lead to catastrophic effects on the dynamics of the whole network^{1,2}

Idea: define a partition $\mathcal{P} = \{\mathcal{C}_1, \dots, \mathcal{C}_m\}$ on **G** such that each cluster can locally adsorb disturbances.



Uncontrolled propagation of local disturbances may lead to catastrophic effects on the dynamics of the whole network^{1,2}

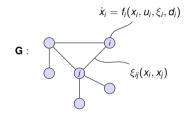
Idea: define a partition $\mathcal{P} = \{\mathcal{C}_1, \dots, \mathcal{C}_m\}$ on **G** such that each cluster can locally adsorb disturbances.



- What does it mean for a cluster to be structurally inclined to suppress disturbances?
- What is the best way to partition a graph according to our needs?

¹Sandell et al. (1978) *IEEE TAC* ²Hespanha et al. (2007) *Proc. of the IEEE*

Networked control system



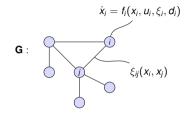
Each node in the graph G hosts a dynamical system

$$\dot{x}_i = f_i(x_i, u_i, \xi_i, d_i),$$

where $x_i \in \mathbb{R}^{N_i}$, $u_i, \xi_i, d_i \in \mathbb{R}$, and

$$\xi_i = \sum_{j \in \mathcal{N}_i} \xi_{ij}(\mathbf{x}_i, \mathbf{x}_j).$$

Networked control system



Each node in the graph **G** hosts a dynamical system

 $\dot{x}_i = f_i(x_i, u_i, \xi_i, d_i),$

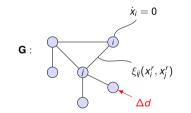
where $x_i \in \mathbb{R}^{N_i}$, $u_i, \xi_i, d_i \in \mathbb{R}$, and

$$\xi_i = \sum_{j \in \mathcal{N}_i} \xi_{ij}(\mathbf{x}_i, \mathbf{x}_j).$$

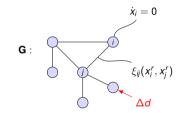
Objective: design decentralized maps $u_i = g_i(x_i, x_{i \in N_i})$ such that

- \blacktriangleright *d_i* are locally compensated, and
- ► $x_i = x_i^r$ in spite of the couplings

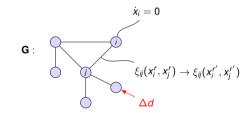
Saturations, control unbalance,... call for a higher-layer architecture.



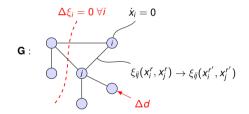
- Saturations, control unbalance,... call for a higher-layer architecture.
- ln this context, disturbances are suppressed by a proper choice of x^r .



- Saturations, control unbalance,... call for a higher-layer architecture.
- ln this context, disturbances are suppressed by a proper choice of x^r .
- The effect of a reference update $x' \rightarrow x''$ is a flux redistribution on the archs.

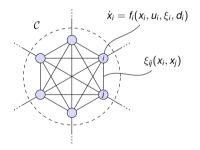


- Saturations, control unbalance,... call for a higher-layer architecture.
- In this context, disturbances are suppressed by a proper choice of x^r.
- The effect of a reference update $x' \rightarrow x''$ is a flux redistribution on the archs.

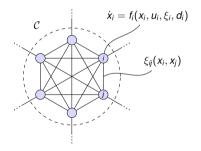


Objective: impose a **local** reference update to a subset of nodes, without affecting any external node \rightarrow zero inter-cluster flux variation.

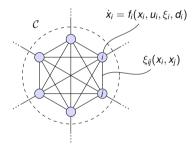
- ▶ Define a measure $m : C \to \mathbb{R}$ that captures your needs, and
- Find the partition \mathcal{P}^* that maximises the aggregated utility



- ▶ Define a measure $m : C \to \mathbb{R}$ that captures your needs, and
- Find the partition \mathcal{P}^* that maximises the aggregated utility
- ► Our clusters need to have dense internal circulation with zero external △flux.

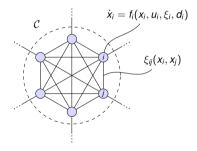


- ▶ Define a measure $m : C \to \mathbb{R}$ that captures your needs, and
- Find the partition \mathcal{P}^* that maximises the aggregated utility
- ▶ Our clusters need to have dense internal circulation with zero external ∆flux.



Traditional clustering methods: *modularity, persistence probability, spectral analysis,...*

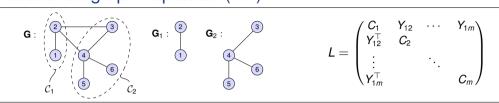
- ▶ Define a measure $m : C \to \mathbb{R}$ that captures your needs, and
- Find the partition \mathcal{P}^* that maximises the aggregated utility
- ▶ Our clusters need to have dense internal circulation with zero external ∆flux.



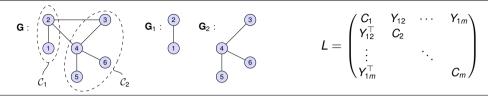
Traditional clustering methods: *modularity, persistence probability, spectral analysis,...* do not capture the structural condition we require.

 \rightarrow Need for a **new clustering measure**!

Partitioned graph Laplacian (1/2)



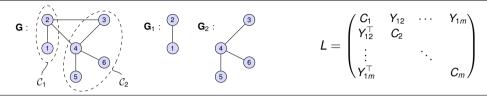
Partitioned graph Laplacian (1/2)



Assumption 1. The graph **G** is connected

Assumption 2. The induced subgraphs identified by the clusters in the partition $\mathcal{P} = \{\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_m\}$ are connected. No trivial clusters.

Partitioned graph Laplacian (1/2)



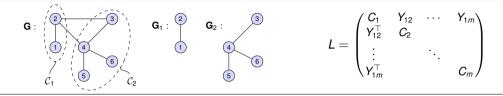
Assumption 1. The graph **G** is connected

Assumption 2. The induced subgraphs identified by the clusters in the partition $\mathcal{P} = \{\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_m\}$ are connected. No trivial clusters.

Theorem 1

If Assumptions 1 and 2 are satisfied, then any diagonal block of the Laplacian associated with a cluster in \mathcal{P} is nonsingular and has all eigenvalues with positive real part.

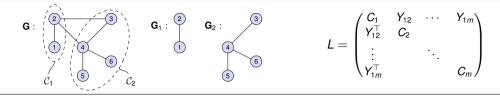
Rank difference function



▶ Let's introduce a rank difference function $\delta : \mathbb{R}^{a \times b} \times \mathbb{R}^{c \times d} \to \mathbb{N}$ and apply it to a cluster C_i

$$\delta(C_i, Y_i) = \operatorname{rank}(C_i) - \operatorname{rank}(Y_i) = d_i$$

Rank difference function

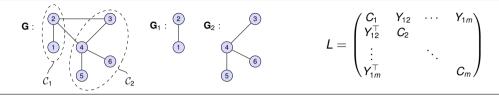


▶ Let's introduce a rank difference function $\delta : \mathbb{R}^{a \times b} \times \mathbb{R}^{c \times d} \to \mathbb{N}$ and apply it to a cluster C_i

$$\delta(C_i, Y_i) = \operatorname{rank}(C_i) - \operatorname{rank}(Y_i) = d_i \in [0, |C_i|)$$

In fact, C_i is full-rank (Theorem 1) and C_i and Y_i share the same number of rows.

Rank difference function



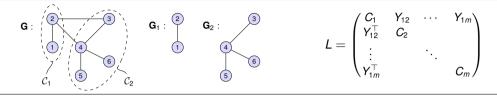
▶ Let's introduce a rank difference function $\delta : \mathbb{R}^{a \times b} \times \mathbb{R}^{c \times d} \to \mathbb{N}$ and apply it to a cluster C_i

$$\delta(C_i, Y_i) = \operatorname{rank}(C_i) - \operatorname{rank}(Y_i) = d_i \in [0, |C_i|)$$

In fact, C_i is full-rank (Theorem 1) and C_i and Y_i share the same number of rows.

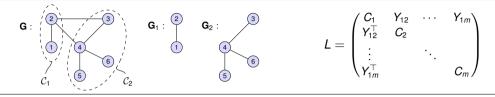
• We say that a cluster C_i has d_i degrees of freedom if $\delta(C_i, Y_i) = d_i$

Degrees of freedom for a cluster



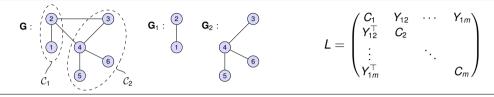
▶ What does d_i mean? Fraction of nodes that can modify their state without incurring in a net Δ flux with the rest of the network. Example: $d_1 = 1$ and $d_2 = 3$.

Degrees of freedom for a cluster



- ▶ What does d_i mean? Fraction of nodes that can modify their state without incurring in a net Δ flux with the rest of the network. Example: $d_1 = 1$ and $d_2 = 3$.
- We can use δ as a clustering measure to generate optimal partitions

Degrees of freedom for a cluster

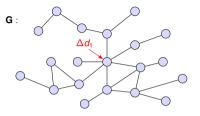


- ▶ What does d_i mean? Fraction of nodes that can modify their state without incurring in a net Δ flux with the rest of the network. Example: $d_1 = 1$ and $d_2 = 3$.
- \blacktriangleright We can use δ as a clustering measure to generate optimal partitions
- ► The possible partitions of a set scale according to the Bell numbers (e.g. $B_{20} \approx 10^{12}$) → heuristic algorithms are needed.

Example: DC microgrids voltage control

The typical converter-based model of a DGU is a linear affine system

$$\begin{aligned} \dot{x}_i &= f_i\left(x_i, u_i, \xi_i, d_i\right) \\ &= \begin{bmatrix} 0 & \frac{1}{C_i} \\ -\frac{1}{L_i} & -\frac{R_i}{L_i} \end{bmatrix} x_i + \begin{bmatrix} 0 \\ V_{in,i} \end{bmatrix} u_i + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \xi_i - \begin{bmatrix} 1 \\ 0 \end{bmatrix} d_i \end{aligned}$$

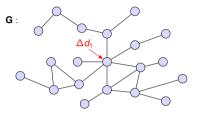


¹Martinelli et al. (2019), ECC

Example: DC microgrids voltage control

The typical converter-based model of a DGU is a linear affine system

$$egin{aligned} \dot{x}_i &= f_i\left(x_i, u_i, \xi_i, d_i
ight) \ &= \begin{bmatrix} 0 & rac{1}{C_i} \ -rac{1}{L_i} & -rac{R_i}{L_i} \end{bmatrix} x_i + \begin{bmatrix} 0 \ V_{in,i} \end{bmatrix} u_i + \begin{bmatrix} 1 \ 0 \end{bmatrix} \xi_i - \begin{bmatrix} 1 \ 0 \end{bmatrix} d_i \end{aligned}$$



Passivity-based primary controllers¹

$$u_i = K_i x_i, \quad K_i \in \mathcal{K}(\epsilon_i),$$

guarantee local reference tracking $x_i = x_i^r$. What happens when a disturbance cannot be internally compensated?

¹Martinelli et al. (2019), ECC

Heuristic clustering strategy

Algorithm 1 Greedy exploration

given overloading node *i* with set of neighbors \mathcal{N}_i **initialize** $\mathcal{C} = \{i\}, \mathcal{N}_{\mathcal{C}} = \mathcal{N}_i, \delta_{\mathcal{C}} = 0$

repeat

$$\begin{split} \mathcal{H} &= \{ j \in \mathcal{N}_{\mathcal{C}} \ : \ \delta_{\mathcal{C},j} > \delta_{\mathcal{C}} \} \\ \text{if } \mathcal{H} &\neq \emptyset \text{ then} \\ \mathcal{C} \leftarrow \mathcal{C} \cup \{ j = \arg \max_{j \in \mathcal{H}} (\Psi_j) \end{split}$$

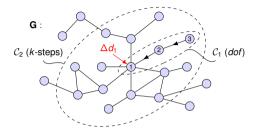
else

 $\mathcal{C} \leftarrow \mathcal{C} \cup \left\{ j = {\sf arg} \max_{j \in \mathcal{N}_{\mathcal{C}}} ({\sf deg}(j))
ight\}$

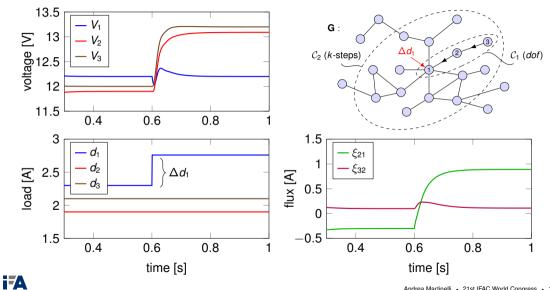
end if

 $\mathcal{N}_{\mathcal{C}} \leftarrow (\mathcal{N}_{\mathcal{C}} \cup \mathcal{N}_j) \smallsetminus (j \cup (\mathcal{C} \cap \mathcal{N}_j))$

solve optimization problem for nodes in ${\cal C}$ until a feasible solution is found return $x_{\cal C}^r$



Voltage tracking in a microgrid



Thank you for the attention!

Contact: and remar@control.ee.ethz.ch

