Andrea Martinelli

Automatic Control Laboratory, ETH Zurich

My research map

My research map

My research map

My research map

- Martinelli, Gargiani, Draskovic, Lygeros, "Datadriven optimal control of affine systems: A linear programming perspective", IEEE L-CSS, 2022
- Martinelli, Gargiani, Lygeros, "Data-driven optimal control with a relaxed linear program", Automatica, 2022
- Martinelli, Gargiani, Lygeros, "On the synthesis of Bellman inequalities for data-driven optimal control", $60^{\text {th }}$ CDC, 2021

Outline

Introduction to data-driven optimal control via linear programming

Estimation of Bellman inequalities from data

Willems' Fundamental Lemma for affine systems

I-A

Problem setup: stochastic optimal control

Ingredients:

- A discrete-time stochastic system $x^{+}=f(x, u, \psi)$ with possibly infinite state \& action spaces
- A stage-cost function $\ell: \mathbb{X} \times \mathbb{U} \rightarrow \mathbb{R}_{+}$

Problem setup: stochastic optimal control

Ingredients:

- A discrete-time stochastic system $x^{+}=f(x, u, \psi)$ with possibly infinite state \& action spaces
- A stage-cost function $\ell: \mathbb{X} \times \mathbb{U} \rightarrow \mathbb{R}_{+}$

The γ-discounted ∞-horizon cost associated to a stationary feedback policy $\pi: \mathbb{X} \rightarrow \mathbb{U}$ is

$$
v_{\pi}(x)=\mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^{k} \ell\left(x_{k}, \pi\left(x_{k}\right)\right) \mid x_{0}=x\right]
$$

Problem setup: stochastic optimal control

Ingredients:

- A discrete-time stochastic system $x^{+}=f(x, u, \psi)$ with possibly infinite state \& action spaces
- A stage-cost function $\ell: \mathbb{X} \times \mathbb{U} \rightarrow \mathbb{R}_{+}$

The γ-discounted ∞-horizon cost associated to a stationary feedback policy $\pi: \mathbb{X} \rightarrow \mathbb{U}$ is

$$
v_{\pi}(x)=\mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^{k} \ell\left(x_{k}, \pi\left(x_{k}\right)\right) \mid x_{0}=x\right]
$$

Objective: find an optimal policy π^{*} such that $v_{\pi^{*}}(x)=\inf _{\pi} v_{\pi}(x)=v^{*}(x)$

Dynamic programming methods

- The value function admits a recursive definition - the Bellman equation

$$
v_{\pi}(x)=\underbrace{\ell(x, u)+\gamma \mathbb{E}\left[v_{\pi}(f(x, u, \psi))\right]}_{\left(\mathcal{T}_{\pi} v_{\pi}\right)(x)} \quad v^{*}(x)=\underbrace{\inf _{u \in \mathbb{U}}\left\{\ell(x, u)+\gamma \mathbb{E}\left[v^{*}(f(x, u, \psi))\right]\right\}}_{\left(\mathcal{T} v^{*}\right)(x)}
$$

Dynamic programming methods

- The value function admits a recursive definition - the Bellman equation

$$
v_{\pi}(x)=\underbrace{\ell(x, u)+\gamma \mathbb{E}\left[v_{\pi}(f(x, u, \psi))\right]}_{\left(\mathcal{T}_{\pi} v_{\pi}\right)(x)} \quad v^{*}(x)=\underbrace{\inf _{u \in \mathbb{U}}\left\{\ell(x, u)+\gamma \mathbb{E}\left[v^{*}(f(x, u, \psi))\right]\right\}}_{\left(\mathcal{T} v^{*}\right)(x)}
$$

$-\mathcal{T}, \mathcal{T}_{\pi}$ are monotone and contractive, hence $v \leq \mathcal{T} v \Longrightarrow v \leq v^{*}$, and $\lim _{n \rightarrow \infty} \mathcal{T}^{n} v=v^{*}$

Dynamic programming methods

- The value function admits a recursive definition - the Bellman equation

$$
v_{\pi}(x)=\underbrace{\ell(x, u)+\gamma \mathbb{E}\left[v_{\pi}(f(x, u, \psi))\right]}_{\left(\mathcal{T}_{\pi} v_{\pi}\right)(x)} \quad v^{*}(x)=\underbrace{\inf _{u \in \mathbb{U}}\left\{\ell(x, u)+\gamma \mathbb{E}\left[v^{*}(f(x, u, \psi))\right]\right\}}_{\left(\mathcal{T} v^{*}\right)(x)}
$$

$\checkmark \mathcal{T}, \mathcal{T}_{\pi}$ are monotone and contractive, hence $v \leq \mathcal{T} v \Longrightarrow v \leq v^{*}$, and $\lim _{n \rightarrow \infty} \mathcal{T}^{n} v=v^{*}$

Value Iteration

Policy Iteration

Linear Programming

The linear programming formulation

One can find v^{*} by solving the ∞-dimensional (nonlinear) program

$$
\begin{aligned}
& \sup _{v \in \mathbb{V}} \int_{\mathbb{X}} v(x) c(d x) \\
& \text { s.t. } v(x) \leq(\mathcal{T} v)(x) \quad \forall x,
\end{aligned}
$$

The linear programming formulation

One can find v^{*} by solving the ∞-dimensional (nonlinear) program

$$
\begin{aligned}
& \sup _{v \in \mathbb{V}} \int_{\mathbb{X}} v(x) c(d x) \\
& \text { s.t. } v(x) \leq(\mathcal{T} v)(x) \quad \forall x,
\end{aligned}
$$

We can relax the constraints by substituting

$$
v(x) \leq(\mathcal{T} v)(x)=\inf _{u \in \mathbb{U}}\left\{\ell(x, u)+\gamma \mathbb{E}\left[v^{*}(f(x, u, \psi))\right]\right\} \quad \forall x
$$

with

$$
v(x) \leq\left(\mathcal{T}_{\ell} v\right)(x, u)=\ell(x, u)+\gamma \mathbb{E}[v(f(x, u, \psi))] \quad \forall(x, u)
$$

The Q-function

- If one is able to obtain v^{*}, then

$$
\pi^{*}(x)=\arg \min _{u \in \mathbb{U}}\left\{\ell(x, u)+\gamma \mathbb{E}\left[v^{*}(f(x, u, \psi))\right]\right\} .
$$

Problem: policy extraction is in general not possible if f or ℓ are not known

The Q-function

- If one is able to obtain v^{*}, then

$$
\pi^{*}(x)=\arg \min _{u \in \mathbb{U}}\left\{\ell(x, u)+\gamma \mathbb{E}\left[v^{*}(f(x, u, \psi))\right]\right\} .
$$

Problem: policy extraction is in general not possible if f or ℓ are not known

- Introducing the Bellman operator associated to Q-functions

$$
q^{*}(x, u)=\underbrace{\ell(x, u)+\gamma \mathbb{E}\left[\inf _{w \in \mathbb{U}} q^{*}(f(x, u, \psi), w)\right]}_{\left(\mathcal{F} q^{*}\right)(x, u)}
$$

The Q-function

- If one is able to obtain v^{*}, then

$$
\pi^{*}(x)=\arg \min _{u \in \mathbb{U}}\left\{\ell(x, u)+\gamma \mathbb{E}\left[v^{*}(f(x, u, \psi))\right]\right\} .
$$

Problem: policy extraction is in general not possible if f or ℓ are not known

- Introducing the Bellman operator associated to Q-functions

$$
q^{*}(x, u)=\underbrace{\ell(x, u)+\gamma \mathbb{E}\left[\inf _{w \in \mathbb{U}} q^{*}(f(x, u, \psi), w)\right]}_{\left(\mathcal{F} q^{*}\right)(x, u)}
$$

- Since $v^{*}(x)=\min _{u \in \mathbb{U}} q^{*}(x, u)$, now policy extraction is model-free:

$$
\pi^{*}(x)=\arg \min _{u \in \mathbb{U}} q^{*}(x, u) .
$$

LP formulation for Q-functions

- \mathcal{F} is again a monotone contraction mapping, hence

$$
\begin{aligned}
& \sup _{q \in \mathbb{Q}} \int_{\mathbb{X} \times \mathbb{U}} q(x, u) c(d x, d u) \\
& \text { s.t. } q(x, u) \leq(\mathcal{F} q)(x, u)=\ell(x, u)+\gamma \mathbb{E}\left[\inf _{w \in \mathbb{U}} q^{*}\left(f\left(x, \pi^{*}(x), \psi\right), w\right)\right] \quad \forall(x, u)
\end{aligned}
$$

Problem: We can not relax the constraints due to nesting of \mathbb{E} and inf

LP formulation for Q-functions

- \mathcal{F} is again a monotone contraction mapping, hence

$$
\begin{aligned}
& \sup _{q \in \mathbb{Q}} \int_{\mathbb{X} \times \mathbb{U}} q(x, u) c(d x, d u) \\
& \text { s.t. } q(x, u) \leq(\mathcal{F} q)(x, u)=\ell(x, u)+\gamma \mathbb{E}\left[\inf _{w \in \mathbb{U}} q^{*}\left(f\left(x, \pi^{*}(x), \psi\right), w\right)\right] \quad \forall(x, u)
\end{aligned}
$$

Problem: We can not relax the constraints due to nesting of \mathbb{E} and inf

- Introducing the relaxed Bellman operator

$$
(\hat{\mathcal{F}} q)(x, u)=\ell(x, u)+\gamma \inf _{w \in \mathbb{U}} \mathbb{E}[q(f(x, u, \psi), w)]
$$

The relaxed Bellman operator

Proposition (Properties of the relaxed operator)

(i) $\hat{\mathcal{F}}$ is a monotone contraction mapping with a unique fixed point $\hat{q}(x, u)$
(ii) The fixed point of $\hat{\mathcal{F}}$ is a point-wise upper bound to the fixed point of \mathcal{F}, that is,

$$
q^{*}(x, u) \leq \hat{q}(x, u)
$$

The relaxed Bellman operator

Proposition (Properties of the relaxed operator)

(i) $\hat{\mathcal{F}}$ is a monotone contraction mapping with a unique fixed point $\hat{q}(x, u)$
(ii) The fixed point of $\hat{\mathcal{F}}$ is a point-wise upper bound to the fixed point of \mathcal{F}, that is,

$$
q^{*}(x, u) \leq \hat{q}(x, u)
$$

- One can find $\hat{q}(x, u)$ via the following LP:

$$
\begin{array}{ll}
\sup _{q \in \mathbb{Q}} & \int_{\mathbb{X} \times \mathbb{U}} q(x, u) c(d x, d u) \\
\text { s.t. } & q(x, u) \leq\left(\hat{F}_{\ell} q\right)(x, u)=\ell(x, u)+\gamma \mathbb{E}[q(f(x, u, \psi), w)] \quad \forall(x, u, w)
\end{array}
$$

Q: how good is the approximation?

Quantify the approximation introduced by $\hat{\mathcal{F}}$

- In case of linear (affine) systems the relaxed operator is policy-preserving,

$$
\underset{u \in \mathbb{U}}{\arg \min } \hat{q}(x, u)=\underset{u \in \mathbb{U}}{\arg \min } q^{*}(x, u)
$$

Quantify the approximation introduced by $\hat{\mathcal{F}}$

- In case of linear (affine) systems the relaxed operator is policy-preserving,

$$
\underset{u \in \mathbb{U}}{\arg \min } \hat{q}(x, u)=\underset{u \in \mathbb{U}}{\arg \min } q^{*}(x, u)
$$

- For nonlinear systems, empirical evidence is encouraging...

Model-free LP formulation

LPs can be solved efficiently in general, but here several sources of intractability arise:

- q is an optimization variable in the ∞-dimensional space \mathbb{Q}
- ∞ number of constraints

$$
\begin{array}{ll}
\sup _{q \in \mathbb{Q}} & \int_{\mathbb{X} \times \mathbb{U}} q(x, u) c(d x, d u) \\
\text { s.t. } & q(x, u) \leq \ell(x, u)+\gamma \mathbb{E}[q(f(x, u, \psi), w)] \quad \forall(x, u, w)
\end{array}
$$

Model-free LP formulation

LPs can be solved efficiently in general, but here several sources of intractability arise:

- q is an optimization variable in the ∞-dimensional space \mathbb{Q}
- ∞ number of constraints

$$
\begin{array}{ll}
\sup _{q \in \mathbb{Q}} \int_{\mathbb{X} \times \mathbb{U}} q(x, u) c(d x, d u) \\
\text { s.t. } & q(x, u) \leq \ell(x, u)+\gamma \mathbb{E}[q(f(x, u, \psi), w)] \quad \forall(x, u, w)
\end{array}
$$

We can substitute $\sum_{i} \varphi_{i} \phi_{i}(x, u)$ and sample a finite subset of constraints

$$
q\left(x_{i}, u_{i}\right) \leq \ell\left(x_{i}, u_{i}\right)+\gamma \mathbb{E}\left[q\left(x_{i}^{+}, w\right)\right] \quad \forall\left(x_{i}, u_{i}, w_{i}\right) \in \mathcal{D}
$$

Model-free LP formulation

LPs can be solved efficiently in general, but here several sources of intractability arise:

- q is an optimization variable in the ∞-dimensional space \mathbb{Q}
- ∞ number of constraints

$$
\begin{array}{ll}
\sup _{q \in \mathbb{Q}} & \int_{\mathbb{X} \times \mathbb{U}} q(x, u) c(d x, d u) \\
\text { s.t. } & q(x, u) \leq \ell(x, u)+\gamma \mathbb{E}[q(f(x, u, \psi), w)] \quad \forall(x, u, w)
\end{array}
$$

We can substitute $\sum_{i} \varphi_{i} \phi_{i}(x, u)$ and sample a finite subset of constraints

$$
q\left(x_{i}, u_{i}\right) \leq \ell\left(x_{i}, u_{i}\right)+\gamma \mathbb{E}\left[q\left(x_{i}^{+}, w\right)\right] \quad \forall\left(x_{i}, u_{i}, w_{i}\right) \in \mathcal{D}
$$

Model-free/RL framework: construct one constraint for each observation

$$
\left\{x_{i}, u_{i}, \ell\left(x_{i}, u_{i}\right), x_{i}^{+}\right\}_{i=1}^{d}
$$

Performance bounds

- Known performance bounds due to function approximation [Beuchat et al., 2020] and constraint sampling [de Farias et al., 2004] tend to be quite loose
- In general, hard to guarantee bounded solutions for large-scale systems

Performance bounds

- Known performance bounds due to function approximation [Beuchat et al., 2020] and constraint sampling [de Farias et al., 2004] tend to be quite loose
- In general, hard to guarantee bounded solutions for large-scale systems

Idea: Select $c(x, u)$ based on sampled data

- Necessary and sufficient conditions on $c(x, u)$ based on duality theory and Farkas' Lemma
- Sufficient conditions on the dataset/sampling logic are under investigation

Outline

Introduction to data-driven optimal control via linear programming

Estimation of Bellman inequalities from data

Willems' Fundamental Lemma for affine systems

Estimation of Bellman inequalities

Estimation of Bellman inequalities

Estimation of Bellman inequalities

Estimation of Bellman inequalities

Estimation of Bellman inequalities

Estimation of Bellman inequalities

Unbiased estimator

$$
\hat{\theta}_{x, u}=\frac{1}{d} \sum_{i=0}^{d-1} v(\underbrace{f\left(x, u, \psi_{i}\right)}_{x_{i}^{+}})
$$

- $\mathbb{E}\left[\hat{\theta}_{x, u}\right]=\mathbb{E}[v(f(x, u, \psi))]$
- $\operatorname{VAR}\left(\hat{\theta}_{x, u}\right)=\frac{1}{d} \operatorname{VAR}(v(f(x, u, \psi)))$

Estimation of Bellman inequalities

Unbiased estimator

$$
\hat{\theta}_{x, u}=\frac{1}{d} \sum_{i=0}^{d-1} v(\underbrace{f\left(x, u, \psi_{i}\right)}_{x_{i}^{+}})
$$

- $\mathbb{E}\left[\hat{\theta}_{x, u}\right]=\mathbb{E}[v(f(x, u, \psi))]$
- $\operatorname{VAR}\left(\hat{\theta}_{x, u}\right)=\frac{1}{d} \operatorname{VAR}(v(f(x, u, \psi)))$

Estimation of Bellman inequalities

Unbiased estimator

$$
\hat{\theta}_{x, u}=\frac{1}{d} \sum_{i=0}^{d-1} v(\underbrace{f\left(x, u, \psi_{i}\right)}_{x_{i}^{+}})
$$

- $\mathbb{E}\left[\hat{\theta}_{x, u}\right]=\mathbb{E}[v(f(x, u, \psi))]$
- $\operatorname{VAR}\left(\hat{\theta}_{x, u}\right)=\frac{1}{d} \operatorname{VAR}(v(f(x, u, \psi)))$

Biased estimator

$$
\begin{gathered}
\bar{\theta}_{X_{\alpha, U}, U_{\alpha}}=v\left(f\left(X \alpha, U \alpha, \Psi_{\alpha}\right)\right) \\
X=\left[\begin{array}{lll}
x_{0} & \cdots & x_{d-1}
\end{array}\right], U=\left[\begin{array}{lll}
u_{0} & \cdots & u_{d-1}
\end{array}\right], \\
X^{+}=\left[\begin{array}{lll}
x_{0}^{+} & \cdots & x_{d-1}^{+}
\end{array}\right] \text {and } \psi=\left[\begin{array}{lll}
\psi_{0} & \cdots & \psi_{d-1}
\end{array}\right]
\end{gathered}
$$

Problem: no access to f and in general $X^{+} \alpha \neq f(X \alpha, U \alpha, \Psi \alpha)$

Estimation for linear systems

If $f(x, u, \psi)=A x+B u+\psi$ then

$$
\begin{aligned}
X^{+} \alpha & =(A X+B U+\Psi) \alpha \\
& =A X \alpha+B U \alpha+\Psi \alpha \\
& =f(X \alpha, U \alpha, \Psi \alpha)
\end{aligned}
$$

So we can compute $\bar{\theta}_{X_{\alpha}, U_{\alpha}}=v\left(f\left(X \alpha, U_{\alpha}, \Psi_{\alpha}\right)\right)$, but is still biased
$-\mathbb{E}\left[\bar{\theta}_{x_{\alpha}, U_{\alpha}}\right]=\mathbb{E}[v(f(x, u, \bar{\psi}))], \quad$ where $\mathbb{E}[\bar{\psi}]=\mathbb{E}[\psi]$ and $\operatorname{VAR}(\bar{\psi})=\|\alpha\|_{2}^{2} \operatorname{VAR}(\psi)$

- $\operatorname{VAR}\left(\bar{\theta}_{X \alpha, U \alpha}\right)=\|\alpha\|_{2}^{2} \operatorname{VAR}(v(f(x, u, \psi)))$

Estimation for linear systems

Fact

The LP with biased constraints is policy-preserving, i.e.,

$$
\bar{q}(x, u)=\hat{q}(x, u)+\frac{\gamma \operatorname{TR}\left(\left(\|\alpha\|_{2}^{2}-1\right) q^{*} \operatorname{VAR}(\psi)\right)}{1-\gamma}
$$

Estimation for linear systems

Fact

The LP with biased constraints is policy-preserving, i.e.,

$$
\bar{q}(x, u)=\hat{q}(x, u)+\frac{\gamma \operatorname{TR}\left(\left(\|\alpha\|_{2}^{2}-1\right) q^{*} \operatorname{VAR}(\psi)\right)}{1-\gamma}
$$

Fact

If the data matrix $\left[\begin{array}{c}x \\ u\end{array}\right]$ is full row-rank then we can construct (biased) constraints for all (x, u). One can meet such condition with a persistently exciting input

Estimation for affine systems

If $f(x, u, \psi)=A x+B u+c+\psi$ and $\mathbf{1}^{\top} \alpha=1$ then

$$
\begin{aligned}
X^{+} \alpha & =\left(A X+B U+c 1^{\top}+\Psi\right) \alpha \\
& =A X \alpha+B U \alpha+c+\Psi \alpha \\
& =f(X \alpha, \cup \alpha, \Psi \alpha)
\end{aligned}
$$

So we can compute $\bar{\theta}_{X \alpha, U_{\alpha}}=v\left(f\left(X \alpha, U_{\alpha}, \Psi_{\alpha}\right)\right)$, but is still biased

Estimation for affine systems

If $f(x, u, \psi)=A x+B u+c+\psi$ and $\mathbf{1}^{\top} \alpha=1$ then

$$
\begin{aligned}
X^{+} \alpha & =\left(A X+B U+c \mathbf{1}^{\top}+\Psi\right) \alpha \\
& =A X \alpha+B U \alpha+c+\Psi \alpha \\
& =f(X \alpha, U \alpha, \Psi \alpha)
\end{aligned}
$$

So we can compute $\bar{\theta}_{X \alpha, U_{\alpha}}=v\left(f\left(X \alpha, U_{\alpha}, \Psi_{\alpha}\right)\right)$, but is still biased

Fact

The LP with biased constraints is policy-preserving

Estimation for affine systems

If $f(x, u, \psi)=A x+B u+c+\psi$ and $1^{\top} \alpha=1$ then

$$
\begin{aligned}
X^{+} \alpha & =\left(A X+B U+c 1^{\top}+\Psi\right) \alpha \\
& =A X \alpha+B U \alpha+c+\Psi \alpha \\
& =f(X \alpha, \cup \alpha, \Psi \alpha)
\end{aligned}
$$

So we can compute $\bar{\theta}_{X \alpha, U_{\alpha}}=v\left(f\left(X \alpha, U_{\alpha}, \Psi_{\alpha}\right)\right)$, but is still biased

Fact

The LP with biased constraints is policy-preserving

Fact

If the data matrix $\left[\begin{array}{c}X \\ \cup \\ 1^{\top}\end{array}\right]$ is full row-rank then we can construct (biased) constraints for all (x, u)
Q: Can one can meet such condition with a persistently exciting input?

Outline

Introduction to data-driven optimal control via linear programming

Estimation of Bellman inequalities from data

Willems' Fundamental Lemma for affine systems

Extending the Fundamental Lemma to affine systems

- Objective: Guarantee RANK $\left[\begin{array}{c}x \\ 1_{1}^{\top}\end{array}\right]=n+m+1$ when data are generated by affine dynamics $x^{+}=A x+B u+c$.

Extending the Fundamental Lemma to affine systems

- Objective: Guarantee RANK $\left[\begin{array}{c}x \\ 1_{1}^{\top}\end{array}\right]=n+m+1$ when data are generated by affine dynamics $x^{+}=A x+B u+c$.
- Nontrivial extension since
- Trajectories do not form a linear subspace anymore
- We must guarantee $\mathbf{1}^{\top} \notin$ ROWSP $\left[\begin{array}{l}X \\ u\end{array}\right]$

Extending the Fundamental Lemma to affine systems

- Objective: Guarantee RANK $\left[\begin{array}{c}x \\ y_{1}^{\top}\end{array}\right]=n+m+1$ when data are generated by affine dynamics $x^{+}=A x+B u+c$.
- Nontrivial extension since
- Trajectories do not form a linear subspace anymore
- We must guarantee $\mathbf{1}^{\top} \notin$ Rowsp $\left[\begin{array}{l}X \\ U\end{array}\right]$
- Some tricks that don't work:
- $x^{+}=A x+\left[\begin{array}{ll}B & l\end{array}\right]\left[\begin{array}{l}u \\ c\end{array}\right] \longrightarrow\left(A,\left[\begin{array}{ll}B & 1\end{array}\right]\right)$ is controllable but $\left[\begin{array}{l}u \\ c\end{array}\right]$ is not $p . e$.
$-\left[\begin{array}{l}x^{+} \\ y^{+}\end{array}\right]=\left[\begin{array}{ll}A & C \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]+\left[\begin{array}{l}B \\ 0\end{array}\right] u \longrightarrow u$ is p.e. but $(\tilde{A}, \tilde{B})=\left(\left[\begin{array}{ll}A & c \\ 0 & 1\end{array}\right],\left[\begin{array}{l}B \\ 0\end{array}\right]\right)$ is not controllable

A key result

A sequence $S=\left[\begin{array}{lll}S_{1} & \cdots & S_{d}\end{array}\right] \in \mathbb{R}^{m \times d}$ is persistently exciting of order K if the associated Hankel matrix of depth K,

$$
\mathcal{H}_{K}(S)=\left[\begin{array}{cccc}
S_{1} & S_{2} & \cdots & S_{d-K+1} \\
S_{2} & S_{3} & \cdots & S_{d-K+2} \\
\vdots & \vdots & & \vdots \\
S_{K} & S_{K+1} & \cdots & S_{d}
\end{array}\right] \in \mathbb{R}^{m K \times(d-K+1)}
$$

is full row-rank, i.e. $\operatorname{Rank}\left(\mathcal{H}_{K}(S)\right)=m K$.

A key result

A sequence $S=\left[\begin{array}{lll}S_{1} & \cdots & S_{d}\end{array}\right] \in \mathbb{R}^{m \times d}$ is persistently exciting of order K if the associated Hankel matrix of depth K,

$$
\mathcal{H}_{K}(S)=\left[\begin{array}{cccc}
S_{1} & S_{2} & \cdots & S_{d-K+1} \\
S_{2} & S_{3} & \cdots & S_{d-K+2} \\
\vdots & \vdots & & \vdots \\
S_{K} & S_{K+1} & \cdots & S_{d}
\end{array}\right] \in \mathbb{R}^{m K \times(d-K+1)}
$$

is full row-rank, i.e. $\operatorname{Rank}\left(\mathcal{H}_{K}(S)\right)=m K$.

Proposition

If S is persistently exciting of order K, then for all $K^{\prime}<K$ it holds that

$$
\mathbf{1}^{\top} \notin \text { Rowsp }_{\mathcal{H}}^{K^{\prime}}(S)
$$

Willems' Fundamental Lemma for affine systems

Theorem

Consider a dataset $\left(X, U, X^{+}, Y\right)$ of length d with $X^{+}=A X+B U+C 1^{\top}$ and $Y=C X+D U+r 1^{\top}$.
If U is a persistently exciting input of order $n+L+1$ and (A, B) is a controllable pair, then

1. $\operatorname{RANK}\left[\begin{array}{c}\mathcal{H}_{1}\left(X_{1, d-L+1)}\right. \\ \mathcal{H}_{L}(U) \\ 1^{\top}\end{array}\right]=n+m L+1$,
2. $\left(\tilde{X}, \tilde{U}, \tilde{X}^{+}, \tilde{Y}\right)$ is a dataset of length L if and only if there exists $g \in \mathbb{R}^{d-L+1}$ such that

$$
\left[\begin{array}{c}
\mathrm{VEC}_{\mathrm{E}} \tilde{U} \\
\mathrm{VECC} \\
1
\end{array}\right]=\left[\begin{array}{c}
\mathcal{H}_{L}(U) \\
\mathcal{H}_{L}(Y) \\
1^{\top}
\end{array}\right] g .
$$

- 1. \Longrightarrow 2. was proven in ${ }^{1}$
- Inspired by state-space proof in 2, we show that higher order p.e. + controllability $\Longrightarrow 1$.

[^0]
Some consideration on the Fundamental Lemma

- One can "compensate" a constant disturbance with higher p.e. order... can we do the same with richer disturbances, e.g., periodic signals?
- More generally, for multi-input systems $x^{+}=A x+\sum_{i=1}^{k} B_{i} u_{i}$
- Current conditions tend to break down easily: by re-writing $x^{+}=A x+\left[\begin{array}{lll}B_{1} & \cdots & B_{k}\end{array}\right]\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{k}\end{array}\right]$, one should require that $\left(A,\left[\begin{array}{lll}B_{1} & \cdots & B_{k}\end{array}\right]\right)$ is controllable and $\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{k}\end{array}\right]$ is p.e.
- The signals u_{i} can represent non-manipulable inputs or even coupling with other systems in a network

Thank you!

References:

- Martinelli, Gargiani, Draskovic, Lygeros, "Data- driven optimal control of affine systems: A linear programming perspective", IEEE L-CSS, 2022
- Martinelli, Gargiani, Lygeros, "Data-driven optimal control with a relaxed linear program", Automatica, 2022
- Martinelli, Gargiani, Lygeros, "On the synthesis of Bellman inequalities for data-driven optimal control", $60^{\text {th }}$ CDC, 2021

[^0]: ${ }^{1}$ Berberich et al., "Linear tracking MPC for nonlinear systems Part II: The data-driven case", IEEE TAC, 2022
 ${ }^{2}$ van Waarde et al., "Willems' FL for state-space systems and its extension to multiple datasets", IEEE L-CSS, 2020

