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Outline

Introduction to data-driven optimal control via linear programming
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Problem setup: stochastic optimal control

Ingredients:
> A discrete-time stochastic system x™ = f(x, u, 1)) with possibly infinite state & action spaces
> A stage-cost function : X x U — R
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Problem setup: stochastic optimal control

Ingredients:
> A discrete-time stochastic system x™ = f(x, u, 1)) with possibly infinite state & action spaces
> A stage-cost function : X x U — R

The ~y-discounted co-horizon cost associated to a stationary feedback policy 7 : X — U is

XO_X]

Objective: find an optimal policy 7* such that v,«(x) = inf, v(x) = v*(x)

ve(x) =E

> ()
k=0
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Dynamic programming methods

» The value function admits a recursive definition — the Bellman equation

V() = €0, u) + 9E v (1(x, u, )] v(x) = inf {€0x, u) +1E[v (F(x,u, )] }

(B (Tv*)(x)
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» 7T, T. are monotone and contractive, hence v < Tv = v <v* and |lm 7"v = v*
n—oo
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Dynamic programming methods

» The value function admits a recursive definition — the Bellman equation

ve(6) = €06, 0) + 7B v (1,1, )] vi(x) = inf {€(x,u) + 7B [v* (F(x, v,))] }

(T v ) (x) (Tv*)(x)

» 7T, T. are monotone and contractive, hence v < Tv = v <v* and |lm 7"v = v*
n—oo

Value lteration Policy Iteration Linear Programming
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The linear programming formulation

One can find v* by solving the co-dimensional
(nonlinear) program

sup /x v(x)c(dx)

vev

st v(x) < (Tv)(x) Vx,
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The linear programming formulation

One can find v* by solving the co-dimensional
(nonlinear) program

sup /x v(x)c(dx)

vev
st v(x) < (Tv)(x) Vx,

We can relax the constraints by substituting
v(x) < (TV)(x) = infucu{E(x, u) + vE[v"(f(x,u,0)] | Vx

with
v(x) < (Tev)(x, u) = U(x, u) + vE[v(f(x, u,¥))] V(x,u)
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The Q-function

» If one is able to obtain v*, then
T (x) = arg Znéur} {K(X, u)+ ’yE[V*(f(X, u,w))} }

Problem: policy extraction is in general not possible if f or £ are not known
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The Q-function

» If one is able to obtain v*, then
T (x) = arg rJ1€|Hr} {K(X, u)+ ’yE[V*(f(X, u,w))} }

Problem: policy extraction is in general not possible if f or £ are not known

> Introducing the Bellman operator associated to Q-functions

q°(x 4) = ((x,u) +E | inf 0" (F(x,u, 0), W)

(Fa*)(xu)

» Since v*(x) = minycu g* (X, u), now policy extraction is model-free:

m*(x) = argmin g"(x, u).
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LP formulation for Q-functions

» F is again a monotone contraction mapping, hence

sup / q(x, u)e(dx, du)
qeQ JXxU

st q(x,u) < (Fq)(x,u) = €(x,u) +7E | inf q"(f(x,7"(x), ¥), w)

Problem: We can not relax the constraints due to nesting of E and inf

v(x, u)
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LP formulation for Q-functions

» F is again a monotone contraction mapping, hence

Zgg/xxu q(x, u)e(dx, du)
st q(x,u) < (Fq)(x,u) = €(x,u) +7E | inf q"(f(x,7"(x), ¥), w)

Problem: We can not relax the constraints due to nesting of E and inf

> Introducing the relaxed Bellman operator

(Fa)(x, u) = £(x, u) + inf E[q(f(x, u, 1), w)]

v(x, u)
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The relaxed Bellman operator

Proposition (Properties of the relaxed operator)

(i) F is a monotone contraction mapping with a unique fixed point §(x, u)
(ii)y The fixed point of Fisa point-wise upper bound to the fixed point of F, that is,

q"(x,u) < q(x, u)
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The relaxed Bellman operator

Proposition (Properties of the relaxed operator)

(i) F is a monotone contraction mapping with a unique fixed point §(x, u)
(ii)y The fixed point of Fisa point-wise upper bound to the fixed point of F, that is,

q"(x,u) < q(x, u)

> One can find §(x, u) via the following LP:

sgg/xw q(x, u)ce(dx, du)
st q(x,u) < (Feq)(x, u) = £(x,u) + vE[q(f(x, u, ), w)] V(x,u,w)

Q: how good is the approximation?
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Quantify the approximation introduced by F
» In case of linear (affine) systems the relaxed operator is policy-preserving,

arg min g(x, u) = arg min g*(x, u)
uel uelU
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Quantify the approximation introduced by F
» In case of linear (affine) systems the relaxed operator is policy-preserving,

arg min g(x, u) = arg min g*(x, u)
uel uelU

> For nonlinear systems, empirical evidence is encouraging...

. Standard LP Relaxed LP
4
2 2
0 H { 0 H ]
) | -2 p [m]
p [m/s] p [m/s]
—4 — 0 [rad] —4 — 0 [rad]
6 — 0 [rad/s] 6 — 0 [rad/s]
0 5 10 0 5 10

time [s] time [s]

...but theoretical bounds are still elusive
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Model-free LP formulation

LPs can be solved efficiently in general, but here several sources of intractability arise:
» g is an optimization variable in the co-dimensional space Q
» oo number of constraints

sup/ q(x, u)c(dx, du)
q€Q JxxU

st q(x,u) < U(x,u) +~E[q(f(x, u,v), w)] V(x,u,w)
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Model-free LP formulation

LPs can be solved efficiently in general, but here several sources of intractability arise:
> g is an optimization variable in the co-dimensional space Q
» oo number of constraints

sup/ q(x, u)c(dx, du)
q€Q JxxU

st q(x,u) < Ux,u) +~E[q(f(x, u,v), w)| V(x,u,w)

We can substitute ), pi®i(x, u) and sample a finite subset of constraints

q(xi, u)) < 0(x;, u;) +vE[q(x", w)]  V(x;,ui, w;) € D

Model-free/RL framework: construct one constraint for each observation

{Xia U,',E(X,‘, ul')rxiJr ::1=1

L)
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Performance bounds

» Known performance bounds due to function approximation [Beuchat et al., 2020] and
constraint sampling [de Farias et al., 2004] tend to be quite loose

> In general, hard to guarantee bounded solutions for large-scale systems

N - -+ 30
—— Eqg-Eq —e— LP. CPU timels|

—— E.§—Eq"— Ac 25

—e— RLP, CPU times]

5
0 _,_'JZI;i,—I .
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Performance bounds

» Known performance bounds due to function approximation [Beuchat et al., 2020] and
constraint sampling [de Farias et al., 2004] tend to be quite loose

> In general, hard to guarantee bounded solutions for large-scale systems

- 30
—— E.j—Eq" i’

—o— E.g—Eq" — Ac 25

—e— LP, CPU time|s|

—e— RLP, CPU times]

o

0 b= g’,/_IIfi;:—I

2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
ny n,

Idea: Select c(x, u) based on sampled data

» Necessary and sufficient conditions on c(x, u) based on duality theory and Farkas’ Lemma
> Sufficient conditions on the dataset/sampling logic are under investigation
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Outline

Estimation of Bellman inequalities from data
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Estimation of Bellman inequalities

f(xl u, II)Z)

14/23



Estimation of Bellman inequalities

o A u13)

14/23



Estimation of Bellman inequalities

f(x' u, 1»bl)
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Estimation of Bellman inequalities

f(xulli)

X

Unbiased estimator

Q

—1

v(f(x, u, i)
W—/

7
X

~

Hx,u =

Ql—
T
<)

> E[fy.u] = E[v(f(x,u,v))]
> VAR(Ox.u) = TVAR(V(f(x, u,v)))

iA
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Estimation of Bellman inequalities

Xd-1 [

f(xv u, ’PJ Uz

u, /%2 s

u
0 Xq

Unbiased estimator

Q

6A?X)u = Y v(f(x, u, 1))

W—/

7
X

Ql—
T
<)

> E[fy.u] = E[v(f(x,u,v))]
> VAR(Ox.u) = TVAR(V(f(x, u,v)))
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Estimation of Bellman inequalities

fXa,Ua,¥Ya) xd—ll,

L Ua v
f e u ) Xa w [
u, /%2 s
Ug %,
x Xo
Unbiased estimator Biased estimator
d—1 =
N 1 Oxa.ua = V(f(Xa, Ua, Vo
Brw = 5 > v(F(x, ) xoua = V{1 )
i=0 X‘} X= [xo Xd_1], U= [Uo Ud—1],
X+ = [Xar xj_1] and ¥ = [wo ¢d—1]
> Effy.u] = E[v(f(x, u, )] Problem: no access to f and in general
> VAR(Ox.u) = TVAR(V(f(x, u,v))) X*a # f(Xa, Ua, Va)

L)
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Estimation for linear systems

If f(x,u, ) = Ax + Bu + ¢ then

Xta=(AX+BU+V)a
= AXa + BUa + Vo
= f(Xa, Ua, Va)

So we can compute Ox, ya = V(f(Xa, Ua, Wa)), but is still biased
> E[fxa,ua] = E[v(f(x,u,9))] , where E[¢] = E[¢] and VAR(%)) = ||a|3VAR(y)

> VAR(Oxa.ua) = lalFVAR(V(f(x, u,1)))
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Estimation for linear systems

The LP with biased constraints is policy-preserving, i.e.,

Ta((llall5 —1)g" VAR(v))
4 R

EI(X’ U) = @(X’ U)

L)
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Estimation for linear systems

Fact
The LP with biased constraints is policy-preserving, i.e.,

TR((lll5=1)g* VAR())
+ ol 21 —

q(x, u) = g(x, u)

Fact

If the data matrix [ ] is full row-rank then we can construct (biased) constraints for all (x, u).
One can meet such condition with a persistently exciting input

L)
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Estimation for affine systems
If f(x,u,) = Ax + Bu+c+1and 1"a =1 then

Xta=(AX+BU+c1' +V)a
= AXa+ BUa +c+ Va
= f(Xa, Ua, Va)

So we can compute Ox, yo = v(f(Xa, Ua, Wa)), but is still biased
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Estimation for affine systems
If f(x, u,)) = Ax + Bu+c+1 and17a = 1 then

XTa=(AX+BU+c1’ +¥)a
= AXa+ BUa +c+ Va
= f(Xa, Ua, V)

So we can compute Ox, yo = v(f(Xa, Ua, Wa)), but is still biased

Fact
The LP with biased constraints is policy-preserving

Fact

X
If the data matrix { u } is full row-rank then we can construct (biased) constraints for all (x, u)

1
Q: Can one can meet such condition with a persistently exciting input?
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Outline

Willems’ Fundamental Lemma for affine systems
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Extending the Fundamental Lemma to affine systems

X
> Obijective: Guarantee RANK [ Ld = n+ m+ 1 when data are generated by affine
1
dynamics x* = Ax + Bu + c.
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Extending the Fundamental Lemma to affine systems

X
> Objective: Guarantee RANK LL” = n+ m+ 1 when data are generated by affine
dynamics x* = Ax + Bu + c.

» Nontrivial extension since

> Trajectories do not form a linear subspace anymore
> We must guarantee 17 ¢ Rowsp [¥]

» Some tricks that don’t work:

> xt=Ax+[B | {ﬂ — (A, [8 1]) is controllable but [ 4] is not p.e.

> Di} = [’3 f] [ﬂ + {g] u— uisp.e. but (A,B) = ([£¢],[5]) is not controllable
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A key result
Asequence S=[S; --- Sy] € R™%is persistently exciting of order K if the associated
Hankel matrix of depth K,

S S - Sd—K+1
Sz S3 -+ Su—ki2
’HK(S) — ] ) ) c ]RmK><(d—K+1)7
Sk Sks1 - Sg
is full row-rank, i.e. RANK(Hk(S)) = mK.
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A key result
Asequence S=[S; --- Sy] € R™%is persistently exciting of order K if the associated
Hankel matrix of depth K,

S S - Sy—ki1
S Sy - Sy_kiz
'HK(S) — o ) c ]RmK><(d—K+1)7
Sk Ski1 -+ Sq
is full row-rank, i.e. RANK(Hk(S)) = mK.

3 3
T2 2
LLJ
iA Z’ Z'

If S is persistently exciting of order K, then for all K' < K it holds that

17 ¢ RowsP Hy (S)

- X,
X4 e

X0
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Willems’ Fundamental Lemma for affine systems

Theorem

Consider a dataset (X, U, X", Y) of length d with X* = AX + BU +c1' and
Y=CX+DU+r1"

If U is a persistently exciting input of order n+ L+ 1 and (A, B) is a controllable pair, then
Hi(Xtd—1+1)
1. RANK[ He(U) } =n+mL+1,

1T
2. (X,U,X*,Y) is a dataset of length L if and only if there exists g € R4~ such that
Vec U Hi(U)
VecY | = | H(Y) | Q.
1 17
> 1. = 2. wasprovenin'

» Inspired by state-space proof in 2, we show that higher order p.e. + controllability = 1.

1Berberich et al., “Linear tracking MPC for nonlinear systems Part Il: The data-driven case”, IEEE TAC, 2022

2van Waarde et al., “Willems’ FL for state-space systems and its extension to multiple datasets”, IEEE L-CSS, 2020
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Some consideration on the Fundamental Lemma

» One can “compensate” a constant disturbance with higher p.e. order... can we do the same
with richer disturbances, e.g., periodic signals?

> More generally, for multi-input systems x™ = Ax + ZL Biu;

U
> Current conditions tend to break down easily: by re-writing x™ = Ax + [ 81 -+ 8] [ : ] one

Uk

U
should require that (A, [8: -+ B¢]) is controllable and | : ] is p.e.

Uk
> The signals u; can represent non-manipulable inputs or even coupling with other systems in a

network

L)
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Thank you!

References:

» Martinelli, Gargiani, Draskovic, Lygeros, “Data- driven optimal control of affine systems: A
linear programming perspective”, IEEE L-CSS, 2022
» Martinelli, Gargiani, Lygeros, “Data-driven optimal control with a relaxed linear program”,
Automatica, 2022
» Martinelli, Gargiani, Lygeros, “On the synthesis of Bellman inequalities for data-driven
optimal control”, 60" CDC, 2021
i=A 23/23


https://doi.org/10.1109/LCSYS.2022.3180898
https://doi.org/10.1109/LCSYS.2022.3180898
https://doi.org/10.1016/j.automatica.2021.110052
https://doi.org/10.1109/CDC45484.2021.9683070
https://doi.org/10.1109/CDC45484.2021.9683070

	Introduction to data-driven optimal control via linear programming
	Estimation of Bellman inequalities from data
	Willems' Fundamental Lemma for affine systems

