

Data-driven optimal control of affine systems: A linear programming perspective

A. Martinelli, M. Gargiani, M. Draskovic, J. Lygeros Automatic Control Laboratory, ETH Zurich

61st IEEE Conference on Decision and Control (CDC), Cancun, Mexico 2022

Introduction to data-driven optimal control via linear programming

Estimation of Bellman inequalities from data

Willems' Fundamental Lemma for affine systems

Conclusion and future work

Ingredients:

- A discrete-time stochastic system $x^+ = f(x, u, \psi)$ with possibly infinite state & action spaces
- A stage-cost function $\ell : \mathbb{X} \times \mathbb{U} \to \mathbb{R}_+$

Ingredients:

- A discrete-time stochastic system $x^+ = f(x, u, \psi)$ with possibly infinite state & action spaces
- A stage-cost function $\ell : \mathbb{X} \times \mathbb{U} \to \mathbb{R}_+$

The γ -discounted ∞ -horizon cost associated to a stationary feedback policy $\pi : \mathbb{X} \to \mathbb{U}$ is

$$oldsymbol{v}_{\pi}(oldsymbol{x}) = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k \ell(oldsymbol{x}_k, \pi(oldsymbol{x}_k)) \; \Big| \; oldsymbol{x}_0 = oldsymbol{x}
ight]$$

Ingredients:

- A discrete-time stochastic system $x^+ = f(x, u, \psi)$ with possibly infinite state & action spaces
- A stage-cost function $\ell : \mathbb{X} \times \mathbb{U} \to \mathbb{R}_+$

The γ -discounted ∞ -horizon cost associated to a stationary feedback policy $\pi : \mathbb{X} \to \mathbb{U}$ is

$$m{v}_{\pi}(m{x}) = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k \ell(m{x}_k, \pi(m{x}_k)) \ \Big| \ m{x}_0 = m{x}
ight]$$

Objective: find an optimal policy π^* such that $v_{\pi^*}(x) = \inf_{\pi} v_{\pi}(x) = v^*(x)$

Ingredients:

- A discrete-time stochastic system $x^+ = f(x, u, \psi)$ with possibly infinite state & action spaces
- A stage-cost function $\ell : \mathbb{X} \times \mathbb{U} \to \mathbb{R}_+$

The γ -discounted ∞ -horizon cost associated to a stationary feedback policy $\pi : \mathbb{X} \to \mathbb{U}$ is

$$m{v}_{\pi}(m{x}) = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k \ell(m{x}_k, \pi(m{x}_k)) \ \Big| \ m{x}_0 = m{x}
ight]$$

Objective: find an optimal policy π^* such that $v_{\pi^*}(x) = \inf_{\pi} v_{\pi}(x) = v^*(x)$

The value function admits a recursive definition – the Bellman equation

$$\mathbf{v}^*(\mathbf{x}) = \inf_{\mathbf{u} \in \mathbb{U}} \Big\{ \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E} \big[\mathbf{v}^*(f(\mathbf{x}, \mathbf{u}, \psi)) \big] \Big\}$$

The Q-function

• If one is able to obtain v^* , then

$$\pi^*(\boldsymbol{x}) = \arg\min_{\boldsymbol{u}\in\mathbb{U}}\left\{\ell(\boldsymbol{x},\boldsymbol{u}) + \gamma\mathbb{E}\big[\boldsymbol{v}^*(\boldsymbol{f}(\boldsymbol{x},\boldsymbol{u},\psi))\big]\right\}$$

Problem: policy extraction is in general not possible if f or ℓ are not known

The Q-function

• If one is able to obtain v^* , then

$$\pi^*(\mathbf{x}) = \arg\min_{\mathbf{u}\in\mathbb{U}} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E} \left[\mathbf{v}^*(f(\mathbf{x}, \mathbf{u}, \psi)) \right] \right\}$$

Problem: policy extraction is in general not possible if f or ℓ are not known

Introducing Q-functions¹

$$q^{*}(x, u) = \underbrace{\ell(x, u) + \gamma \mathbb{E}\left[\inf_{w \in \mathbb{U}} q^{*}(f(x, u, \psi), w)\right]}_{\textbf{Q-Bellman operator}(\mathcal{F}q^{*})(x, u)}$$

¹Watkins and Dayan, *Machine Learning*, 1992

The Q-function

• If one is able to obtain v^* , then

$$\pi^*(\mathbf{x}) = \arg\min_{\mathbf{u} \in \mathbb{U}} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E} \big[\mathbf{v}^*(f(\mathbf{x}, \mathbf{u}, \psi)) \big] \right\}$$

Problem: policy extraction is in general not possible if f or ℓ are not known

Introducing Q-functions¹

$$q^{*}(x, u) = \underbrace{\ell(x, u) + \gamma \mathbb{E}\left[\inf_{w \in \mathbb{U}} q^{*}(f(x, u, \psi), w)\right]}_{\textbf{Q-Bellman operator}\ (\mathcal{F}q^{*})(x, u)}$$

Since $v^*(x) = \min_{u \in \mathbb{U}} q^*(x, u)$, now policy extraction is **model-free**:

$$\pi^*(x) = \arg\min_{u \in \mathbb{U}} q^*(x, u)$$

¹Watkins and Dayan, *Machine Learning*, 1992

The linear programming formulation

 \blacktriangleright *F* is a monotone contraction mapping with a unique fixed point (q^*), *i.e.*,

$$q \leq \mathcal{F}q \implies q \leq q^*$$
 and $q^* = \mathcal{F}q^*$

The linear programming formulation

 \blacktriangleright \mathcal{F} is a monotone contraction mapping with a unique fixed point (q^*), *i.e.*,

$$q \leq \mathcal{F}q \implies q \leq q^*$$
 and $q^* = \mathcal{F}q^*$

Natural to define q* as the greatest function that satisfies the *Bellman inequalities*,

$$\sup_{q \in \mathbb{Q}} \int_{\mathbb{X} \times \mathbb{U}} q(x, u) c(dx, du)$$

s.t. $q(x, u) \leq (\mathcal{F}q)(x, u) \quad \forall x, u$

Problem: nonlinear and ∞ -dimensional

The linear programming formulation

F is a monotone contraction mapping with a unique fixed point (q^*) , *i.e.*,

$$q \leq \mathcal{F}q \implies q \leq q^*$$
 and $q^* = \mathcal{F}q^*$

 Natural to define q* as the greatest function that satisfies the *Bellman inequalities*,

$$\sup_{q \in \mathbb{Q}} \int_{\mathbb{X} \times \mathbb{U}} q(x, u) c(dx, du)$$

s.t. $q(x, u) \le (\mathcal{F}q)(x, u) \quad \forall x, u$

Problem: nonlinear and ∞ -dimensional

Introducing the relaxed Q-Bellman operator²

$$(\hat{\mathcal{F}}q)(x,u) = \ell(x,u) + \gamma \inf_{w \in \mathbb{U}} \mathbb{E}[q(f(x,u,\psi),w)]$$

²Martinelli *et al.*, *Automatica*, 2022

The relaxed Bellman operator

Lemma (Properties of the relaxed operator)

- (i) $\hat{\mathcal{F}}$ is a monotone contraction mapping with a unique fixed point (\hat{q})
- (ii) $q^* \leq \hat{q}$
- (iii) For linear (affine) systems, it holds $\arg \min_{u \in \mathbb{U}} q^* = \arg \min_{u \in \mathbb{U}} \hat{q}$ (policy preservation)

The relaxed Bellman operator

Lemma (Properties of the relaxed operator)

(i) $\hat{\mathcal{F}}$ is a monotone contraction mapping with a unique fixed point (\hat{q})

(ii) $q^* \leq \hat{q}$

(iii) For linear (affine) systems, it holds $\arg \min_{u \in \mathbb{U}} q^* = \arg \min_{u \in \mathbb{U}} \hat{q}$ (policy preservation)

One can find *q̂* via

$$\sup_{q \in \mathbb{Q}} \int_{\mathbb{X} \times \mathbb{U}} q(x, u) c(dx, du)$$

s.t. $q(x, u) \leq (\hat{\mathcal{F}}q)(x, u) \quad \forall x, u$

The relaxed Bellman operator

Lemma (Properties of the relaxed operator)

(i) $\hat{\mathcal{F}}$ is a monotone contraction mapping with a unique fixed point ($\hat{q})$

(ii) $q^* \leq \hat{q}$

(iii) For linear (affine) systems, it holds $\arg \min_{u \in \mathbb{U}} q^* = \arg \min_{u \in \mathbb{U}} \hat{q}$ (policy preservation)

One can find *q̂* via

$$\sup_{q \in \mathbb{Q}} \int_{\mathbb{X} \times \mathbb{U}} q(x, u) c(dx, du)$$

s.t. $q(x, u) \leq (\hat{\mathcal{F}}q)(x, u) \quad \forall x, u$

Equivalently with $(\hat{\mathcal{F}}_{\ell}q)(x,u) = \ell(x,u) + \gamma \mathbb{E}[q(f(x,u,\psi),w)] \quad \forall (x,u,w)$

LPs can be solved efficiently in general, but here several sources of intractability arise:

- ▶ q is an optimization variable in the ∞-dimensional space \mathbb{Q}
- \blacktriangleright ∞ number of constraints

$$\begin{split} \sup_{q \in \mathbb{Q}} & \int_{\mathbb{X} \times \mathbb{U}} q(x, u) c(dx, du) \\ \text{s.t.} \quad & q(x, u) \leq \ell(x, u) + \gamma \mathbb{E} \big[q(f(x, u, \psi), w) \big] \quad \forall (x, u, w) \end{split}$$

LPs can be solved efficiently in general, but here several sources of intractability arise:

- ▶ q is an optimization variable in the ∞-dimensional space \mathbb{Q}
- \blacktriangleright ∞ number of constraints

$$\sup_{q \in \mathbb{Q}} \int_{\mathbb{X} \times \mathbb{U}} q(x, u) c(dx, du)$$

s.t. $q(x, u) \le \ell(x, u) + \gamma \mathbb{E} [q(f(x, u, \psi), w)] \quad \forall (x, u, w)$

We can substitute $\sum_{i} \varphi_{i} \phi_{i}(x, u)$ and sample a finite subset of constraints

 $q(\mathbf{x}_i, \mathbf{u}_i) \leq \ell(\mathbf{x}_i, \mathbf{u}_i) + \gamma \mathbb{E} \big[q(\mathbf{x}_i^+, \mathbf{w}) \big] \quad \forall (\mathbf{x}_i, \mathbf{u}_i, \mathbf{w}_i) \in \mathcal{D}$

LPs can be solved efficiently in general, but here several sources of intractability arise:

- ▶ q is an optimization variable in the ∞-dimensional space \mathbb{Q}
- \blacktriangleright ∞ number of constraints

$$\sup_{q \in \mathbb{Q}} \int_{\mathbb{X} \times \mathbb{U}} q(x, u) c(dx, du)$$

s.t. $q(x, u) \le \ell(x, u) + \gamma \mathbb{E} [q(f(x, u, \psi), w)] \quad \forall (x, u, w)$

We can substitute $\sum_{i} \varphi_{i} \phi_{i}(x, u)$ and sample a finite subset of constraints

 $q(x_i, u_i) \leq \ell(x_i, u_i) + \gamma \mathbb{E} \big[q(x_i^+, w) \big] \quad \forall (x_i, u_i, w_i) \in \mathcal{D}$

Model-free/RL framework: construct one constraint for each observation

$${x_i, u_i, \ell(x_i, u_i), x_i^+}_{i=0}^{d-1}$$

LPs can be solved efficiently in general, but here several sources of intractability arise:

- ▶ q is an optimization variable in the ∞-dimensional space \mathbb{Q}
- \blacktriangleright ∞ number of constraints

$$\sup_{q \in \mathbb{Q}} \int_{\mathbb{X} \times \mathbb{U}} q(x, u) c(dx, du)$$

s.t. $q(x, u) \le \ell(x, u) + \gamma \mathbb{E} [q(f(x, u, \psi), w)] \quad \forall (x, u, w)$

We can substitute $\sum_{i} \varphi_{i} \phi_{i}(x, u)$ and sample a finite subset of constraints

 $q(x_i, u_i) \leq \ell(x_i, u_i) + \gamma \mathbb{E} \big[q(x_i^+, w) \big] \quad \forall (x_i, u_i, w_i) \in \mathcal{D}$

Model-free/RL framework: construct one constraint for each observation

$${x_i, u_i, \ell(x_i, u_i), x_i^+}_{i=0}^{d-1}$$

 x_{d-1}

 $u_1 x_2$

Introduction to data-driven optimal control via linear programming

Estimation of Bellman inequalities from data

Willems' Fundamental Lemma for affine systems

Conclusion and future work

• $f(x, u, \psi_3)$ и х

 $f(x, u, \psi_i)$ u х

$$u \qquad f(x, u, \psi_i)$$

Unbiased estimator (reinitialization)

$$\hat{\theta}_{x,u} = \frac{1}{d} \sum_{i=0}^{d-1} v(x_i^+)$$

►
$$\mathbb{E}[\hat{\theta}_{x,u}] = \mathbb{E}[v(f(x, u, \psi))]$$

► $VAR(\hat{\theta}_{x,u}) = \frac{1}{d}VAR(v(f(x, u, \psi)))$

$$\begin{array}{l} X = [x_0 \cdots x_{d-1}] \\ U = [u_0 \cdots u_{d-1}] \\ X^+ = [x_0^+ \cdots x_{d-1}^+] \\ \Psi = [\psi_0 \cdots \psi_{d-1}] \end{array}$$

Unbiased estimator (reinitialization)

$$\hat{\theta}_{x,u} = \frac{1}{d} \sum_{i=0}^{d-1} v(x_i^+)$$

►
$$\mathbb{E}[\hat{\theta}_{x,u}] = \mathbb{E}[v(f(x, u, \psi))]$$

► $VAR(\hat{\theta}_{x,u}) = \frac{1}{d}VAR(v(f(x, u, \psi)))$

Unbiased estimator (reinitialization)

$$\hat{\theta}_{x,u} = \frac{1}{d} \sum_{i=0}^{d-1} v(x_i^+)$$

►
$$\mathbb{E}[\hat{\theta}_{x,u}] = \mathbb{E}[v(f(x, u, \psi))]$$

► $Var(\hat{\theta}_{x,u}) = \frac{1}{d}Var(v(f(x, u, \psi)))$

 $X = [x_0 \cdots x_{d-1}] \\ U = [u_0 \cdots u_{d-1}] \\ X^+ = [x_0^+ \cdots x_{d-1}^+] \\ \Psi = [\psi_0 \cdots \psi_{d-1}]$

Biased estimator (w/o reinitialization)

Select $\alpha \in \mathbb{R}^d$: $\begin{bmatrix} x \\ u \end{bmatrix} \alpha = \begin{bmatrix} x \\ u \end{bmatrix}$ and compute

$$ar{ heta}_{x,u} = \mathbf{v}(\mathbf{X}^+ lpha)$$

$$\blacktriangleright \mathbb{E}[\bar{\theta}_{x,u}] \neq \mathbb{E}\left[v(f(x, u, \psi))\right]$$

• What if $X^+ \alpha = f(x, u, \Psi \alpha)$?

Estimation for affine systems (1/2)

Fact

Consider $f(x, u, \psi) = Ax + Bu + c + \psi$ and $\alpha \in \mathbb{R}^d$: $\begin{bmatrix} x \\ u \end{bmatrix} \alpha = \begin{bmatrix} x \\ u \end{bmatrix}$. If we impose $\mathbf{1}^\top \alpha = \mathbf{1}$, then

 $X^{+}\alpha = f(x, u, \Psi\alpha)$

Estimation for affine systems (1/2)

Fact

Consider
$$f(x, u, \psi) = Ax + Bu + c + \psi$$
 and $\alpha \in \mathbb{R}^d$: $\begin{bmatrix} x \\ u \end{bmatrix} \alpha = \begin{bmatrix} x \\ u \end{bmatrix}$.
If we impose $\mathbf{1}^\top \alpha = \mathbf{1}$, then
 $X^+ \alpha = f(x, u, \Psi \alpha)$

▶ Is the estimator **unbiased** in this case? *i.e.*, is

$$\mathbb{E}[\bar{\theta}_{x,u}] = \mathbb{E}[v(X^+\alpha)] = \mathbb{E}[v(f(x, u, \psi))]?$$

Estimation for affine systems (1/2)

Fact

Consider
$$f(x, u, \psi) = Ax + Bu + c + \psi$$
 and $\alpha \in \mathbb{R}^d$: $\begin{bmatrix} x \\ y \end{bmatrix} \alpha = \begin{bmatrix} x \\ u \end{bmatrix}$.
If we impose $\mathbf{1}^\top \alpha = \mathbf{1}$, then

 $X^+ \alpha = f(x, u, \Psi \alpha)$

Is the estimator unbiased in this case? i.e., is

$$\mathbb{E}[\bar{\theta}_{x,u}] = \mathbb{E}[v(X^+\alpha)] = \mathbb{E}[v(f(x, u, \psi))]? \text{ No!}$$

Proposition

For affine systems, if $\begin{bmatrix} x \\ U \\ 1^{\top} \end{bmatrix} \alpha = \begin{bmatrix} x \\ 1 \\ 1 \end{bmatrix}$, then (i) $\mathbb{E}[\bar{\theta}_{x,u}] = \mathbb{E}\left[v(f(x, u, \bar{\psi}))\right]$, where $\mathbb{E}[\bar{\psi}] = \mathbb{E}[\psi]$ and $\operatorname{Var}(\bar{\psi}) = \|\alpha\|_2^2 \operatorname{Var}(\psi)$ (ii) $\operatorname{Var}(\bar{\theta}_{x,u}) = \|\alpha\|_2^2 \operatorname{Var}(v(f(x, u, \psi)))$

Estimation for affine systems (2/2)

Lemma

The LP with biased constraints is policy-preserving. Indeed,

$$ar{q}(x,u) = \hat{q}(x,u) - rac{\gamma}{1-\gamma} \mathsf{TR}\left((1-\|lpha\|_2^2)q^*\mathsf{VAR}(\psi)
ight)$$

Estimation for affine systems (2/2)

Lemma

The LP with biased constraints is policy-preserving. Indeed,

$$ar{q}(x,u) = \hat{q}(x,u) - rac{\gamma}{1-\gamma} \mathsf{TR}\left((1-\|lpha\|_2^2)q^*\mathsf{VAR}(\psi)
ight)$$

Can we meet such condition with a persistently exciting input?

Introduction to data-driven optimal control via linear programming

Estimation of Bellman inequalities from data

Willems' Fundamental Lemma for affine systems

Conclusion and future work

The Fundamental Lemma for linear systems

► A sequence $S = \begin{bmatrix} S_1 & \cdots & S_d \end{bmatrix} \in \mathbb{R}^{m \times d}$ is **persistently exciting** of order *K* if the associated *Hankel* matrix of depth *K*,

$$\mathcal{H}_{\mathcal{K}}(\mathcal{S}) = \begin{bmatrix} \begin{smallmatrix} S_1 & S_2 & \cdots & S_{d-K+1} \\ S_2 & S_3 & \cdots & S_{d-K+2} \\ \vdots & \vdots & \vdots \\ S_K & S_{K+1} & \cdots & S_d \end{bmatrix} \in \mathbb{R}^{mK \times (d-K+1)},$$

is full row-rank, *i.e.* RANK $\mathcal{H}_{\mathcal{K}}(\mathcal{S}) = m\mathcal{K}$

The Fundamental Lemma for linear systems

► A sequence $S = [S_1 \cdots S_d] \in \mathbb{R}^{m \times d}$ is **persistently exciting** of order *K* if the associated *Hankel* matrix of depth *K*,

$$\mathcal{H}_{\mathcal{K}}(\mathcal{S}) = \begin{bmatrix} \begin{smallmatrix} S_1 & S_2 & \cdots & S_{d-K+1} \\ S_2 & S_3 & \cdots & S_{d-K+2} \\ \vdots & \vdots & \vdots \\ S_K & S_{K+1} & \cdots & S_d \end{bmatrix} \in \mathbb{R}^{mK \times (d-K+1)},$$

is full row-rank, *i.e.* RANK $\mathcal{H}_{\mathcal{K}}(\mathcal{S}) = m\mathcal{K}$

The information contained in a sufficiently rich and long trajectory of a linear system is enough to describe any other trajectory of appropriate length that the system can generate ³

The Fundamental Lemma for linear systems

► A sequence $S = [S_1 \cdots S_d] \in \mathbb{R}^{m \times d}$ is **persistently exciting** of order *K* if the associated *Hankel* matrix of depth *K*,

$$\mathcal{H}_{\mathcal{K}}(\mathcal{S}) = \begin{bmatrix} \begin{smallmatrix} S_1 & S_2 & \cdots & S_{d-K+1} \\ S_2 & S_3 & \cdots & S_{d-K+2} \\ \vdots & \vdots & \vdots \\ S_K & S_{K+1} & \cdots & S_d \end{bmatrix} \in \mathbb{R}^{mK \times (d-K+1)},$$

is full row-rank, *i.e.* RANK $\mathcal{H}_{\mathcal{K}}(\mathcal{S}) = m\mathcal{K}$

- The information contained in a sufficiently rich and long trajectory of a linear system is enough to describe any other trajectory of appropriate length that the system can generate ³
- Sufficient conditions are that
 - (i) the system is controllable, and
 - (ii) the input is persistently exciting of sufficient order

³Willems' et al., Syst. Control Lett., 2005

• **Objective:** Guarantee RANK $\begin{bmatrix} X \\ U \\ 1^{\top} \end{bmatrix} = n + m + 1$ when data are generated by affine dynamics $x^+ = Ax + Bu + c$.

• **Objective:** Guarantee RANK $\begin{bmatrix} X \\ U \\ 1^T \end{bmatrix} = n + m + 1$ when data are generated by affine dynamics $x^+ = Ax + Bu + c$.

Nontrivial extension since

- Trajectories do not form a linear subspace anymore
- We must guarantee $\mathbf{1}^{\top} \notin \text{ROWSP} \begin{bmatrix} x \\ y \end{bmatrix}$

• **Objective:** Guarantee RANK $\begin{bmatrix} X \\ U \\ 1^T \end{bmatrix} = n + m + 1$ when data are generated by affine dynamics $x^+ = Ax + Bu + c$.

Nontrivial extension since

- Trajectories do not form a linear subspace anymore
- We must guarantee $\mathbf{1}^{\top} \notin \text{ROWSP} \begin{bmatrix} x \\ U \end{bmatrix}$
- Transformations that don't work:

$$x^{+} = Ax + \begin{bmatrix} B & I \end{bmatrix} \begin{bmatrix} u \\ c \end{bmatrix} \longrightarrow (A, \begin{bmatrix} B & I \end{bmatrix}) \text{ is controllable but } \begin{bmatrix} u \\ c \end{bmatrix} \text{ is not } p.e.$$

$$\begin{bmatrix} x^{+} \\ y^{+} \end{bmatrix} = \begin{bmatrix} A & c \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} u \longrightarrow u \text{ is } p.e. \text{ but } (\begin{bmatrix} A & c \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} B \\ 0 \end{bmatrix}) \text{ is not controllable }$$

• **Objective:** Guarantee RANK $\begin{bmatrix} X \\ U \\ 1^T \end{bmatrix} = n + m + 1$ when data are generated by affine dynamics $x^+ = Ax + Bu + c$.

Nontrivial extension since

- Trajectories do not form a linear subspace anymore
- We must guarantee $\mathbf{1}^{\top} \notin \text{ROWSP} \begin{bmatrix} x \\ U \end{bmatrix}$
- Transformations that don't work:

$$x^{+} = Ax + \begin{bmatrix} B & I \end{bmatrix} \begin{bmatrix} u \\ c \end{bmatrix} \longrightarrow (A, \begin{bmatrix} B & I \end{bmatrix}) \text{ is controllable but } \begin{bmatrix} u \\ c \end{bmatrix} \text{ is not } p.e.$$

$$\begin{bmatrix} x^{+} \\ y^{+} \end{bmatrix} = \begin{bmatrix} A & c \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} u \longrightarrow u \text{ is } p.e. \text{ but } (\begin{bmatrix} A & c \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} B \\ 0 \end{bmatrix}) \text{ is not controllable }$$

Proposition

If S is persistently exciting of order K, then for all K' < K it holds that

 $\mathbf{1}^{ op} \notin \operatorname{Rowsp} \mathcal{H}_{\mathcal{K}'}(\mathcal{S})$

Willems' Fundamental Lemma for affine systems

Theorem

Consider a dataset (X, U, X^+, Y) of length d with $X^+ = AX + BU + c\mathbf{1}^\top$, $Y = CX + DU + r\mathbf{1}^\top$.

If U is persistently exciting of order n + L + 1 and (A, B) is a controllable pair, then

(i)
$$\operatorname{Rank} \begin{bmatrix} \mathcal{H}_1(X_{1:d-L+1}) \\ \mathcal{H}_L(U) \\ \mathbf{1}^T \end{bmatrix} = n + mL + \mathbf{1},$$

(ii) $(\tilde{X}, \tilde{U}, \tilde{X}^+, \tilde{Y})$ is a dataset of length $L \iff$ there exists $g \in \mathbb{R}^{d-L+1}$ such that

$$\begin{bmatrix} \operatorname{Vec} \tilde{U} \\ \operatorname{Vec} \tilde{Y} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathcal{H}_L(U) \\ \mathcal{H}_L(Y) \\ 1^\top \end{bmatrix} g.$$

Willems' Fundamental Lemma for affine systems

Theorem

Consider a dataset (X, U, X^+, Y) of length d with $X^+ = AX + BU + c\mathbf{1}^\top$, $Y = CX + DU + r\mathbf{1}^\top$.

If U is persistently exciting of order n + L + 1 and (A, B) is a controllable pair, then

(i)
$$\operatorname{Rank} \begin{bmatrix} \mathcal{H}_1(X_{1:d-L+1}) \\ \mathcal{H}_L(U) \\ \mathbf{1}^\top \end{bmatrix} = n + mL + \mathbf{1},$$

(ii) $(\tilde{X}, \tilde{U}, \tilde{X}^+, \tilde{Y})$ is a dataset of length $L \iff$ there exists $g \in \mathbb{R}^{d-L+1}$ such that $\begin{bmatrix} \bigvee_{\mathsf{VEC}} \tilde{U} \\ \bigvee_{\mathsf{VEC}} \tilde{Y} \end{bmatrix} = \begin{bmatrix} \mathcal{H}_L(U) \\ \mathcal{H}_L(Y) \\ \mathcal{H}_L(Y) \end{bmatrix} g.$

 \blacktriangleright (i) \implies (ii) was proven in ⁴

▶ Inspired by state-space proof in ⁵, we show that higher order *p.e.* + controllability \implies (i)

⁴Berberich *et al.*, *IEEE TAC*, 2022

⁵van Waarde *et al.*, *IEEE L-CSS*, 2020

Introduction to data-driven optimal control via linear programming

Estimation of Bellman inequalities from data

Willems' Fundamental Lemma for affine systems

Conclusion and future work

Conclusion and future work

Takeaway message: The LP approach shows lots of potential and is relatively underexplored

- Can handle nonlinear, stochastic, data-driven problems
- Flexibility and integration with other methods

Conclusion and future work

Takeaway message: The LP approach shows lots of potential and is relatively underexplored

- Can handle nonlinear, stochastic, data-driven problems
- Flexibility and integration with other methods

Lot to be done: Nested approximation architectures are hard to study

- Performance bounds due to function approximation and constraint sampling
- Exploration logic to guarantee bounded solutions

Thank you!

Andrea Martinelli Automatic Control Laboratory ETH Zurich andremar@ethz.ch