
Data-driven optimal control of affine systems:
A linear programming perspective

A. Martinelli, M. Gargiani, M. Draskovic, J. Lygeros
Automatic Control Laboratory, ETH Zurich

61st IEEE Conference on Decision and Control (CDC), Cancun, Mexico 2022



Outline

Introduction to data-driven optimal control via linear programming

Estimation of Bellman inequalities from data

Willems’ Fundamental Lemma for affine systems

Conclusion and future work

The text font of “Automatic Control Laboratory” is DIN Medium

C = 100, M = 83, Y = 35, K = 22

C = 0, M = 0, Y = 0, K = 60

Logo on dark background

K = 100

K = 60

pantone 294 C

pantone Cool Grey 9 C

2/18



Problem setup: stochastic optimal control
Ingredients:
▶ A discrete-time stochastic system x+ = f (x , u, ψ) with possibly infinite state & action spaces
▶ A stage-cost function ℓ : X× U → R+

The γ-discounted ∞-horizon cost associated to a stationary feedback policy π : X → U is

vπ(x) = E

[ ∞∑
k=0

γkℓ(xk , π(xk))

∣∣∣∣ x0 = x

]

Objective: find an optimal policy π∗ such that vπ∗(x) = infπ vπ(x) = v∗(x)

▶ The value function admits a recursive definition – the Bellman equation

v∗(x) = inf
u∈U

{
ℓ(x , u) + γE

[
v∗(f (x , u, ψ))

]}
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The Q-function
▶ If one is able to obtain v∗, then

π∗(x) = argmin
u∈U

{
ℓ(x , u) + γE

[
v∗(f (x , u, ψ))

]}
Problem: policy extraction is in general not possible if f or ℓ are not known

▶ Introducing Q-functions 1

q∗(x , u) = ℓ(x , u) + γE
[
inf

w∈U
q∗(f (x , u, ψ),w)

]
︸ ︷︷ ︸

Q-Bellman operator (Fq∗)(x,u)

▶ Since v∗(x) = min
u∈U

q∗(x , u), now policy extraction is model-free:

π∗(x) = argmin
u∈U

q∗(x , u)

1Watkins and Dayan, Machine Learning, 1992
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The linear programming formulation
▶ F is a monotone contraction mapping with a unique fixed point (q∗), i.e.,

q ≤ Fq =⇒ q ≤ q∗ and q∗ = Fq∗

▶ Natural to define q∗ as the greatest function that
satisfies the Bellman inequalities,

sup
q∈Q

∫
X×U

q(x , u)c(dx , du)

s.t. q(x , u) ≤ (Fq)(x , u) ∀x , u

Problem: nonlinear and ∞-dimensional

▶ Introducing the relaxed Q-Bellman operator 2

(F̂q)(x , u) = ℓ(x , u) + γ inf
w∈U

E
[
q(f (x , u, ψ),w)

]
2Martinelli et al., Automatica, 2022
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The relaxed Bellman operator

Lemma (Properties of the relaxed operator)

(i) F̂ is a monotone contraction mapping with a unique fixed point (q̂)

(ii) q∗ ≤ q̂

(iii) For linear (affine) systems, it holds argmin
u∈U

q∗ = argmin
u∈U

q̂ (policy preservation)

▶ One can find q̂ via

sup
q∈Q

∫
X×U

q(x , u)c(dx , du)

s.t. q(x , u) ≤ (F̂q)(x , u) ∀x , u

▶ Equivalently with (F̂ℓq)(x , u) = ℓ(x , u) + γE
[
q(f (x , u, ψ),w)

]
∀(x , u,w)
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Finite and model-free LP formulation
LPs can be solved efficiently in general, but here several sources of intractability arise:
▶ q is an optimization variable in the ∞-dimensional space Q
▶ ∞ number of constraints

sup
q∈Q

∫
X×U

q(x , u)c(dx , du)

s.t. q(x , u) ≤ ℓ(x , u) + γE
[
q(f (x , u, ψ),w)

]
∀(x , u,w)

We can substitute
∑

i φiϕi(x , u) and sample a finite subset of constraints

q(xi , ui) ≤ ℓ(xi , ui) + γE
[
q(x+

i ,w)
]

∀(xi , ui ,wi) ∈ D

Model-free/RL framework: construct one constraint for each
observation

{xi , ui , ℓ(xi , ui), x+
i }d−1

i=0
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Estimation of Bellman inequalities

𝑥

𝑓(𝑥, 𝑢, 𝜓1)

𝑢
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Estimation of Bellman inequalities
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Estimation of Bellman inequalities

𝑥
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Unbiased estimator (reinitialization)

θ̂x,u =
1
d

d−1∑
i=0

v(x+
i )

▶ E[θ̂x,u] = E [v(f (x , u, ψ))]

▶ VAR(θ̂x,u) =
1
d VAR(v(f (x , u, ψ)))
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Unbiased estimator (reinitialization)

θ̂x,u =
1
d

d−1∑
i=0

v(x+
i )

▶ E[θ̂x,u] = E [v(f (x , u, ψ))]

▶ VAR(θ̂x,u) =
1
d VAR(v(f (x , u, ψ)))

X = [x0 · · · xd−1]
U = [u0 · · · ud−1]
X+ =

[
x+

0 · · · x+
d−1

]
Ψ = [ψ0 · · · ψd−1]

Biased estimator (w/o reinitialization)

Select α ∈ Rd :
[

X
U

]
α = [ x

u ] and compute

θ̄x,u = v(X+α)

▶ E[θ̄x,u] ̸= E [v(f (x , u, ψ))]
▶ What if X+α = f (x , u,Ψα) ?



Estimation for affine systems (1/2)

Fact

Consider f (x , u, ψ) = Ax + Bu + c + ψ and α ∈ Rd :
[

X
U

]
α = [ x

u ].
If we impose 1⊤α = 1, then

X+α = f (x , u,Ψα)

▶ Is the estimator unbiased in this case? i.e., is

E[θ̄x,u] = E[v(X+α)] = E [v(f (x , u, ψ))]?

No!

Proposition

For affine systems, if
[ X

U
1⊤

]
α =

[
x
u
1

]
, then

(i) E[θ̄x,u] = E
[
v(f (x , u, ψ̄))

]
, where E[ψ̄] = E[ψ] and VAR(ψ̄) = ∥α∥2

2VAR(ψ)

(ii) VAR(θ̄x,u) = ∥α∥2
2VAR(v(f (x , u, ψ)))
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Estimation for affine systems (1/2)

Fact

Consider f (x , u, ψ) = Ax + Bu + c + ψ and α ∈ Rd :
[

X
U

]
α = [ x

u ].
If we impose 1⊤α = 1, then

X+α = f (x , u,Ψα)

▶ Is the estimator unbiased in this case? i.e., is

E[θ̄x,u] = E[v(X+α)] = E [v(f (x , u, ψ))]?

No!

Proposition
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1⊤

]
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u
1
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Estimation for affine systems (2/2)

Lemma

The LP with biased constraints is policy-preserving. Indeed,

q̄(x , u) = q̂(x , u)− γ
1−γ TR

(
(1 − ∥α∥2

2)q
∗VAR(ψ)

)

Fact

If the data matrix
[ X

U
1⊤

]
is full row-rank then we can construct (biased) constraints for all (x , u)

▶ Can we meet such condition with a persistently exciting input?
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The Fundamental Lemma for linear systems

▶ A sequence S =
[
S1 · · · Sd

]
∈ Rm×d is persistently exciting of order K if the

associated Hankel matrix of depth K ,

HK (S) =

 S1 S2 ··· Sd−K+1
S2 S3 ··· Sd−K+2

...
...

...
SK SK+1 ··· Sd

 ∈ RmK×(d−K+1),

is full row-rank, i.e. RANK HK (S) = mK

▶ The information contained in a sufficiently rich and long trajectory of a linear system is
enough to describe any other trajectory of appropriate length that the system can generate 3

▶ Sufficient conditions are that
(i) the system is controllable, and
(ii) the input is persistently exciting of sufficient order

3Willems’ et al., Syst. Control Lett., 2005
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Extending the Fundamental Lemma to affine systems
▶ Objective: Guarantee RANK

[ X
U

1⊤

]
= n + m + 1 when data are generated by affine

dynamics x+ = Ax + Bu + c.

▶ Nontrivial extension since
▶ Trajectories do not form a linear subspace anymore
▶ We must guarantee 1⊤ /∈ ROWSP [ X

U ]

▶ Transformations that don’t work:

▶ x+ = Ax +
[
B I

] [u
c

]
−→ (A,

[
B I

]
) is controllable but

[
u
c

]
is not p.e.

▶
[

x+

y+

]
=

[
A c
0 1

] [
x
y

]
+

[
B
0

]
u −→ u is p.e. but (

[
A c
0 1

]
,
[

B
0

]
) is not controllable

Proposition

If S is persistently exciting of order K , then for all K ′ < K it holds that

1⊤ /∈ ROWSP HK ′(S)
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Willems’ Fundamental Lemma for affine systems

Theorem

Consider a dataset (X ,U,X+,Y ) of length d with X+ = AX + BU + c1⊤, Y = CX + DU + r1⊤.

If U is persistently exciting of order n + L+ 1 and (A,B) is a controllable pair, then

(i) RANK

[
H1(X1:d−L+1)

HL(U)

1⊤

]
= n + mL+ 1,

(ii) (X̃ , Ũ, X̃+, Ỹ ) is a dataset of length L ⇐⇒ there exists g ∈ Rd−L+1 such that[
VEC Ũ
VEC Ỹ

1

]
=

[
HL(U)
HL(Y )

1⊤

]
g.

▶ (i) =⇒ (ii) was proven in 4

▶ Inspired by state-space proof in 5, we show that higher order p.e. + controllability =⇒ (i)

4Berberich et al., IEEE TAC, 2022
5van Waarde et al., IEEE L-CSS, 2020
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Conclusion and future work

Takeaway message: The LP approach shows lots of potential and is relatively underexplored

▶ Can handle nonlinear, stochastic, data-driven problems
▶ Flexibility and integration with other methods

Lot to be done: Nested approximation architectures are hard to study

▶ Performance bounds due to function approximation and constraint sampling
▶ Exploration logic to guarantee bounded solutions
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Thank you!

Andrea Martinelli
Automatic Control Laboratory

ETH Zurich
andremar@ethz.ch
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