
On the Synthesis of Bellman Inequalities for
Data-Driven Optimal Control

Andrea Martinelli, Matilde Gargiani and John Lygeros

Abstract— In the context of the linear programming (LP)
approach to data-driven control, one assumes that the dynam-
ical system is unknown but can be observed indirectly through
data on its evolution. Both theoretical and empirical evidence
suggest that a desired suboptimality gap is often only achieved
with massive exploration of the state-space. In case of linear
systems, we discuss how a relatively small but sufficiently rich
dataset can be exploited to generate new constraints offline and
without observing the corresponding transitions. Moreover, we
show how to reconstruct the associated unknown stage-costs
and, when the system is stochastic, we offer insights on the
related problem of estimating the expected value in the Bellman
operator without re-initializing the dynamics in the same state-
input pairs.

I. INTRODUCTION

The linear programming (LP) approach to optimal control
problems was initially developed by A.S. Manne in the
1960s [15], following the well-known studies conducted by
R. Bellman in the 1950s [2]. The idea is to exploit the
monotonicity and contractivity properties of the Bellman
operator [3] to build LPs whose solution is the optimal value
function. An evident advantage of the LP formulation is
that there exist efficient and fast algorithms to tackle such
programs [7]. On the other hand, similarly to the classic
dynamic programming approach introduced by Bellman, the
LP approach suffers from poor scalability properties referred
to as curse of dimensionality [5]. The sources of intractability
for systems with continuous state and action spaces can
be identified as, among others, an optimization variable in
an infinite dimensional space and an infinite number of
constraints. For this reason the infinite dimensional LPs are
usually approximated by tractable finite dimensional ones
[17], [11], [19], [6].

In recent years, the LP approach has experienced an
increasing interest, especially in combination with model-
free control techniques [20], [1], [16], [23]. In such a
setting, one assumes the dynamical system to be unknown
but observable via state-space exploration, and builds one
Bellman inequality (or constraint) of the LP for each ob-
served transition. In this way, it is possible to both bypass
the more classic system identification step and mitigate a
source of intractability by solving an LP with a finite amount
of constraints. A discussion on the approximation introduced
by constraint sampling can be found in [12]. Both theoretical

Research supported by the European Research Council under the H2020
Advanced Grant no. 787845 (OCAL).

The authors are with the Automatic Control Laboratory, Swiss Federal
Institute of Technology (ETH) Zurich, 8092 Zurich, Switzerland. Emails:
{andremar,gmatilde,lygeros}@ethz.ch

and empirical evidence present in the previously mentioned
literature suggest that a massive amount of data is generally
needed to comply with a desired performance level. As
discussed in the scalability analysis performed in [16], this
aspect becomes even more evident for large-scale systems.
Moreover, another relevant problem in the LP approach is to
provide an estimate for the expected value in the constraints.
This is usually performed by re-initializing the dynamics in
the same state-input pairs and computing a Monte Carlo
estimate of the associated value function evaluated at the
next state [20]. In a stochastic framework, unfortunately, it
may be practically impossible to re-initialize the system at
desired states.

Another thriving data-driven research direction is the one
revolving around behavioural theory and Willem’s funda-
mental lemma [28], stating that the information contained
in a sufficiently long trajectory of a linear system is, under
mild assumptions, enough to describe any other trajectory of
the same length that can be generated by the system itself.
In a model-free context, a so-called persistently exciting
exploration input is often used to generate such trajectories,
obtain a data-based representation of the underlying linear
system and develop control techniques such as MPC [8]
or assess system’s properties such as dissipativity [18] and
stabilizability/controllability [13]. The authors in [25] discuss
the conditions for which a dataset is informative, i.e. when
the data contain enough information to accomplish a specific
control task.

Motivated by the poor scalability often affecting the LP
approach and inspired by the recent literature on data-driven
control of linear systems, in the present work we discuss
how to mitigate the cost of performing massive exploration.
After introducing the problem general formulation in Sec. II,
our main contributions can be summarised as follows:

• We show in Sec. III-A that a sufficiently rich dataset can
be used to generate all the constraints involved in the
LP formulation for a linear system, offline and without
observing the corresponding transitions;

• Moreover, thanks to a bilinear algebra framework, we
show in Sec. III-B how to reconstruct the associ-
ated stage-cost evaluations starting again from a fixed
dataset;

• For stochastic systems, we provide in Sec. IV insights
on the estimation of the expected values in the con-
straints of the LP, without resorting to iterative dynamics
re-initialization.

ar
X

iv
:2

10
9.

13
19

3v
1

 [
m

at
h.

O
C

]
 2

7
Se

p
20

21

Notation and background

We denote with Mp the set of p×p real matrices and with
M̃p ⊂Mp the subset of symmetric matrices. A vector of ones
of suitable dimension is denoted with 1. The vectorization
of a symmetric matrix M ∈ M̃p with entries [M]ij = mij

is vec(M) =
[
m11 m12 · · · mpp

]
∈ Rp2 and its trace

is denoted with tr(M). A symmetric bilinear form [22] is a
map β : Rp × Rp → R that is linear in its arguments taken
separately, and such that β(x, y) = β(y, x) for all x, y ∈ Rp.
A pair (Rp, β) defines a bilinear space. We also define the
quadratic form ` : Rp → R associated to β as `(z) = β(z, z)
for all z ∈ Rp. The following holds:

`(az) = a2`(z) ∀a ∈ R, ∀z ∈ Rp (1)
β(x, y) = 1

2 (`(x+ y)− `(x)− `(y)) ∀x, y ∈ Rp. (2)

Moreover, given a basis B = {b1, . . . , bp} for Rp, we
denote with [MB]ij = β(bi, bj) the matrix representation of
β in the basis B.

II. OPTIMAL CONTROL VIA LINEAR
PROGRAMMING

Consider a discrete-time stochastic dynamical system

xk+1 = f(xk, uk, ξk), (3)

with (possibly infinite) state and action spaces xk ∈ Rn
and uk ∈ Rm. Here, ξk ∈ Rn denotes the realizations of
independent identically distributed (i.i.d.) random variables,
and f : Rn × Rm × Rn → R is the map encoding the
dynamics. We consider stationary feedback policies, given by
functions π : Rn → Rm; for more general classes of policies,
see [14]. A nonnegative cost is associated to each state-action
pair through the stage cost function ` : Rn × Rm → R+.
We introduce a discount factor γ ∈ (0, 1) and consider the
infinite-horizon cost associated to policy π

vπ(x) = Eξ

[∞∑
k=0

γk`(xk, π(xk))

∣∣∣∣ x0 = x

]
. (4)

The objective of the optimal control problem is to find
an optimal policy π∗ such that vπ∗(x) = infπ vπ(x) =
v∗(x), where v∗ is known as the optimal value function.
Let us define the vector space of all real-valued measurable
functions that have a finite r-weighted sup-norm [4, §2.1] as

V = {v : Rn → R | ||v||∞,r <∞}. (5)

Throughout the paper, we work under [14, Assump. 4.2.1
and 4.2.2] to ensure that v∗ ∈ V, π∗ is measurable and
the infimum of vπ is attained. The optimal value function
can be expressed as the solution of the following infinite-
dimensional linear program [14], [11]

sup
v∈V

∫
Rn

v(x)c(dx)

s.t. v(x) ≤ `(x, u) + γEξv(f(x, u, ξ)) ∀(x, u),

(6)

where c is a finite measure that assigns positive mass to all
open subsets of Rn. The above formulation is not solvable
in general due to several sources of intractability, see e.g. [6]

and [26]. If one is nonetheless able to obtain v∗, they can in
principle compute the corresponding policy by

π∗(x) = arg min
u
{`(x, u) + γEξv∗(f(x, u, ξ))}. (7)

A special case of the infinite-horizon optimal control problem
arises when the dynamics is linear

f(x, u, ξ) = Ax+Bu+ ξ, (8)

with A ∈Mn, B ∈ Rn×m, and the cost function is quadratic

`(x, u) =

[
x
u

]ᵀ
L

[
x
u

]
=

[
x
u

]ᵀ [
Lxx Lxu
Lᵀ
xu Luu

] [
x
u

]
. (9)

For such linear-quadratic (LQ) problems we impose the
following assumption.

Assumption 1: The pair (A,B) is stabilizable, ξ is i.i.d.
with zero mean and covariance matrix Σ. Moreover, L � 0
and Luu � 0.
By denoting P ∈ M̃n and e ∈ Rn, let us define

Vq = {v : Rn → R | v(x) = xᵀPx+ e} ⊂ V. (10)

The solution to the LP (6) under LQ assumptions (8)-
(9) is then v∗(x) = xᵀP ∗x + e∗ ∈ Vq , where P ∗ is
the solution to the well-known associated algebraic Riccati
equation (ARE) [10] and e∗ = γ

1−γ tr(P ∗Σ). By imposing c
to be a probability distribution with zero mean and identity
covariance matrix and restricting v ∈ Vq , an equivalent
formulation for (6) that directly involves P and e is [6]

max
P, e

tr(P) + e

s.t. xᵀPx ≤ `(x, u)

+ γEξ(Ax+Bu+ ξ)ᵀP (Ax+Bu+ ξ),

(11)

for all (x, u).
In model-based control, typically one assumes that f is

known and directly looks for solutions to, e.g., the ARE
or finite-dimensional semidefinite programs using convex
optimisation tools. In model-free control on the other hand,
one assumes that the model is unknown but can be observed
indirectly through data (xi, ui, xi+) of state-input pairs
(xi, ui) ∈ Rn × Rm and the next state xi+ = f(xi, ui, ξi).
The solution to (4) can be estimated, e.g., by means of
reinforcement learning methods [21]. Moreover, one can also
obtain the optimal policy by reformulating (6)-(7) in terms
of the so-called Q-function [27]. To keep the discussion
simple, however, we do not explore this direction here. In the
context of the LP approach, the infinite constraints needed to
construct the feasible region in (6) or (11) are often replaced
with a finite subset, each one associated with a data tuple
(xi, ui, xi+), as argued in [1], [12], [16], [23].

III. FEASIBLE REGION SYNTHESIS FROM DATA

A. Unknown dynamics

The information contained in a sufficiently long trajectory
of a linear system is, under mild assumptions, enough to
describe any other trajectory of the same length that can
be generated by the system [28]. In this section we discuss

the consequences of this idea and adapt the theoretical
implications to the context of the data-driven LP approach.
Throughout the section we work under LQ assumptions (8)-
(9), Assumption 1, and we consider deterministic dynamics,
i.e. ξ = 0 for all time steps and Σ = 0. First, we provide a
description in matrix form of the Bellman inequalities.

Proposition 1: The constraint set in (11) is equivalent to

vec(H(x, u))ᵀvec(P) ≤ `(x, u) ∀(x, u), (12)

where H : Rn × Rm → M̃n is

H(x, u) = xxᵀ − γ(Ax+Bu)(Ax+Bu)ᵀ. (13)
Proof: We can express the constraint set in (11) as

n∑
i=1

n∑
j=i

hij(x, u)pij ≤ `(x, u) ∀(x, u), (14)

where

hij(x, u) = xixj − γ(Ax+Bu)i(Ax+Bu)j .

Then by imposing [H(x, u)]ij = hij(x, u) we obtain (13)
and, finally, we can re-arrange the left-hand side of (14) in
vector form and obtain (12).
We say that (X,U,X+) is a dataset of length T when X =[
x1 · · · xT

]
, U =

[
u1 · · · uT

]
and X+ = AX+BU .

We also introduce the following assumption.

Assumption 2: rank
[
X
U

]
= n+m.

The following lemma shows how all the infinite constraints
in (11) can potentially be reconstructed offline directly from
the dataset without explicitly determining the matrices A
and B and without observing the corresponding system’s
transitions.

Lemma 1: Consider a dataset (X,U,X+) of length T
satisfying Assumption 2. Then, for each (x, u) ∈ Rn × Rm
there exists an α ∈ RT and such that

H(x, u) = (Xα)(Xα)ᵀ − γ(X+α)(X+α)ᵀ. (15)
Proof: Since

[
Xᵀ Uᵀ

]ᵀ
is full row-rank by assump-

tion, we know there exists an α satisfying[
x
u

]
=

[
X
U

]
α. (16)

Moreover, since

AXα+BUα = (AX +BU)α = X+α, (17)

we have that

H(x, u) = xxᵀ − γ(Ax+Bu)(Ax+Bu)ᵀ

= (Xα)(Xα)ᵀ − γ(X+α)(X+α)ᵀ,

that concludes the proof.
Thanks to Proposition 1 and Lemma 1 we know that, given a
dataset (X,U,X+) satisfying Assumption 2, we can recon-
struct each of the infinite constraints in (11) by computing
H(x, u) at suitable linear combinations of X and X+.
Figures 1 and 2 illustrate the fundamental role of the sampled
constraints for the suboptimality of the derived solution and,

Fig. 1: Median across 103 independent runs of the optimality
gap versus the number of constraints for system (18).

consequently, the utility of the proposed artificial sampling
technique on the linear system

x+ =

[
1 0.1

0.5 −0.5

]
x+

[
1

0.5

]
u. (18)

In particular, only the first 10 constraints are generated
via simulations of the system. The collected data are then
used to synthesise new constraints according to (15) for
randomly selected values of α. As depicted in Fig. 1, the
additional constraints allow for a dramatic improvement of
the optimality gap. A graphical representation of the support
constraints displacement is plotted in Fig 2a in the variables
space (p11, p12, p22). In particular, we first solve the LP with
the 10 observed constraints (blue dot), and then we solve the
LP again by including 10 additional constraints generated
artificially (red dot). Fig. 2b shows the corresponding im-
provement in the value function. As observed experimentally,
in general generating enough constraints from exploration to
reach a prescribed performance level can be prohibitive in a
real scenario. Our proposed approach alleviates this issue by
allowing one to only sample a small subset of the state-space
and then inexpensively synthesise new constraints offline.

Artificial constraints generation can also be exploited in
a policy iteration (PI) fashion [3] to, e.g., complement the
approach proposed in [1]. The initialization of the data-driven
PI algorithm can be performed by exploring the state-space,
as described in [1]. Then, at any successive step t of the
algorithm one can emulate the PI behaviour by selecting
appropriate vectors α that target state-input pairs associated
with the current policy as follows[

x
Ktx

]
=

[
X
U

]
α, (19)

without need for further exploration.

B. Unknown stage cost

In the context of control applications, the stage-cost is
formulated by the designer: it is thus reasonable to con-
sider `(x, u) to be known. In cases where the stage-cost

is not known, the following proposition provides a way to
reconstruct `(x, u) if we observe the cost incurred at a finite
number of state-input pairs.

Proposition 2: Consider a dataset (X,U,X+) satisfying
Assumption 2, and the square matrix

[
X̃ᵀ Ũᵀ

]ᵀ ∈ Mn+m

obtained by down-selecting n+m columns from
[
Xᵀ Uᵀ

]ᵀ
such that Assumption 2 is still satisfied. Then, for each
(x, u) ∈ Rn × Rm there exists an α ∈ Rn+m such that

`(x, u) = αᵀLX,Uα, (20)

where LX,U ∈ M̃n+m is

[LX,U]ij = β
([
xi

ui

]
,

[
xj

uj

])
, (21)

and β is the bilinear form associated to `.
Proof: First note that there exists a unique α satisfying[

x
u

]
=

[
X̃

Ũ

]
α. (22)

Let us temporarily denote z =
[
x u

]ᵀ
and Z =

[
X̃ᵀ Ũᵀ

]ᵀ
such that zi is the i-th column of Z and αi is the i-th entry
of α. Moreover, we recall that, since ` : Rn+m → R is
a quadratic form, properties (1)-(2) hold. This allows us to
express `(x, u) = `(z) = `(Zα) as

`(Zα) = `
(n+m∑

i=1

αizi
)

= `(α1z1) + `
(n+m∑

i=2

αizi
)
+ 2β

(
α1z1,

n+m∑
i=2

αizi
)
.

On the other hand, it also holds

`
(n+m∑

i=2

αizi
)
= `(α2z2)+`

(n+m∑
i=3

αizi
)
+2β

(
α2z2,

n+m∑
i=3

αizi
)
.

Hence, `(Zα) can be written recursively as

`(Zα) =

n+m∑
i=1

`(αizi) + 2

n+m∑
i=1

β
(
αizi,

n+m∑
j=i+1

ajzj
)

=

n+m∑
i=1

αi2`(zi) + 2

n+m∑
i=1

n+m∑
j=i+1

αiαjβ(zi, zj)

= αᵀ

`(z1) β(z1, z2) · · · β(z1, zk)
? `(z2) · · · β(z2, zk)

? ?
. . .

...
? ? ? `(zk)

α
= αᵀLX,Uα, (23)

where the symbol ? denotes symmetry. Finally, since `(zi) =
β(zi, zi), we obtain (20)-(21).

Note that if we express an arbitrary state-input pair (x, u)
as a linear combination of our data, as in (22), we can write

`(x, u) =

[
x
u

]ᵀ
L

[
x
u

]
= αᵀ

[
X̃

Ũ

]ᵀ
L

[
X̃

Ũ

]
︸ ︷︷ ︸

LX,U

α.

It becomes evident that L and LX,U are congruent matrices
and therefore they are two matrix representations of the same

(a) Relative displacement of the support constraints generated
with exploration (light grey) and artificial sampling (dark grey)
for the LP associated with system (18). The colored dots and
arrows represent the optimal solutions of the LPs and the
gradient direction, respectively.

(b) Color-matched graphical representation of the quadratics
associated with the solutions depicted in Fig. 2a and the
optimal value function (in black).

Fig. 2: Graphical comparison of the support constraints and
solutions for the LPs associated with system (18) when
different sets of constraints are considered.

quadratic form ` expressed in two different bases [22]. Under
this light, the data matrix

[
X̃ᵀ Ũᵀ

]ᵀ
takes the role of the

matrix transforming the basis of L into the basis of LX,U .
Regarding the computation of LX,U , according to (23) and

for each entry (i, j) of LX,U , we have to evaluate β at the
corresponding (xi, ui), (xj , uj) picked from our dataset. We
already have the n+m diagonal terms of LX,U as they are
direct stage cost evaluations `(xi, ui). As for the off-diagonal
terms, by recalling once again Equation (2), we still have to
add

(
n+m

2

)
observations in our dataset, one for each pairwise

combination of zi and zj . The total amount of observations
needed to compute LX,U is n+m+

(
n+m

2

)
= (n+m)(n+m+1)

2
that, expectedly, equals the amount of unknown entries in L.

C. State-space exploration

A dataset (X,U,X+) satisfying Assumption 2 can be
generated by initializing the dynamics at desired states and
applying the suitable inputs to ensure the rank condition is
satisfied. In case targeted initialization is not possible, one
can build independent samples by initializing the dynamics
at an arbitrary state and running a long and rich enough
exploration sequence, often guaranteed by the persistence

of excitation condition on the input [28], [13]. In detail, a
sequence u1, . . . , uT ∈ Rm is said to be persistently exciting
of order L if the associated Hankel matrix of depth L,

HL =

u1 u2 · · · uT−L+1

u2 u3 · · · uT−L+2

...
...

...
uL uL+1 · · · uT

 ∈ R(mL)×(T−L+1), (24)

has full row rank mL. It is evident that such condition can
only be satisfied if T ≥ L(m + 1) − 1. Consider then to
excite the system x+ = Ax+Bu with a persistently exciting
sequence u1, . . . , uT ∈ Rm of order n + 1, implying that
T ≥ n(m+1)+m, and record the associated state transitions
x1, . . . , xT ∈ Rn. Then, [28, Corollary 2.(ii)] ensures that

rank
[
x1 · · · xT

u1 · · · uT

]
= n+m, (25)

and Assumption 2 is satisfied, as discussed in [13].
Between targeted initialization and a single exploration

sequence, we can mention the works in [24] and [9] where
condition (25) is guaranteed even when the dataset is com-
posed by multiple (possibly short) roll-outs.

As mentioned in the introduction, in recent literature on
data-driven control Willem’s fundamental lemma is often
used to obtain a data-based representation of the trajectory
space of a linear system and develop analysis and control
techniques. Within the context of the LP approach, we show
how to construct all infinite constraints compatible with
system’s dynamics starting from a sufficiently rich dataset,
allowing one to avoid massive sampling.

IV. FEASIBLE REGION ESTIMATION FOR
STOCHASTIC SYSTEMS

In the context of the LP approach, a fundamental issue
when dealing with stochastic systems is the estimation of
the expected values in the Bellman inequalities. As discussed
e.g. in [20] and [16], one could re-initialize the dynamics at
a fixed state-input pair (x, u) a sufficient number of times N ,
observe the corresponding transition f(x, u, ξ) and estimate
Eξ[v(f(x, u, ξ))] by averaging the observations in a Monte
Carlo fashion, as

1

N

N∑
k=1

v(f(x, u, ξk)) ≈ Eξ[v(f(x, u, ξ))]. (26)

On the other hand, such an estimation can only be performed
if one can re-initialize the dynamics at the same state x
and play the same input u multiple times. Clearly this
assumption is limiting in a stochastic framework, since it may
be impossible to re-initialize the system at a desired state
in general. Here we discuss the effect of removing the re-
initialization assumption by averaging the observations over
the next state f(x, u, ξ) instead of over the value function
v(f(x, u, ξ)) under LQ assumptions (8)-(9).

First, we give a matrix description of the Bellman inequali-
ties by specializing Proposition 1 to stochastic linear systems.

Proposition 3: The constraint set in (11) is equivalent to

vec(EξG(x, u, ξ))ᵀvec(P) ≤ `(x, u) ∀(x, u), (27)

where G : Rn × Rm × Rn → M̃n is

G(x, u, ξ) = xxᵀ− γ(Ax+Bu+ ξ)(Ax+Bu+ ξ)ᵀ. (28)
Proof: The result holds by considering a similar rea-

soning to the one in the proof of Proposition 1.
As expected, note that in case of deterministic dynamics (27)
reduces to (12), as G(x, u, 0) = H(x, u). For zero mean
noise, the expectation of G is given by

EξG(x, u, ξ) = H(x, u)− γΣ, (29)

and the effect of the noise boils down to a constant term in
the matrix of coefficients.

In the context of the data-driven LP approach, one could be
tempted to directly use data observed from the evolution of
the stochastic dynamics, constructing a set of noise-corrupted
constraints of the form

vec(G(x, u, ξ))ᵀvec(P) ≤ `(x, u). (30)

Alternatively, a Monte Carlo approach could be employed to
mitigate the effect of the noise. In the linear context, the esti-
mation with re-initialization (26) corresponds to performing
the following approximation

1

N

N∑
k=1

G(x, u, ξk) ≈ EξG(x, u, ξ). (31)

In this case, however, re-initialization can be circumvented
by averaging the x+ directly instead of G. Consider to have a
dataset (X,U,X+) of sufficient length N , where x̄ = 1

NX1
and ū = 1

NU1 are the average state and input while x̄+ =
1
NX

+1 is the observed sample mean of the transition over
the N realizations included in the dataset.

Proposition 4: Consider system (8) and v ∈ Vq . Then,

G(x̄, ū, ξ̄) = x̄x̄ᵀ − γx̄+x̄+ᵀ, (32)

where ξ̄ = 1
N

∑N
k=1 ξ

k is the sample mean of the noise over
the corresponding N realizations.

Proof: Thanks to the linearity of the dynamics it holds

x̄+ =
1

N

N∑
k=1

(Axk +Buk + ξk) = Ax̄+Bū+ ξ̄,

hence

G(x̄, ū, ξ̄) = x̄x̄ᵀ − γ(Ax̄+Bū+ ξ̄)(Ax̄+Bū+ ξ̄)ᵀ

= x̄x̄ᵀ − γx̄+x̄+ᵀ,

concluding the proof.
Note that in order to compute G(x̄, ū, ξ̄) as in (32) we do
not need to know ξ̄ which is, as a matter of fact, unknown
and embedded in the dynamics; we only need to compute x̄
and x̄+ from our dataset. We also stress that (32) holds for
any dataset irrespective of Assumption 2. Therefore, we can
substitute approximation (31) with the following

G(x, u, ξ̄) ≈ G(x, u, 0) = H(x, u), (33)

where the upper bar notation has been removed to stress
the fact that (32) can in principle be computed for arbitrary
(x, u) depending on the available data.

According to equation (29), we are neglecting the contri-
bution of the covariance matrix into the constraints, ending
up solving a sampled version of the LP for the deterministic
system x+ = Ax + Bu. It is well-known [10] that the
difference between the optimal value function for a stochastic
linear system and its corresponding deterministic one is a
constant shift depending on the covariance matrix. Conse-
quently, the two associated policies (see Eq. (7)) coincide.

Therefore, we circumvented the re-initialization condition
at the expense of approximating a value function that,
asymptotically in the number of sampled constraints, is the
one associated with the deterministic dynamics. In case
one is interested in policy search only, this heuristic could
represent a viable choice since it asymptotically preserves
the optimal policy. In general, on the other hand, we want to
stress that computing the associated policy with (7) requires
knowledge of f . For this reason, in order to make this
heuristic operational, one should first reformulate the LP in
terms of Q-functions, such that the policy extraction does
not depend on the matrices A and B.

Finally, we discuss a heuristic on constructing approx-
imated artificial constraints. Consider to have a dataset
of length NT and to partition the data into T subsets
(Xi, U i, Xi+) of length N , so that Xi+ = AXi+BU i+Di

and Di = [ξi1 . . . ξiN]ᵀ contains the corresponding noise
realizations. No rank assumption is needed on any of the
T datasets. Then, compute the average dataset (X̄, Ū , X̄+),
where X̄ = [x̄1 . . . x̄N]ᵀ, Ū = [ū1 . . . ūN]ᵀ, X̄+ =
[x̄+1 . . . x̄+N]ᵀ, and each of their columns is x̄i = 1

NX
i1,

ūi = 1
NU

i1 and x̄+i = 1
NX

+i1. Since the partition
into datasets is arbitrary it is reasonable to consider that
Assumption 2 can be satisfied for (X̄, Ū , X̄+). Note that, for
N sufficiently large, we can approximate X̄+ ≈ AX̄ +BŪ .
As a consequence, we can exploit (15) to artificially build a
desired number of (approximated) constraints associated with
the deterministic system x+ = Ax+Bu. Further discussion
is necessary to provide probabilistic performance bounds on
the error introduced and it is deferred to future studies.

V. CONCLUSIONS AND FUTURE WORK

On the wave of the exciting recent literature on be-
havioural theory, we showed how to synthesise new con-
straints for the LP formulation of a linear system starting
from a suitable dataset. In this way, the often poor scalability
properties of the LP approach are partially alleviated by
generating constraints offline and without observing the
dynamics evolution. Other significant insights were given
about reconstructing the associated unknown stage-costs.

Many important issues are still to be explored and dis-
cussed, such as extending the approach to the Q-function
formulation and relaxing the linearity assumptions on the
dynamics to affine or polynomial.

REFERENCES

[1] G. Banjac and J. Lygeros. A data-driven policy iteration scheme based
on linear programming. In 58th IEEE Conference on Decision and
Control, pages 816–821, 2019.

[2] R. Bellman. On the theory of dynamic programming. Proceedings of
the National Academy of Sciences, 38(8):716–719, 1952.

[3] D.P. Bertsekas. Dynamic Programming and Optimal Control, Vol. II.
Athena Scientific, 3rd edition, 2007.

[4] D.P. Bertsekas. Abstract Dynamic Programming. Athena Scientific,
2013.

[5] D.P. Bertsekas and J.N. Tsitsiklis. Neuro-Dynamic Programming.
Athena Scientific, 1st edition, 1996.

[6] P.N. Beuchat, A. Georghiou, and J. Lygeros. Performance guarantees
for model-based approximate dynamic programming in continuous
spaces. IEEE Transactions on Automatic Control, 65(1):143–158,
2020.

[7] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[8] J. Coulson, J. Lygeros, and F. Dörfler. Data-enabled predictive control:
In the shallows of the deepc. In 18th European Control Conference
(ECC), pages 307–312, 2019.

[9] J. Coulson, J. Lygeros, and F. Dörfler. Distributionally robust chance
constrained data-enabled predictive control, 2020. ArXiv2006.01702.

[10] M.H.A. Davis and R.B. Vinter. Stochastic Modelling and Control.
Chapman and Hall, 1985.

[11] D.P. de Farias and B. Van Roy. The linear programming approach to
approximate dynamic programming. Operations Research, 51(6):850–
865, 2003.

[12] D.P. de Farias and B. Van Roy. On constraint sampling in the
linear programming approach to approximate dynamic programming.
Mathematics of Operations Research, 29(3):462–478, 2004.

[13] C. De Persis and P. Tesi. Formulas for data-driven control: Stabi-
lization, optimality, and robustness. IEEE Transactions on Automatic
Control, 65(3):909–924, 2020.

[14] O. Hernandez-Lerma and J.B. Lasserre. Discrete-Time Markov Control
Processes: Basic Optimality Criteria. Springer-Verlag NY, 1996.

[15] A.S. Manne. Linear programming and sequential decisions. Manage-
ment Science, 6(3):259–267, 1960.

[16] A. Martinelli, M. Gargiani, and J. Lygeros. Data-driven optimal control
with a relaxed linear program. 2020. arXiv:2003.08721.

[17] P. Mohajerin Esfahani, T. Sutter, D. Kuhn, and J. Lygeros. From
infinite to finite programs: Explicit error bounds with applications to
approximate dynamic programming. SIAM Journal on Optimization,
28(3):1968–1998, 2018.

[18] A. Romer, J. Berberich, J. Köhler, and F. Allgöwer. One-shot
verification of dissipativity properties from input–output data. IEEE
Control Systems Letters, 3(3):709–714, 2019.

[19] P.J. Schweitzer and A. Seidmann. Generalized polynomial approxi-
mations in markovian decision processes. Journal of Mathematical
Analysis and Applications, 110(2):568–582, 1985.

[20] T. Sutter, A. Kamoutsi, P. Mohajerin Esfahani, and J. Lygeros. Data-
driven approximate dynamic programming: A linear programming
approach. In 56th IEEE Conference on Decision and Control, pages
5174–5179, 2017.

[21] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, 2017.

[22] K. Szymiczek. Bilinear algebra: An introduction to the algebraic
theory of quadratic forms. Gordon&Breach Science Publishers, 1997.

[23] A. Tanzanakis and J. Lygeros. Data-driven control of unknown
systems: A linear programming approach. In IFAC-PapersOnLine,
2020. arXiv:2003.00779.

[24] H.J. van Waarde, C. De Persis, M.K. Camlibel, and P. Tesi. Willems’
fundamental lemma for state-space systems and its extension to
multiple datasets. IEEE Control Systems Letters, 4(3):602–607, 2020.

[25] H.J. van Waarde, J. Eising, H.L. Trentelman, and M.K. Camlibel. Data
informativity: A new perspective on data-driven analysis and control.
IEEE Transactions on Automatic Control, 65(11):4753–4768, 2020.

[26] Y. Wang, B. O’Donoghue, and S. Boyd. Approximate dynamic
programming via iterated Bellman inequalities. International Journal
of Robust and Nonlinear Control, 25(10):1472–1496, 2015.

[27] C.J.C.H. Watkins and P. Dayan. Q-learning. Machine Learning,
8(3):279–292, May 1992.

[28] J.C. Willems, P. Rapisarda, I. Markovsky, and B.L.M. De Moor. A note
on persistency of excitation. Systems & Control Letters, 54(4):325–
329, 2005.

	I INTRODUCTION
	II OPTIMAL CONTROL VIA LINEAR PROGRAMMING
	III FEASIBLE REGION SYNTHESIS FROM DATA
	III-A Unknown dynamics
	III-B Unknown stage cost
	III-C State-space exploration

	IV FEASIBLE REGION ESTIMATION FOR STOCHASTIC SYSTEMS
	V CONCLUSIONS AND FUTURE WORK
	References

