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Problem setup: optimal control

Ingredients:
> A discrete-time system x* = f(x, u, £) with possibly infinite state & action spaces
> A stage-cost function £ : X x U — R,
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Problem setup: optimal control

Ingredients:
> A discrete-time system x* = f(x, u, £) with possibly infinite state & action spaces
> A stage-cost function £ : X x U — R,

The discounted oco-horizon cost associated to a stationary feedback policy 7 : X — U is

X0:X1

Objective: find an optimal policy 7* such that v« (x) = inf, v(x) = v*(x)

> (e, (%))

k=0

Ve(x) = E¢

Classical ADP methods include value iteration, policy iteration and linear programming
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Problem setup: the linear programming (LP) approach

The optimal value function admits a recursive definition (the Bellman equation)

vi(x) = inf {0x,u) +9Ee [V (7(x, 0. )] |

(Tv)(x)
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Problem setup: the linear programming (LP) approach

The optimal value function admits a recursive definition (the Bellman equation)

v (x) = ;ggj{ﬂ(x, u) +vEe [v¥(f(x,u,€))] }

(Tv)(x)

T is monotone and contractive, hence v < Tv = v < v* and therefore

sup /x v(x)c(dx)

vev

st v(x) < (Tv)(x) Vx,
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Problem setup: the linear programming (LP) approach

The optimal value function admits a recursive definition (the Bellman equation)

v (x) = ;ggj{ﬂ(x, u) +vEe [v¥(f(x,u,€))] }

(Tv)(x)

T is monotone and contractive, hence v < Tv = v < v* and therefore

sup /x v(x)c(dx)

vev

st v(x) <(Tv)(x) Vx,

We can relax the constraints by substituting £(x, u) + vE¢ [v(f(x, u,£))] V(x,u)
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The LP approach in practice

Efficient methods to solve LPs exist, but several sources of intractability arise
> v is an optimization variable in the co-dimensional space V
» oo number of constraints

sup /X v(x)e(dx)

vev
st v(x) < U(x,u) +vEe[v(f(x,u,€)] V(x,u)
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» oo number of constraints

sup /X v(x)e(dx)

vev
st v(x) < U(x,u) +vEe[v(f(x,u,€)] V(x,u)

We can substitute ) ; 8;¢;(x) and sample a finite subset of constraints

V(X,') < é(x,-, U,') + ’yEg [V(f(Xi, uj, {/))] V(X,'7 U,‘) D
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The LP approach in practice

Efficient methods to solve LPs exist, but several sources of intractability arise
> v is an optimization variable in the co-dimensional space V
» oo number of constraints

sup /X v(x)e(dx)

vev
st v(x) < Ux,u) + vEe[v(f(x,u,€))] V(x,u)

We can substitute ) ; 8;¢;(x) and sample a finite subset of constraints

V(X,') < f(X,', U,') 4F ’y]Eg [V(f(Xi, uj, fl))] V(X,'7 U,') eD

Model-free/RL framework: construct one constraint for each tuple {x;, u;, £;, x;" }]_,

E
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Synthesis of Bellman inequalities from data

» Motivation: significant
sampling/exploration is required to meet
prescribed performance

» How to reconstruct Bellman inequalities

from data? When a dataset is
sufficiently rich?

E
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Bellman inequalities under LQ assumptions

Assume for now deterministic linear dynamics and quadratic stage-cost

f(x,u,&) = Ax + Bu, K(x,u):{ﬂTLD], veVo={v:X—=>R | v(x)=xTPx}

The Bellman inequalities are

V(X) < @(X, U) + ’YEE [V(f(X, u, 5))}
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Unknown dynamics: reconstructing H(x, u)

We say that (X, U, X*) is a dataset of length T when

X=[x" - X7, U=[u" -~ u7] and X*=AX+BU
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Unknown dynamics: reconstructing H(x, u)

We say that (X, U, X*) is a dataset of length T when
X=[x" - X', u=[u" - u'] and X" =AX+BU

Inspired by behavioural theory arguments, Willem’s fundamental lemma and many related works,
we introduce the following result:

Lemma

><|

Consider a dataset (X, U, X*) of length T with [ ] full row-rank.

U
Then, for each (x, u) € X x U there exists an o € RT such that

H(x,u) = (Xa)(Xa)T —y(XTa)(XTa)T.
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Unknown stage-cost: reconstructing ¢(x, u)

Proposition

><|

Consider a dataset (X, U, X™) with [ U} full row-rank and square. Then, for each (x,u) € X x U

there exists an o € RIMXxdimU g/,0h that
x| [x
Ux,u) =aTLxyo, [Lxulj=28 <[u’] : [J]) ;
i I

and j3 is the bilinear form associated to ¢.

iA
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Unknown stage-cost: reconstructing ¢(x, u)

Consider a dataset (X, U, X™) with [ﬂ full row-rank and square. Then, for each (x,u) € X x U

there exists an o € RIMXxdimU g/,0h that
x| [x
Ux,u) =aTLxyo, [Lxulj=28 <[u’] : [J]) ;
i I

and j3 is the bilinear form associated to ¢.

» Since {Z] = [i(f] a, we can write £(x, u) = [ﬂ ' L {ﬂ =aT B] ' L {ﬂ !
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Unknown stage-cost: reconstructing ¢(x, u)

Consider a dataset (X, U, X™) with [ﬂ full row-rank and square. Then, for each (x,u) € X x U

there exists an o € RIMXxdimU g/,0h that
x| [x
Ux,u) =aTLxyo, [Lxulj=28 <[u’] : [J]) ;
i I

and j3 is the bilinear form associated to ¢.

» Since {Z] = B] a, we can write £(x, u) = [ﬂ ' L {ﬂ =aT B] ' L {ﬂ !

» [ and Ly, y are congruent and [ﬂ takes the role of transformation matrix
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2D example
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(a) Bellman inequalities in the variables space

v(zy, z2)
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(b) Corresponding value functions
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Estimation of Bellman inequalities for stochastic systems

Consider now stochastic linear systems f(x, u, &) = Ax + Bu + £. Estimation with iterative
re-initialization can be performed as

v(x) < U(x, u) + v Ee[v(f(x, u,£))]
—_—
A Sk V(o gh)

iA
L/
1 Martinelli, Gargiani & Lygeros « CDC2021 « 10/13



Estimation of Bellman inequalities for stochastic systems

Consider now stochastic linear systems f(x, u, &) = Ax + Bu + £. Estimation with iterative
re-initialization can be performed as

v(x) < U(x,u) + v Ee[v(f(x, u,))]
— —m——
g SO v(f(x,u,Ex))
Instead, let’s write again

vec( Ee [xxT — v(Ax + Bu + €)(Ax + Bu + £)T] ) "'vec(P) < (x, u)

E¢ G(x,u,&)

E
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Estimation of Bellman inequalities for stochastic systems

Consider now stochastic linear systems f(x, u, &) = Ax + Bu + £. Estimation with iterative
re-initialization can be performed as

v(x) < U(x,u) + v Ee[v(f(x, u,))]
— —m——
g SO v(f(x,u,Ex))
Instead, let’s write again

vec( Ee [xxT — v(Ax + Bu + &€)(Ax + Bu + £)T] ) "'vec(P) < (x, u)

E¢ G(x,u,£)

H(x,u) — vx

E
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Estimation of Bellman inequalities for stochastic systems

Consider a linear stochastic system and v € V,. Then, given a dataset (X, U, X*),
G(x,0,&) = xxT — yxtx*T,

wherex = 1X1,0= LU1, x* = IxT1and E= L S0, ¢k

iA
1 Martinelli, Gargiani & Lygeros « CDC2021 « 11/13



Estimation of Bellman inequalities for stochastic systems

Consider a linear stochastic system and v € V,. Then, given a dataset (X, U, X*),
G(x,0,&) = xxT — yxtx*T,
- _ S 5 N
wherex = £X1,0= U1, x" = Xt and &= 15, &k

» G can potentially be computed for any (x, u) pair depending on the available data
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Estimation of Bellman inequalities for stochastic systems

Consider a linear stochastic system and v € V,. Then, given a dataset (X, U, X*),
G(x,0,&) = xxT — yxtx*T,
- _ S 5 N
wherex = £X1,0= U1, x" = Xt and &= 15, &k

» G can potentially be computed for any (x, u) pair depending on the available data
> G(x,u,&) ~ G(x,u,0) = H(x, u)
> The approximation is: vec(H(x, u) — X )Tvec(P) < {(x, u)
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Estimation of Bellman inequalities for stochastic systems

Proposition
Consider a linear stochastic system and v € V,. Then, given a dataset (X, U, X*),

G(x,0,&) = xxT — yxtx*T,
wherex = 1X1,0= LU1, x* = IxT1and E= L S0, ¢k

» G can potentially be computed for any (x, u) pair depending on the available data
> G(x,u,&) =~ G(x,u,0) = H(x, u)

> The approximation is: vec(H(x, u) — X )Tvec(P) < {(x, u)

> Optimal value function is shifted but the optimal policy is preserved!
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Conclusions and future work

In summary:

» Under LQ assumptions, a sufficiently rich dataset can be used to artificially generate all
Bellman inequalities

» The associated stage-cost can be reconstructed thanks to a bilinear algebra framework

» In case of stochastic systems, we can provide an (intentionally) biased estimate of the
Bellman inequalities that preserves the optimal policy without iterative re-initialization
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Conclusions and future work

In summary:

» Under LQ assumptions, a sufficiently rich dataset can be used to artificially generate all
Bellman inequalities

» The associated stage-cost can be reconstructed thanks to a bilinear algebra framework

» In case of stochastic systems, we can provide an (intentionally) biased estimate of the
Bellman inequalities that preserves the optimal policy without iterative re-initialization

Further developments:
» How to synthesise (approximate) Bellman inequalities from data for stochastic systems
» Relax the LQ assumptions to polynomial

E
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