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Abstract

This research project presents the derivation of a linearised model for Crazyflie quadrotors and the

implementation of a distributed, collision free trajectory tracking algorithm using the developed model.

A cascade control law is implemented for the linearised model of the mini quadcopter. This structure

enables the creation of two control modes, on-board and off-board. These are used depending on the

requirements of the user. The quadrotors are localised using an optical flow based sensor mounted on

each one of them. This makes the complete independence of the network from a central authority and

a central positioning system, such asmotion capture systems, possible. A Linear-Quadratic Regulator

(LQR) optimal controller is implemented using the off-board configuration achieving stable flight in an

indoors environment. A collision avoidance trajectory tracking algorithm is developed and solved for

the Crazyflie developed dynamics. The nonconvex problem of collision avoidance is solved using

a successive Taylor series linearisation around some nominal trajectories achieving convergence in

milliseconds. The same problem is set up to be solved for in a distributed fashion using an algorithm

based on the Alternating Direction Method of Multipliers (ADMM). Both the centralised and distributed

problems are then solved using a receding horizon approach to introduce feedback into the system

and allow an even faster computation due to the shorter horizon window size. The optimal inputs,

obtained by solving these problems, generate collision free trajectories in simulation and are applied

in an open loop fashion to the drones. The predicted and observed trajectories were compared to

demonstrate the high accuracy of the derived model.
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1 Introduction

1.1 Project Background and Motivation

Quadrotors or drones, as they are usually referred to, have been studied extensively for at least the

last nine decades. It is almost undisputed that drones have their place in today’s notions of the future

day planet. In fact, even today we all witness small steps towards their integration in our mundane

tasks with some of the most advanced camera equipped drones being used for search and rescue

tasks [1] or heavy-sized ones used for irrigation and other agricultural purposes [2], to just name a few.

With all this progress made so far, we start to wonder what else is possible. If we have a single drone

now executing a delivery from a given origin to a destination in a completely free air space or another

one irrigating a vast field on its own, then very soon this may change. The increase of flying machines

means the airfield may soon be filled with an army of quadrotors, some with the same objective, some

with completely different ones and possibly a few malfunctioning or noncooperative ones.

Figure 1.1: Crazyflie 2.0 with Flow Deck V2

A particularly interesting example of this so

called drone system is their use in urban envi-

ronments for human and cargo transportation.

Moreover, if we have traffic then we need a sys-

tem in place to manage it. This becomes a con-

trol system task which can be tackled in a num-

ber of ways. Operating such a system in a cen-

tralised fashion may have several shortcomings,

including it not being robust to attacks on or fail-

ures of the central system, its limited scalability,

need for identification of every single agent and

the disclosure of individual information, which may be private, to the entire network [3]. We thus turn

to a solution requiring a complete independence of all of the agents, i.e. the quadrotors, from any

centralised systems; in control terminology we are dealing with a distributed control problem.

The Crazyflie nano-quadcopters, shown in Figure 1.1 are developed by Bitcraze [4] and present

an ideal test-bed for the development and testing of such control algorithms indoors. The open-

source software [5] provides the opportunity of direct and low level control, and we aim to make use

of this to derive a linearised model of these copters, develop centralised and distributed algorithms

for their trajectory tracking and collision avoidance, and finally implement these in practice. The

developed algorithms can then be implemented on a much larger scale for a number of applications,
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1.2 Project Goals

as discussed.

1.2 Project Goals

As we established, the aim of the project is to build a distributed system independent of any central

computations. This is to be achieved in steps, including the derivation of an accurate linear model for

the Crazyflies, development of a centralised system that solves the required problems, and finally its

distribution. These steps set the path for the rest of this report and are detailed below:

1. Develop a linearised mathematical model for the quadcopter and a controller designed to sta-

bilise it locally. Use a camera based method to perform state estimation for the quadcopters

and feed the data to the firmware at a high rate. The drone has to perform a stable flight along

the reference (position or velocity) trajectory fed in by the user.

2. Develop a centralised controller to drive a group of Crazyflies to perform collective tasks, such as

formation and trajectory tracking. The quadcopters should communicate at a reasonably high

rate with the aggregator, i.e. a centralised authority supplying enough information (full state,

position and/or velocity), such that collision avoidance and other local and coupled constraints

are satisfied.

3. Replace the centralised algorithm by a decentralised one, distributing all the computation among

the drones, eliminating the need of an aggregator. The collective tasks defined in the point above

should still be achieved, specifically the collision avoidance constraint which should be enforced

among all agents.

1.3 Report Layout

We provide a literature review in the next section, followed by the discussion of our technical setup

in Section 3 explaining the details of the used sensors, the networked setup of the system, the tech-

nical details and justifications for the choices made. Following our defined goals we continue to the

elaboration of a quadrotor’s dynamics and control in Section 4. This section sets the cornerstone for

the rest of the report by establishing the lower level of the control stabilising each drone for hover.

After the linearised model of the Crazyflie is obtained, the multi-agent problem formulation and setup

are presented in Section 5 and the best algorithm to fit our purposes is chosen. The centralised and

distributed problems of collective trajectory tracking with collision avoidance, are solved in Sections

6 and 7, respectively. These are also implemented in a receding horizon implementation with Model
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Figure 1.2: Project Structure

Predictive Control (MPC). Finally, in Section 8, the implementation of the algorithms, detailed in pre-

vious sections, in practice on the Crazyflies is described, with a conclusion in Section 9 to sum up the

results. The development from single agent dynamics to centralised and distributed problems and

finally to practical implementation is illustrated in Figure 1.2 above. Each preceding step acts as a

building block for the later ones to be built upon.

2 Literature Review

Vertical take off and landing (VTOL) vehicle control has been studied extensively in the literature

and a number of different methods have been developed [6] particularly for quadrotors, as they are

becoming so increasingly more popular and applicable in daily lives. Probably the most widely used

type of controller in the industry, the Proportional, Integral, Derivative (PID) controller has been applied

to the quadrotor problem following linearisation of a drone model [7], achieving zero steady state

error and small overshoot. Such linear models have also been used to develop optimal controllers,

such as the Linear-Quadratic Regulator (LQR) [8, 9], achieving a stable flight by considering the

attitude and position control problems separately. Lyapunov stability theory based non-linear control

methods, such as Sliding Mode Control (SMC) [10] or integral (backstepping) control [11] have also

been successfully applied driving the quadcopter to the required location at the required yaw angle.

Most of the developed techniques are also directly applicable to Crazyflie quadrotors. Their plat-

form has been used for the design and implementation of various controllers, such as LQR low level

controller [12], PID and Geometric controllers [13] and non-linear Lyapunov theory based approaches

[14]. The recent advancements in computational power also gave rise to a number of learning and

data based methods. These have been applied to quadrators and specifically to Crazyflies with great

success, using deep neural networks [15], reinforcement learning [16] and data-based predictive con-

trol [17].

The problem of several agents in the same network solving a problem upon agreeing on some
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parameters is known as the consensus problem and has been studied extensively [3, 18]. Concepts,

such as flocking [19, 20] and formation control [21, 22] problems are directly applicable for our aim

of controlling a swarm of drones. As it is discussed in Section 5.2, most of these feedback based

approaches assume simple dynamics and constraints, making discrete iterative based decentralised

[23], and distributed [24, 25, 26] algorithms a more applicable approach to the problem of collision

avoidance trajectory tracking.

A number of projects are aimed at the networked control of Crazyflies, such as [27, 28]. For most

of these projects the control is implemented from a central station and for collision avoidance potential

methods are used. A centralised motion capture camera system is used to localise the agents, thus

introducing a central aggregator and eliminating the possibility of fully distributed control. Others,

such as [29], use two-way ranging based sensors which depend on carefully placed sets of anchors in

the flying area. As discussed in Section 3, our proposed solution for the Crazyflie distributed collision

avoidance trajectory tracking problem includes the application of on-board optical flow based sensors,

independent of any other systems. These localise the agents with respect to their starting positions.

3 Technical Setup

To implement single agent, centralised and distributed algorithms in practice, we use the Crazyflie 2.0

quadrotors, just like the one shown in Figure 1.1. As discussed, their small size (9cm2
, 27grams [4])

allows us to perform our tests in an indoors confined environment. In this section we briefly describe

how we set up the platform, including the used firmware and the localisation method used. Given that

the reader has access to the developed software [30, 31, 32] and hardware [4] and has setup both

the physical and computer environments as detailed below, the achieved results can be reproduced

and possibly further improved.

3.1 Software And Data Collection

The high level structure of the Crazyflie system is simple. There are two microcontrollers onboard the

copter [33], one carrying out tasks like controlling the power supply or USB port control and the other

receiving and analysing sensors, actuating inputs to motors and reading and writing to the memory.

While both of these chips contain editable firmware, we aremainly concerned with the latter, where the

flight control takes place, and it will be referred to as firmware from this point on. As it is discussed in

Section 4.3, depending on the type of control we use, there are always certain operations taking place

in the quadcopter firmware and data needs to be communicated with the central computer, either to
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3.2 Localisation

close a loop or to receive references. This communication takes places through a radio module called

CrazyRadio PA [34], which comes with its own firmware and features a 20dBm power amplifier, giving

a range of up to 1km. It connects to the computer using a USB, operating at 2.4GHz frequency. The

necessary libraries to be installed on the computer to connect and control the Crazyflie are provided

by Bitcraze on their GitHub page [5].

Figure 3.1: Flow Deck V2 [35]

The tests are carried out using a Linux

Ubuntu 16.04 based central computer. We use

the modified firmware [30] for the off-board con-

trol, discussed in Section 4.3.1 and the latest

official firmware release, version ”2020.02” [36]

for all the other tests. The details of the setup

for swarm control are presented in Section 8.1.

The inter-program communication and data col-

lection from the Crazyflie quadrotor is supported using the Robot Operating System (ROS) framework,

in particular the Kinetic Kame distribution [37].

3.2 Localisation

Distributed control requires complete independence from any central systems. Having a motion cap-

ture system to localise the drones will violate this condition. This is why we decided to equip all of

the drones with an optical flow based sensor, called Flow Deck V2 [35], by Bitcraze. As shown in

Figure 3.1, the sensor is mounted underneath each Crazyflie. The Kalman filter in the firmware of the

Crazyflies makes use of the velocity gained through the photographs taken by the optical flow sensor

and retrieves the position coordinates using its observer structure. For the height measurement, the

Flow Deck is equipped with a light sensor that estimates the position by calculating the duration of

the travel of a light beam. This in-situ implementation also has the advantage of having almost no

communication delays and operating in the firmware.

4 Single Quadrotor Dynamics and Control

Controlling a network or a swarm of quadcopters is not possible without understanding the individual

agent dynamics. In this section, we analyse the non-linear equations of motion for quadrotors and their

linearisation. Thismodel enables the development of a cascaded control lawwith different frequencies

of operation in each loop.
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4.1 Equations of Motion

Figure 4.1: Forces acting on the Crazyflie

Two control modes: on-board and

off-board are introduced. In the first

one, the low level control takes place

on board, and the computer oper-

ates the high level controller generat-

ing some reference inputs to the fly-

ing system. The second approach pro-

vides a much lower level of control,

where controllers can be developed to

actuate the angular rates directly. The

advantages and drawbacks of both types are discussed and a Linear-Quadratic Regulator (LQR)

controller is implemented.

4.1 Equations of Motion

The dynamics of the drone, although simple, are still non-linear and need to be analyzed before a

controller may be designed. Figure 4.1 above shows the forces acting on the copter, as well as

the used inertial and body frames of reference, marked by (I) and (B) respectively. Following the

derivation of ETH Zürich Automatic Control Lab’s D-FALL project [12] the three equations of motion

below accurately capture the evolution of a quadcopter under the influence of the four motor thrusts:

~̈p =

2

4
p̈x

p̈y

p̈z

3

5 =
1

m

0

@R
(B)
(I) (

~ )
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5� (~! ⇥ J~!)
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A , (4.1c)

with the vector ~p being the position vector in inertial frame, fi the force acting on the i
th motor, m the

mass of the copter, J the moment of inertia matrix, xi and yi the horizontal and vertical distances

between the center and the blades, ci the linear coefficient of blade drag, ~! the body rates vector and

~ the Euler angles, of the form

roll pitch yaw

�T
. R(B)

(I) (
~ ) is a rotation matrix transforming from the

body frame to the inertial one. The above are derived using Newton’s second law for the translational

and rotational cases respectively and the body rates and Euler angles are related by Equation (4.1b),
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4.2 Linearised Models

with T (~ ) being a transformation matrix defined below:

T (~ ) =

2

4
1 0 � sin (�)
0 cos (�) sin (�) cos (�)
0 � sin (�) cos (�) cos (�)

3

5 . (4.2)

4.2 Linearised Models

4.2.1 Cascaded Structure

Before a controller can be designed for this system we have to retrieve its linearised version, and

to do so we need to choose an equilibrium point around which that should be performed. For any

system ẋ = h(x, u), we can linearise around an equilibrium operating point (x0, u0) using first order

Taylor series approximation and small deviations from this point,

ẋ ⇡ h(x, u) = h(x0, u0) +

✓
�h

�x

◆T
�����
x0,u0

(x� x
0) +

✓
�h

�u
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�����
x0,u0

(u� u
0). (4.3)

This can be then written in a matrix form, noting that the first term is 0 as defined by the equilibrium

conditions, and by defining the deviations from this point by �x and �u for state and input respectively,

ẋ = A�x+B�u, (4.4)

whereA andB are thematrices arising from the second and third terms of Equation (4.3) respectively.

The most natural point of equilibrium around which to perform the linearisation of the system is

the hovering position of the drone with ~̇p = 0, ~ = 0 and ~̇ = 0. Now, defining ftotal to be the total

force acting on the drone, i.e. the sum of the four motors, and ⌧x,⌧y and ⌧z to be the torques acting

on the three body axis as shown in Figure 4.1, we can represent a hover state in the following matrix

form,
2

664

ftotal

⌧x

⌧y

⌧z

3

775 =

2

664

1 1 1 1
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2
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0

3

775 . (4.5)

The above, indeed, satisfies the equilibrium state conditions as expected when plugged into Equa-

tions (4.1a) and (4.1c). For the nonlinear system described by the set of Equations (4.1), we define

the state to be the position of the drone in the inertial frame of reference, its rate of change, the Euler

angles in the body frame of reference and their rates of changes. The inputs are simply the four mo-

tor thrusts. Then, applying Equation (4.3) to the nonlinear system and following the derivation in the

Appendix A of the ETH D-FALL project [12] we achieve a linear state space model as formed below,
2

6664
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= Ahover
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3
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2
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3

775 . (4.6)
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4.2 Linearised Models

In practice we have access to our state variables at different frequencies. For example, the body rates

are received from the Inertial Measurement Unit (IMU) at 1000Hz, while the position information is

retrieved using the Flow Deck at 200Hz. This means that a cascade controller has to be implemented.

The controller is dividedinto two loops, the outer and the inner as shown in Figure 4.2 below. This

division and cascade implementation can be justified by the assumption that the inner loop is infinitely

fast, or in our case fast enough to close the loop before the next reference input from the outer loop

is generated.

Figure 4.2: Crazyflie Cascade Controller Block Diagram

The outer loop has the quadcopter’s position, velocity and the Euler angles as its state vector.

The control inputs are then the total thrust, ftotal, and the adjustments made to the three body rates

around the body axis, formulated in (4.7a). The reference to the outer loop, theoretically, can be any

of its states, as detailed in Section 4.3. The generated adjustments for the body rates by the outer

loop are fed to the inner loop as reference signals, as shown in Figure 4.2. In this configuration,

the states of this loop are defined to be these adjustment body rates and the control inputs are the

four motor thrust adjustments of the torques around the three axis, as formulated in Equation (4.7b).

Summed with the total and feed forward thrust adjustments these are transformed to voltage values

using Pulse Width Modulation (PWM) and applied to the four motors.

2
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with,
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4.2 Linearised Models
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3
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where J is the mass moment of inertia matrix. Figure 4.2 also shows a feed-through term which is

exactly the amount of total vertical force required to keep the copter hovering. This is naturally just

the weight of the copter, as shown in Equation (4.5) and is precalculated. While it may change over

the course of the flight due to the battery weight decrease, it has shown not to have any noticeable

effects on the flight performance.

4.2.2 Full Linearised Model

Having a linearised model for the outer loop, an outer controller can be designed, as it is done in

Section 4.3.1. However, as detailed in Section 4.3.2, aiming for a complete autonomy in the system,

the low level controllers are moved to the drone firmware, on-board. To achieve this, we model and

linearise the on-board Bitcraze implemented outer controller and join it with our outer level state space

model (4.7a) to obtain the full linearisedmodel of the drone. Thus, the outer state space representation

(4.7a) will be used for off-board control in Section 4.3.1 and the full linearised model derived in this

section will be used for the on-board control in Section 4.3.2 and later for the multi agent problem.

It can be seen from equations (4.7a) and (4.8a) that the controller structure can be decoupled into

four separate controllers, namely height, yaw angle, x and y controllers. Moreover, as implemented

by Bitcraze, the input signal to the controllers can be referenced by position, yaw angle or velocity.

Below we discuss the designs of each of these controllers and our choice of references which will

then become our control inputs for the controller integrated model. The blue lines in Figures 4.3

to 4.5 below show the error inputs to the controllers.

Figure 4.3 shows the outer controller block diagram for the height controller. The difference be-

tween the desired and the measured height from the Flow Deck Kalman estimator, ��z = (z0 � z),

becomes the input to the controller. We choose the height instead of its rate of change to be the

9



4.2 Linearised Models

input, as we plan to do most of the testing in two dimensions and we do not need a lower level input

for this controller. However, this can easily be modified to a velocity input controller as it is done for

the x and y controllers. There is a cascade of Proportional, Integral (PI) controllers. The first one is

applied to the reference input to achieve the target vertical velocity. This is then compared with the

state estimate of the current vertical velocity received from the IMU, ż, and is passed through the next

PI controller and a constant gain Kth to get the total thrust force in motor command values. This is

then transformed to Newtons using a quadratic equation [12] and added to the constant feed forward

force value to generate ftotal, the first input in the outer linearised model (4.7a).

Figure 4.3: Outer Height Controller

In contrast to the height controller, reference velocities are used as inputs for the x and y ones as

shown in Figure 4.4 below. This choice will allow a lower level and smoother control for the x and y

directions. This has a similar structure to the height controller with a cascade of PI controllers. The

first stage, called the velocity controller, receives the error between the reference and the estimated

velocities (from the IMU), ��ẋ = (ẋ0 � ẋ) and ��ẏ = (ẏ0 � ẏ) and outputs the target pitch and roll

angles, �t and �t, respectively for the x and y controllers. Then the difference between the target

and the estimated angles (obtained from the gyroscope) is passed through the next PI stage, called

the attitude controller, outputting the pitch and roll body rates, !y and !x, respectively. It should be

noted that there is a conversion happening from radians to degrees at the start of the stages and from

degrees to radians at the end to match the units used on-board and in our calculations. Additionally,

the pitch angles are pre and post multiplied by �1 to account for the different axis conventions used.

For the yaw angle controller, the desired yaw angle is simply set as reference and the input to

the controller becomes the error between that and the measured angle obtained from the gyroscope,

��↵ = (↵0 � ↵), as shown in Figure 4.5 below. In this case we have a simple PID controller giving

the required reference yaw body rate !z. Like in the previous controller, we perform angular unit

conversions at the start and the end.

Summing up, we have four states that are used as references with this setup, specifically, the

height z0, the x and y velocities ẋ0, ẏ0 and the yaw angle ↵0. The other inputs to the controller,

such as the roll and pitch angles or the vertical velocity, are state measurements and we do not

10



4.2 Linearised Models

Figure 4.4: Outer X,Y Controller

Figure 4.5: Outer Yaw Controller

directly reference those. We construct a SIMULINK model for the four controllers defined above and

linearise it using MATLAB’s ”linmod” function. The resulting linearised state space representation

of the controller is then joined with the outer level state space system (4.7a) in feedback using the

”connect” function, just like it is shown in Figure 4.2. This finally gives us the full linearised model of

the Crazyflie drone, represented by Equation (4.9). The state vector sf comprises of 16 states for the

system, with nine belonging to the outer state space model in (4.7a), and seven introduced by the

controller. The control input vector uf comprises of nine states, however only the referenced states,

height, yaw and (x,y) velocities are controlled, while the others are set to zero to achieve negative

feedback.

ṡf = Afsf +Bfuf

yf = Cfsf
(4.9)

The resulting Af and Bf matrices, thus have 16 ⇥ 16 and 16 ⇥ 9 sizes, and the matrix Cf is of

dimension 9 ⇥ 16, with the first 9 ⇥ 9 being an identity matrix for the plant states and the rest a null

matrix for the controller ones. We plug in the numerical values for the gains used in the four part

controller by Bitcraze [36], shown in the Table 1 below, as well as the mass of the quadcopter for the

plant model which we set to 29 grams with the Crazyflie and the flowdeck weighing 27 and 2 grams

each. We note that the gains for the y controller are the same as for the x one, as expected due to

symmetry. To prove the stability of the system, we check in the eigenvalues of the state space matrix

Af , confirming they are all negative or zero. We have only two poles at the origin which appear when
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4.3 Implementation

Kzp Kzi Kztp Kzti Kxp Kxi Kxtp Kxtp K↵p K↵i K↵d

2 0.5 25 15 25 1 6 3 6 1 0.35

Table 1: Numerical Values for the Cascaded Outer Controller

we check the transfer function from the reference ẋ0 and ẏ0 to x and y positions respectively, which

is expected as we anticipate an integral term from velocity to position.

4.3 Implementation

With an understanding of the dynamics of a quadrotor, a low level control architecture of Crazyflies

and a linearised model in our hands we can now think about developing and implementing controllers

in practice. At this point, using the nested structure of the Crazyflie model as shown in Figure 4.2 we

distinguish two modes of controlling the Crazyflies, namely off-board and on-board and discuss both

in detail below.

4.3.1 Off-Board Mode

In this mode of operation, also implemented by [12], the fast inner loop controller is left to run on-

board, as implemented by Bitcraze in their firmware [36] and an outer controller is designed and ran

off-board on a computer. With fast enough communication links in place, this way the outer loop is

closed on the computer instead of the on board microcontroller. As the structure of the outer loop sug-

gests, the controller running on the computer receives the current full state sfs, as defined in Equation

(4.10), from the drone and performs the computation to output the total thrust and the three reference

body rate adjustments as input deviations, �u, defined in Equation (4.11). This is combined with the

equilibrium feed forward input u0 to form the control input u and is sent the drone, as shown in Figure

4.6 below. The terms Ko, Ki and G in the figure represent the outer and inner controllers and the

plant models respectively.

sfs =

2

4
~p

~̇p

~ 

3

5 , (4.10) �u =

2

664

�ftotal

�!x,ref

�!y,ref

�!z,ref

3

775 . (4.11)

As discussed in Section 3, we use the Flow Deck optical flow based sensor to localise the drone,

which is mounted directly below the drone and the software for it is integrated right in the firmware.

To control the Crazyflie with a low level actuation, such as the body rates and the total thrusts, the

firmware needs to be reconfigured. Otherwise, the modes of control are high level, such as ”take-off”

or ”land”, position, trajectory or velocity references. As mentioned before, with the assumption of an
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4.3 Implementation

Figure 4.6: Off-Board Control Block Diagram

infinitely fast inner loop we can consider only the outer loop linearised state space representation of

the model in (4.7a). Using this we can then develop a controller to satisfy user requirements, such as

robustness or optimality. A LQR, for example, can be designed by solving the minimization problem in

Equation (4.12) below and running the controller according to the described off board scheme. Each

reference provides a new equilibrium state, s0fs as a reference for the model and the regulator drives

the deviations from this state, i.e. �sfs = sfs � s
0
fs to zero, achieving a tracking behaviour controlled

by the design matrices Q and R.

min
�sfs,�u

J(�sfs, �u) =
1

2

Z 1

0
(�sfs(t)

T
Q�sfs(t) + �u(t)TR�u(t))dt

subject to ˙�sfs = Aouter�sfs +Bouter�u

(4.12)

Solving the Algebraic Riccati equation gives a feedback solution for the above problem with the law

�u = �K�sfs, with K = R
�1

B
T
P and P being a matrix dependent on the eigenvectors of the

Hamiltonian Matrix. The Riccati equation for the linearised outer loop dynamics is solved and a ladder

step response test with the off-board configuration in Figure 4.6 in place is performed. Figure 4.7

shows the evolution of the height of the drone over time under the step response, with the blue curve

showing the reference, the red the expected response from the simulated non-linear dynamics and

the orange curve the measured drone signal collected using the ROS system. We see a a close

Figure 4.7: LQR Ladder Step Response under Off-board control Mode

match between the red and the orange curves proving the accuracy of the linearised model under

simulated white noise. We see a staggered response at the start which is due to the error of the
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4.3 Implementation

Flow Deck sensor which exhibits such behaviour at heights under 20cm and more then 300cm [38].

The existence of the steady state error is a proof that there is no integral action involved as we are

only including a state gain feedback. However, the observed maximum height error, a combination

of steady state and sensor errors, was never more than 2cm for hovers at heights of 30cm or higher.

4.3.2 On-Board Mode

While the off board control mode is suitable for a single quadrotor control and for computations requir-

ing larger memory sizes and faster processors, it fails when we add the requirement of distribution.

With the final objective being the complete independence of the agents from each other and from

any central authority, the off board control mode introduces a central computer and adds the need

for fast communication. For these reasons, we introduce an on board approach, where we model

the dynamics of the plant together with the inner and outer controllers of Bitcraze , as was done in

Section 4.2.2 and leave the computation to be done on board the Crazyflie. We step a level higher

and design a higher level controller which will generate optimal reference inputs uf . This high level

controller Kh is to bedesigned using the full linearised model in (4.9). Figure 4.8 below shows the

Figure 4.8: On-Board Control Block Diagram

on-board implementation diagram that we propose, where the outer and inner controllers are run on-

board. The state matrix Cr outputs a reduced state vector sr which is used to introduce a feedback

loop in the design, for instance in a Model Predictive Control (MPC) fashion. We choose the higher

level reference to be a position trajectory r, according to our defined goals in Section 1.2. The refer-

ence state s
0
fs, now becomes the control input uf as defined in Equation (4.9), which is communicated

to the drone from the high level controller running on a computer. This can also later be transferred

on-board the Crazyflie microprocessor as discussed in Section 9.1.

In summary, this mode of control allows one to perform a high level control for the Crazyflies with

a linearised model for a quadcopter’s dynamics that integrates both the outer and inner controllers.

We verify this full linearised model (4.9) and the on-board proposed control strategy for a swarm of

drones in Section 8.
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5 Cooperation and Coordination in Networked Multi-Agent Systems

Having derived a linearised model for the closed loop single agent system we can now think about

possible methods for the distributed control of a swarm of drones. The field of multi agent coordi-

nation has been widely researched from different perspectives and for different purposes, such as

the average consensus problem [18, 39, 3] , flocking [19, 20], formation control [21, 22] or collision

avoidance [40, 24] to just name a few. Following the objectives defined in Section 1.2, the possible

approaches that can be made use of to solve the collision avoidance and trajectory tracking problems

for a group of Crazyflies are discussed to choose an algorithm best suitable for our purposes.

5.1 Networked Dynamical Systems and Consensus

Dynamical systems are concerned with modelling natural systems that have features evolving over

time, such as the linearised model of a quadrotor we developed earlier. When we have a network

of such systems, with some sort of communication topology in place we can develop control algo-

rithms which will make use of this exchange of information to fulfill local or common goals. When

dealing with networks the notation and properties developed in graph theory become very useful [41].

Figure 5.1: An Undirected Graph

A graph G consists of a set of nodes V =

{1, . . . ,M} and a set of edges E = {(i, j), i, j 2

V }. Undirected and directed graphs are dis-

tinguished by the fact that for the former ones

if there exists an edge (i, j), then there must

be a (j, i) edge as well, while for the latter it is

not a necessary condition. For our purposes we

assume that all communications are reciprocal,

thus we will only be concerned with undirected graphs, like in Figure 5.1, where the edges have no di-

rection. We can define a number of important matrices for all graphs, such as the weighted adjacency

matrix A capturing the weight of each of the edges.

Aij =

(
wij , if (i, j) 2 E
0, otherwise

(5.1)

We then define the degree matrix D of a graph, which is a diagonalM ⇥M matrix with the number of

edges entering or leaving the node i as the (i, i) entry. One of themost important matrices describing a

graph, is called the Laplacian matrix, defined as L = D� A, which is symmetric for undirected graphs.

The Laplacian has a number of significant properties applicable for networked systems, such as:

• L is square and symmetric, therefore with real eigenvalues
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5.2 Flocking

• L is positive semi-definite, i.e. its eigenvalues are non-negative.

• L1M = 0, i.e. 0 is an eigenvalue of L with eigenvector 1M

This understanding of graph theoretical concepts and notation now allows us to represent our net-

work of dynamical systems as a graph. In such a network each node in V represents an agent with

dynamics and each edge represents a weighted connection between these agents, or its absence if

the weight is zero. The idea of consensus algorithms is for the agents to agree on a variable they

hold. For simplicity we discuss agents with dynamics ẋi = ui, connected in some sort of undirected

graph, trying to agree on the state value x. A simple algorithm to achieve this is for each agent to

steer its dynamics towards the weighted average of its neighbours:

ẋi =
1

di + 1

0

@
diX

j=1

Aij(xj � xi)

1

A , (5.2)

where di is the number of neighbours of the agent i and A is the adjacency matrix of the graph. To

understand the collective dynamics of the agents we have to consider the whole network as a dynamic

system itself. The states xi are concatenated into a vector x, and after transformations we see that

the control law 5.2 can be represented in a matrix form as follows:

ẋ = �(D + I)�1
Lx, (5.3)

where D and L are the degree and Laplacian matrices of the graph respectively. (D+ I) is a positive

definite matrix and all the eigenvalues of L are negative with the exception of L1M = 0. Therefore this

control law achieves stability and all the agents converge to the same value of x?. Such consensus

algorithms are explored further to incorporate new objectives such as collision avoidance between

quadrotors, in the next section.

5.2 Flocking

Flocking is a phenomenon achieved in large animal, social or robotic groups where the interacting

agents are trying to fulfill a common objective under certain individual and coupled constraints. The

first visualisation of flocking behaviour and its three necessary rules were introduced by Reynolds

[19]:

1. Cohesion: Agents follow a common objective for the flock, staying as close together as possible.

2. Collision Avoidance: Collisions between the agents in a flock are to be avoided.

3. Velocity Consensus: Agents match the velocities with their neighbours in the flock.

A flocking algorithm which implements all of the points above was introduced by Olfati-Saber [20].
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5.3 Limitations of Potential Field Approaches

Figure 5.2: Spherical Neighbourhood

Adding to the notations and concepts defined for

graphs in Section 5.1, a set of neighbours of

node(agent) i, N i, is defined based on the in-

teraction range r of the agents, as formulated in

Equation (5.4) and shown in Figure 5.2, where

the sixth neighbour falls out of this defined ra-

dius r. This is the maximum range an agent is

capable of transmitting and receiving data fast

and reliable enough to stay safe and stable.

N i = {j 2 V : kxj � xik < r} (5.4)

The position of the agents is still denoted by x as in the previous section and k·k denotes the Euclidean

norm throughout the report. In this algorithm the double integrator dynamics are considered, where

the actuation is the acceleration. A distributed algorithm is then introduced [20] to achieve flocking

whereby each agent’s control input consists of the following three terms:

ui = f
c
i + f

v
i + f

o
i , (5.5)

where the first term is responsible for collision avoidance between the agents, the second one for

velocity consensus and the last one for collective objective tracking. The velocity consensus term as

expected will have a similar structure to the algorithm discussed in Section 5.1 with the velocity being

the state the agents are trying to agree on. The collision avoidance, intuitively has to have a term

involving the difference between the agents positions and the objective tracking a proportional gain

controller trying to reduce the error between the measured and reference positions.

5.3 Limitations of Potential Field Approaches

The insight gained from consensus andn flocking algorithms is important for the clear formulation of

our problem. However, there are a number of reasons that these approach of solving the collision

avoidance, velocity consensus or formation problems, commonly referred to as potential field methods

are often impractical. Firstly, most of the convergence and stability properties for such algorithms are

proven for simple single or double integrator dynamical systems, while what we have is a larger

linearised model with complex dynamics (4.9). While there is research conducted to solve the multi-

agent problem, such as the consensus problem with general linear models [42], the main problem

with such approaches is the difficulty to account for multiple objectives and integration of multiple

local and coupling constraints, such as maximum allowable velocity constraints we might have on
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the quadrotors or the hard constraints of collision avoidance. This is the reason that alongside the

development of computational power, optimization-based coordination and control techniques are

being developed. These often consider the discretized dynamics of the system and are implemented

using receding horizon prediction techniques, such as MPC [43, 44]. In the next two sections we

cover the two main classes of optimization-based iterative algorithms, in particular the Alternating

Direction Method of Multipliers (ADMM) which is the main theoretical stronghold for the final algorithm

we implement on our network of quadrotors.

5.4 Decentralised Algorithms

The need for inclusion of complex, local and coupling constraints in the control of complex networked

systems makes the need of optimization based methods apparent. The class of decentralised algo-

rithms considers the network structure where there exists a central authority or an aggregator. It com-

municates some tentative information with the agents, thus linking those, as opposed to distributed

algorithms, discussed in Section 5.5. There this central authority does not exist and the agents com-

municate with each other according to some graph representing their neighbourhoods, as explained

in Section 5.1. The problem of collective trajectory tracking with collision avoidance constraints, that

we are concerned with, can be formulated as a constrained coupled problem of the following form,

min
x

F (x),

subject to: Ax = b

x 2 X,

(5.6)

In this type of problems the coupling between the agents can be set up using the matrixA and vector

b and by a careful choice of the variable vector x, as it is done later in Section 6.3. A number of algo-

rithms have been developed to solve both constrained and unconstrained problems in decentralised

fashion, such as the regularised Jacobi, Gauss-Seidel and Augmented Lagrangian algorithms [23].

One of the most widely used decentralised algorithms that solves the problem (5.6) is called the Alter-

nating Direction Method of Multipliers (ADMM), due to its relatively fast convergence and simplicity.

Many algorithms are build upon it, specialising for various setups and purposes. As we are using a

fully decentralised version of it in Section 7, we will review ADMM’s basic structure in the next section.

5.4.1 Alternating Direction Method of Multipliers (ADMM)

When dealing with a network of cooperative agents parallelism and efficiency are crucial, so that we

make use of the possibilities brought in by the network, and ADMM does exactly that. The general

formulation of the algorithm given for the problem (5.6), is as follows,
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min
x,z

F1(x) + F2(z),

subject to: x 2 C1, z 2 C2

Ax = z.

(5.7)

The ADMM algorithm is partially parallelisable and iterative. It is given in three steps for each agent

i and iteration k, as follows,

x(k + 1) = arg min
x2C1

F1(x) + �(k)T (Ax� z(k)) +
c

2
kAx� z(k)k2 (5.8a)

z(k + 1) = arg min
z2C2

F2(z) + �(k)T (Ax(k + 1)� z) +
c

2
kAx(k + 1)� zk2 (5.8b)

�(k + 1) = �(k) + c(Ax(k + 1)� z(k + 1)), (5.8c)

where c > 0 is a constant parameter, and � is a Lagrangian variable. The algorithm is proven to

converge if either the set C1 is bounded or the matrix A
T
A is invertible [23]. The convenient setup

for our problem of networked quadrotors is the following constraint coupled problem for M agents

[26, 23],

min
x1,...,xM

MX

i=1

F i(xi)

subject to :
MX

i=1

Aixi =
MX

i=1

bi = b

xi 2 Xi i = 1, ...,M

(5.9)

where Xi 2 Rni ,Ai 2 Rm⇥ni and bi 2 Rm. It is assumed that for all i = 1, ...,M , the function F i is

convex and the set Xi is convex and compact; and both the primal and dual problems have optimal

solutions. To bring the problem to the ADMM format (5.7) we denote Aixi = zi and then form the

augmented Lagrangian problem as follows,

L(c,�) =
MX

i=1

(F i(xi) + p
T
i (Aixi � zi) +

c

2
kAixi � zik2), (5.10)

where pi 2 Rm is the Lagrangian multiplier vector for agent i. Following (5.8), the first two steps of

the iterative ADMM algorithm then yield,

xi(k + 1) = arg min
xi2Xi

F i(xi) + pi(k)
T
Aixi +

c

2
kAixi � zi(k)k2, 8i = 1, . . . ,M, (5.11a)

z(k + 1) = arg min
z:
PM

i zi=b
�

MX

i=1

pi(k)
T
zi +

MX

i=1

c

2
kAixi(k + 1)� zik2, (5.11b)

with the dual ascent equation for the Lagrangians pi, given as,

pi(k + 1) = pi(k) + c(Aixi(k + 1)� zi(k + 1)), 8i = 1, . . . ,M. (5.12)

The iteration for (5.11b) can be solved analytically by introducing � 2 R
m as Lagrange multipliers for
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its constraint:

z(k + 1) = argmin
z
�

MX

i=1

pi(k)
T
zi +

MX

i=1

c

2
kAixi(k + 1)� zik2 + �

T

 
MX

i=1

zi � b

!
. (5.13)

Solving the primal and dual problems of (5.13) for z and � respectively, we find,

zi(k + 1) = Aixi(k + 1) +
pi(k)� �(k + 1)

c
, 8i = 1, . . . ,M, (5.14)

� =
1

M

MX

i=1

pi +
c

M

 
MX

i=1

Aixi(k + 1)� b

!
. (5.15)

Comparing (5.14) with (5.12), we see that pi(k+1) = �(k+1), 8i = 1, . . . ,M . Thus, substituting � in

(5.11-5.14) and eliminating zi(k) from (5.11a), we achieve the final form of the ADMM algorithm that

generates an optimal primal solution and converges to optimal dual �? given that such exist [23],

xi(k + 1) = arg min
xi2Xi

F i(xi) + �(k)TAixi +
c

2
kAixi �Aixi(k) + w(k)k2, 8i = 1, . . . ,M, (5.16a)

�(k + 1) = �(k) + cw(k + 1). (5.16b)

where,

w(k) =
1

M

MX

i=1

(Aixi(k)� bi). (5.17)

It is obvious from the structure of the algorithm that a central authority is still required to process

(5.16b) and (5.17).

5.5 Distributed Algorithms

As we aim to remove the necessity of an aggregator we next discuss distributed algorithms, in partic-

ular the tracking-ADMM [26], which builds on the discussed concepts and algorithms to fully distribute

the computation among agents.

5.5.1 Tracking-ADMM

Tracking-ADMM considers the problem (5.9) and solves it without an aggregator [26]. A graph G

is considered with vertices and edges V and E as defined in Section 5.1. Moreover, the following

assumptions are added to those mentioned in Section 5.4.1.

1. The graph representing the network of the M agents is undirected and connected, i.e. if there

is a path from node i to node j, then the reverse has to be true as well.

2. For each edge there exists an associated weight wi,j 2 [0, 1), such that
PM

i=1Aij = 1 for all
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j = 1, . . . ,M and
PM

i=1Aij = 1 for all i = 1, . . . ,M , whereAij is the entry (i, j) of the adjacency

matrix of the graph G.

3. Define a consensus matrix W 2 RM⇥M whose (i, j)th entry is Aij . This matrix is symmetric,

doubly stochastic and positive semidefinite.

The central unit’s function in the decentralised ADMM case is updating the Lagrangian variable �(k)

using the averaged term w(k + 1), calculated using the information obtained from all the agents, as

defined in (5.16) and (5.17), respectively. To get an estimate of this averaged value and distribute

�i(k) and wi(k), tracking-ADMM makes use of a distributed dynamic average consensus mechanism

by introducing the following iterative alogirithm for each agent i,

xi(k + 1) = arg min
xi2Xi

F i(xi) + li(k)
T
Aixi +

c

2
kAixi �Aixi(k) + !i(k)k, (5.18a)

wi(k + 1) = !i(k) +Aixi(k + 1)�Aixi(k), (5.18b)
�i(k + 1) = li(k) + cwi(k + 1), (5.18c)

where, !i(k) =
P

j2N i
aijwj(k), li(k) =

P
j2N i

aij�j(k) and N i is the set of the neighbours of node

i. For given initial conditions, the algorithm is initialised with wi(0) = Aixi(0) � bi for all agents. So,

by communicating the values of wi(k) and �i(k) only, [26] achieves full distribution of the ADMM

algorithm (5.16) for problem (5.9). Given the mentioned assumptions, the iterative algorithm (5.18)

achieves optimal values both for the primal and dual variables upon convergence.

To enforce collision avoidance with other agents Euclidean spheres with some safety radius �

are placed around each agent. This constraint can be posed or each edge (i, j) in the graph G for a

horizon window of N , as:

hij(xi, xj) = min
k=1,...,N

kxi(k)� xj(k)k2 �� � 0 8j 2N i and i (5.19)

The set constraint clearly becomes nonconvex and hence violates the initial assumptions brought

forward by the algorithms discussed earlier. The constraint needs to be linearised to make it convex.

Hence, we turn to another distributed algorithm that makes use of ADMM and the introduced concepts

for its setup and distribution but also incorporates the quadrotor’s linearised dynamics, all discussed

in the following section.

6 Centralised Problem Formulation

The discussion of multi-agent consensus problems leads us to an optimization-based distributed ap-

proach. This endows us with flexibility to choose local and collective constraints and guarantee con-

vergence. The Fully Decentralized ADMM for Coordination and Collision Avoidance [24] uses the
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ADMM algorithm to fully decentralize a collision avoidance and coordination optimisation problem us-

ing a communication topology. Before we set up and solve the distributed or the fully decentralised

problem in Section 7, we first set the centralised trajectory tracking and collision avoidance problem

and solve it both for general double integrator dynamics and for the full linearised model (4.9) of a

Crazyflie quadrotor.

6.1 Modelling the Collision Avoidance Constraint

We consider a network of interconnected M agents which interact in some kind of graph topology as

described in Section 5.1. We define Ni to be the number of neighbours of agent i, as formulated in

Equation (5.4). For simplicity we consider r in (5.4) to be infinity such that we have a fully connected

graph such that the number of agents in set N i as defined in Section 5.1 is Ni = M � 1, where each

agent can communicate with all the rest. A constraint coupled problem is formulated, similar to (5.9),

min
pi,vi,ai

NX

i=1

F i(pi, ai)

subject to: (pi, vi, ai) 2 Si 8i
hij(pi, pj) � 0 8j 2N i and i,

(6.1)

where (pi, vi, ai) are respectively the position, velocity and acceleration of agent i, Si is a constraint

set which incorporates the dynamics of each agent to be defined, and hij is a nonconvex collision

avoidance constraint similar to the one defined in Equation (5.19).

We start by modelling simpler, discretized double integrator dynamics for each agent i as follows,

pi(k + 1) = pi(k) + Tvi(k)

vi(k + 1) = vi(k) + Tai(k), k = 0, 1, ..., N + 1

(pi(k + 2), vi(k + 1), ai(k)) 2 (P i ⇥ V i ⇥Ai), k = 1, ..., N,

(6.2)

which is initialised with a current position pi(0), velocity vi(0) and acceleration ai(0) and where T > 0

is the discretization interval, (P i⇥V i⇥Ai)model any constraints in velocity, acceleration and position

as mentioned earlier. The free decision variables, (pi, vi, ai), are defined for some horizon window

N , by vertically concatenating pi(k), vi(k) and ai(k), respectively. The set of these that satisfies the

above constraints is denoted as Si = {(pi, vi, ai)|(6.2) holds}. The acceleration ai is the natural

control input for these dynamics. The costs F i are defined as a tracking LQR algorithm as follows,

F i(pi, ai) = (pi � ri)
T
Q(pi � ri) + (ai)

T
R(ai) 8i = 1, . . . ,M (6.3)

where the position reference setpoints ri, defined for a horizon window N, are tracked with Q and R

design matrices. The choice of these matrices will affect how much the deviation from the reference

states and control inputs will be penalised. The nonconvex collision avoidance constraint is modelled
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6.1 Modelling the Collision Avoidance Constraint

as follows for a horizon window of N ,

hij(pi, pj) = min
k=3,...,N+2

kpi(k)� pj(k)k2 �� � 0 8j 2N i and i, , (6.4)

where � is the minimum separation distance between the agents. To solve the problem of noncon-

vexity, following the strategy of [40], a first order Taylor series approximation is performed for agents

i and j around some nominal trajectories (pi, pj), defined later, as follows,

gij(k) (pi(k), pj(k)) = kpi(k)� pj(k)k+ ⌘
T
ij(k)

⇥
(pi(k)� pj(k))� (pi(k)� pj(k))

⇤
��,

hij(pi, pj) = min
k=3,...N+2

gij(k)(pi(k), pj(k)),
(6.5)

where

⌘ij(k) =
(pi(k)� pj(k))

kpi(k)� pj(k)k
(6.6)

The above is illustrated in Figure 6.1 below, which shows the linear gij(k) function for a particular

time instant k and the safety circle with radius � around agent i at that time instant. The gray region

shows the linearised safe area for the agent j to be. The problem (6.1) can now be reformulated with

Figure 6.1: Linearization around nominal trajectories at time step k

the linearised hij � 0 constraint making the problem convex, as follows,

min
pi,vi,ai

NX

i=1

F i(pi, ai)

subject to: (pi, vi, ai) 2 Si 8i
hij(pi, pj) � 0 8j 2N i and i

(6.7)

The solution of the above linearised problem causes the trajectories to bemore conservative than they

would have been without the linearization. This conservatism can bemitigated by the careful choice of

the nominal trajectories (pi, pj). This is initialised by firstly solving the linearised problem (6.7) without

the collision avoidance constraint. These are then updated by iteratively solving (6.7) to improve the

linearisation accuracy [40]. The iterations are stopped when convergence for the objective value is

achieved, i.e |
PM

i=1 F
µ
i (pi, ai) �

PM
i=1 F

µ�1
i (pi, ai)| < ✏, where ✏ is a tuning parameter and

PM
i=1 F

µ
i

is the objective value for the current linearisation iteration µ.
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Figure 6.2: Trajectory tracking of three agents with double integrator dynamics. The circles denote
the starting positions and the crosses the targets.

The problem (6.7) is set up in MATLAB using the YALMIP optimisation toolbox [45] and the OSQP

solver [46] with the double integrator dynamics in (6.2) and T = 0.1s. The only constraints are set for

the final velocities and control inputs, i.e. at k = N , of all agents to be zero, so that those come to

rest. For these and all future simulations the position is measured in meters (m), velocity in meters

per second (m/s) and acceleration in meters per second squared (m/s2). The design matrices,Q and

R are set to be identity matrices with scalings of 14 and 5, penalising the deviations from the reference

trajectory and the inputs, respectively and the horizon window N is set to 100. These design choices

ensured the fast enough completion of the tracking under ten seconds. With this setup of three agents,

convergence is achieved in only three iterations where we choose the tuning parameter ✏ to be the

0.5% of the current objective value. Figure 6.2 shows the results of the simulation with the above

mentioned parameters, where we have three agents moving in two dimensions, starting positions

denoted by circles and the targets for each denoted by crosses and by their respective colors. No

collision avoidance constraints are imposed in Figure 6.2a and we observe that the agents fly too

close to each other and achieve their targets in the shortest possible way, following a straight line. In

contrast, in Figure 6.2b the linearised collision avoidance constraint hij is enforced with � = 0.35m,

i.e. creating a safe circle around all of the agents with radius �. In this case the agents now deviate

from their shortest paths, following a safe trajectory.

6.2 Full Linearized Model Integration

In Section 4.2.2, a full linearised model for the Crazyflie quadrotors was developed to be used with

the on board control scheme as introduced in Section 4.3.2. Before this model can be integrated
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6.2 Full Linearized Model Integration

as a dynamical system in the network represented as a constraint set Si, it is reduced. First of all,

we discretize the model (4.9) using the function ”c2d” in MATLAB and a discretization interval of T .

This results in a discretized state space model from reference inputs, height, (x, y) velocities and yaw

angle to the full state output vector comprising of nine state variables, which can be represented in

the following form and from now on referred to as the full discretized model,

sf (k + 1) = Adfsf (k) +Bdfuf (k)

yf (k + 1) = Cdfsf (k + 1),
(6.8)

where sf , uf and yf are the state, input and output vectors as defined in Section 4.2.2, and Adf ,Bdf

and Cdf are the discretized state matrices of the model (4.9). As discussed in Section 4, the sparse

structure of the state matrices of the linearised model allows for the decoupling of the states and the

development of four separate controllers. We make use of this to reduce the full discretized model to

only the (x, y) velocity controllers to simulate and test the algorithms in two dimensions. Accounting

for the numerical errors in the discretization and for the mentioned decoupling we are able to reduce

the model (6.8) to have only nu = 2 control inputs and nx = 6 states. We call this the reduced

discretized model and, for each agent i it takes the following discretized state space form,

si(k + 1) = Arsi(k) +Brui(k)

yi(k + 1) = Crsi(k + 1),
(6.9)

where si(k) 2 Rnx⇥1 is the reduced state vector containing only the (x, y) position and velocity, and

the pitch and roll angles, as defined in Equation (6.10), where pi(k) = [xi(k) yi(k)]T (for simplicity we

use the same notation as in (6.2)) and  (k) = [�i(k) �i(k)]T . The control input vector ui(k) 2 Rnu⇥1

comprises of only (x, y) velocity control inputs, defined in Equation (6.11). The matricesAr 2 Rnx⇥nx ,

Br 2 Rnx⇥nu and Cr 2 Rnx⇥nx are the discretized and reduced state matrices derived from the full

discretized model (6.8). And finally, the output vector is yi(k) 2 Rnx .

si(k) =

2

4
pi(k)
ṗi(k)
 (k)

3

5 , (6.10) ui(k) =


vxi(k)
vyi(k)

�
, (6.11)

This reduced form can now be used to model the dynamics of the Crazyflie quadcopters in a two

dimensional space by integrating it into the centralised collision avoidance problem (6.7) and then

implement it in practice as discussed in Section 8. This problem is thus reformulated as follows,

min
si,ui

MX

i=1

F i(si, ui)

subject to: (si, ui) 2Di 8i
hij(pi, pj) � 0 8j 2N i and i,

(6.12)

whereDi represents the dynamics of the agent i, according to the reduced discretizedmodel (6.9) and

any constraints on the states and inputs. The state, input and position vectors, si = [sTi (0) . . . s
T
i (N)]T 2
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6.2 Full Linearized Model Integration

Rnx(N+1), ui = [uTi (0) . . . u
T
i (N � 1)]T 2 RnuN and pi = [pTi (0) . . . p

T
i (N)]T 2 R2(N+1) are given by

vertically concatenating the vector variables for each time step k. Defining ri = [rTi (0) . . . r
T
i (N)]T 2

Rnx(N+1) (the references for  are always set to zero), the objective function for i is given by,

F i(si, ai) = (si � ri)
T
Q(si � ri) + (ui)

T
R(ui), (6.13)

We thus assume that all of the agents, naturally, have the same dynamics.
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Figure 6.3: Trajectory tracking of three agents with Crazyflie dynamics. The circles denote the starting
points and the crosses the targets.

The problem (6.12) is set up and solved with a discretization step of T = 0.1s for the dynamics and

constraint set Di. We impose the constraint for the absolute values of the inputs to always be below

1m/s, which is the limit of the Crazyflies [47]. We set Q and R to be identity matrices, with weights of

10 and 13, penalising the position deviations and inputs, respectively, and the horizon window size,

N , is set to 100. These choices proved to achieve fast enough trajectories for these dynamics in

under ten seconds. Figure 6.3 above shows the trajectories of the agents with the same starting and

target positions as for the double integrator case in Figure 6.2 discussed in Section 6.1. Figure 6.3a

shows the trajectories without the collision avoidance, as opposed to Figure 6.3b for which those are

enforced with a safety radius of� = 0.35m. With the same choice of ✏ being the 0.5% of the objective

value, convergence is, as before, achieved after only three iterations. Comparing Figures 6.3 and

6.2, we notice a significant difference in the shape of the trajectories and the lack of overshoot of

the target for the agents with Crazyflie dynamics. In order to come to a stop, the agents with double

integrator dynamics need to circle the target to lower their velocity to an eventual stop, while the

more complex dynamics of the aerial vehicles allows them to reach the target by dissipating less

energy following a shorter path. This means that the derived linearised model of the drones is a more

accurate representation of the actual system than the other. This difference in trajectories was also
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6.3 OSQP Formulation

confirmed when the same design weights, as for the double integrator dynamics were used. However,

as mentioned earlier, the change in the weights proved to result in a much smoother and fast enough

flight.

6.3 OSQP Formulation

With the current setup of the collision avoidance problem it will be impossible to run a real time con-

troller on quadcopters, whether in an off-board or an on-board mode. The reason is the time it takes

for the linearized collision avoidance constraints to converge. For the tests we conducted with the

YALMIP setup, the lowest time for one iteration was never lower than 2 seconds. Implementing such

an algorithm in a MPC fashion, discussed later in Section 6.4 is impossible, as MPC requires suc-

cessive optimizations to take place until the target is achieved. With the very fast dynamics of the

Crazyflie (around 15Hz), we need a solver which will be faster, so that even when considering the

communication time delays stability is not compromised. The Operator Splitting Quadractic Program

(OSQP) [46] is an efficient and robust solver ideal for solving quadratic programs, such as (6.12). The

program solves quadratic problems of the form,

min
x

1

2
x
T
Px+ q

T
x

subject to: cl  Aqx  cu

, (6.14)

where x 2 Rn is the optimization variable, P 2 Sn+ is a positive semidefinite matrix, Aq 2 Rm⇥n is the

matrix defining the linear constraints, vectors cl and cu are such that cl 2 R [1 and cu 2 R [1 and

the linear term is the vector q 2 Rn. In this section we transform the centralised problem in (6.12) to

the form in (6.14) and solve it to achieve the desired efficiency, robustness and speed.

In order to treat the multi-agent centralised problem in (6.12), we stack the states si(k), defined

in (6.10) and the control inputs ui(k), defined in (6.11), such that s(k) = [sT1 (k) s
T
2 (k) . . . s

T
M (k)]T ,

and u(k) = [uT1 (k) u
T
2 (k) . . . u

T
M (k)]T . The state matrices Ar and Br are augmented for the network

such that Ar = I
M ⌦Ar and Br = I

M ⌦Br, where ⌦ is the Kronecker product and the form I
⌅ is

an identity matrix of size ⌅. In this case, ⌅ = M , the number of agents. We can then represent the

network’s dynamics as,

2

666664

s(0)
s(1)
s(2)
...

s(N)

3

777775

| {z }
es

=

2

666664

0 0 . . . 0
Ar 0 . . . 0
0 Ar . . . 0
... . . . ...

...
0 . . . Ar 0

3

777775

| {z }
eAr

2

666664

s(0)
s(1)
s(2)
...

s(N)

3

777775

| {z }
es

+

2

666664

0 0 . . . 0
Br 0 . . . 0
0 Br . . . 0
... . . . ... . . .
0 . . . 0 Br

3

777775

| {z }
eBr

2

666664

u(0)
u(1)
u(2)
...

u(N � 1)

3

777775

| {z }
eu

+

2

666664

s(0)
0
0
...
0

3

777775

| {z }
es0

, (6.15)
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where es, es0 2 Rnx(N+1)M , eAr 2 Rnx(N+1)M⇥nx(N+1)M , eBr 2 Rnx(N+1)M⇥nu(N)M , eu,2 Rnu(N)M with

nx and nu defined in the previous section, and the matrices 0 are null matrices to complete the eAr

and eBr. The above can now be rewritten compactly and simplified as follows,

es = eAres+ eBreu+ es0 ) (6.16a)

�es0 = (eAr � I)es+ eBreu) (6.16b)

�es0 =
h
(eAr � I) eBr

i es
eu

�
. (6.16c)

Equation (6.16c) above shows the collective dynamics of the networks and is a dynamical system

itself. We group the state and input variables into a single vector v 2 Rnx(N+1)M+nu(N)M , given by,

v =


es
eu

�
(6.17)

The objective function in (6.13) can be reformulated to the standard OSQP form in (6.14). By intro-

ducing augmented matrices Q = I
M ⌦Q and R = I

M ⌦R, we can then formulate eQ = I
N+1 ⌦Q,

eR = I
N ⌦R and eq = [2(Qr(1))T . . . 2(Qr(N +1))T ]T , where r(k) is the reference state for timestep

k. This allows us to formulate an objective F function for the whole system as,

F = esT eQes� eqTes+ euT eReu. (6.18)

The linearised constraint for collision avoidance is formulated in Equation (6.5). Before setting this in

a matrix inequality form, it is reformulated below and its structure is then discussed in detail. For each

timestep k we need that,

kpi(k)� pj(k)k+ ⌘
T
ij(k)[(pi(k)� pj(k))� (pi(k)� pj(k))]�� � 0 8j 2N i, i = 1, . . . , M (6.19)

where ⌘ij(k) is given by Equation (6.6). We gather the constants for the particular iteration to the right

side and denote this value for each agent i and its neighbor j by lij(k), as follows,

⌘
T
ij(k)(pi(k)� pj(k)) � �+ ⌘

T
ij(k)(pi(k)� pj(k))� kpi(k)� pj(k)k , lij(k). (6.20)

The values lij(k) are concatenated vertically into a vectors l(k) 2 RMNi . We then define a new vector

pi�(k) = [(pi � p1)T (k) (pi � p2)T (k) . . . (pi � pNi)
T (k)]T for each k, as a constituent part of the

condition above, formed by pi�(k) = V is(k).

H =

1 2 3 nx2

64

3

75
1 0 0 . . . 0

0 1 0 . . . 0

, (6.21) Ki =

1 2 i M

2

66666664

3

77777775

�1 0 . . . 1 . . . 0

0 �1 . . . 1 . . . 0
...

... . . . ...
...

...

0 0 . . . 1 . . . �1

. (6.22)
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To get the form of thematrixV i 2 R2Ni⇥nxM , for the two dimensional case, we first define twomatrices

H 2 R2⇥nx and Ki 2 RNi⇥M in (6.21) and (6.22), respectively. Matrix H has the property of extract-

ing only pi, the position of the agent, from the state. The matrixKi is a negative identity matrix of size

Ni with the columns from i to Ni shifted by one position to the right and the i
th column replaced by a

vector of ones of size Ni. The transformation matrix is then given as V i = Ki⌦H. This idea is then

extended for the dynamics of the whole network. For this, the vector p�(k) = [pT1�(k) . . . p
T
M�(k)]

T

is defined and a matrix K 2 RMNi⇥M is formed by concatenating the matrices Ki vertically for

i = 1, . . . ,M . Thus, putting everything together we can model the transformation for the whole net-

work as p�(k) = V s(k), with, V = K⌦H, where V 2 R2MNi⇥nxM . A matrix ⌘M (k) 2 RMNi⇥2MNi is

then constructed for each k, as the linearisation term in the constraint, given in Equation (6.23) below.

⌘
M (k) =

2

64
⌘
T
12(k) . . . 0
... . . . ...
0 . . . ⌘

T
MNi

(k)

3

75 (6.23) ⌘
M =

2

64
⌘
M (1) . . . 0
... . . . ...
0 . . . ⌘

M (N)

3

75 (6.24)

Defining (6.23) for all k = 1, . . . , N we form the augmented matrix ⌘
M 2 RM(N)Ni⇥2M(N)Ni in (6.24).

The vector el 2 RM(N)Ni is formed by a vertical concatenation of l(k) for all k = 1, . . . , N .

Aqses � el (6.25)

We then define the identity matrix I
N+1
N 2 RN⇥(N+1) whose first row is removed, so that we do

not impose the constraints for the initial positions. The inequality matrix is thus formed as Aqs =

⌘M (IN+1
N ⌦ V ), with Aqs 2 RM(N)Ni⇥nx(N+1)M with the final constraint form defined in (6.25).

min
v

1

2
v
T

"
eQ 0

0 eR

#
v � q

T
v

subject to: [(eA� I) eB]v = �v0
Aqv � el
umin  Auv  umax

(6.26)

As the OSQP form (6.14) suggests, everything is represented with a single vector v in (6.17). Thus,

taking the objective function (6.18), the dynamics (6.16c) and the collision avoidance constraint (6.25);

the optimisation problem in (6.12) is formulated in (6.26) above. The vector q 2 Rnx(N+1)M+nu(N)M

is the vector eq concatenated with a vector of zeros to account for the control inputs eu, as it is done

for v0 2 Rnx(N+1)M+nu(N)M . The matrix Aq 2 RM(N)Ni⇥nx(N+1)M+nu(N)M is an augmented matrix

formed by horizontally concatenatingAqs and a null matrix, again to account for the augmented state

with control inputs included. The matrix Au 2 RM(N)nu⇥nx(N+1)M+nu(N)M is an identity matrix for the

control inputs of size N and a null matrix for the states. The vectors umin, umax 2 RM(N)nu are the

minimum and maximum allowable reference velocities, respectively.
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Figure 6.4: Trajectory tracking of three agents with 2 different configurations and �-s. The circles
denote the starting points and the crosses the targets.

The problem (6.26) is set up and solved with the same parameters R, N and the same conver-

gence stopping parameter ✏ as in Section 6.2. However, the design matrix Q is updated to penalise

both the position deviations and the velocity with a weight of 10 for a slower and safer flight. Figure

6.4 above shows the two problems solved for two different configurations, i.e. different starting and

reference positions. The configuration in Figure 6.4a is the same as in 6.3b, and we observe that

the trajectories are almost exactly, accounting for the updatedQ. The second configuration in Figure

6.4b, differs from the other in the sense that we use a purple cross, meaning that the target position for

both agent two and agent three is the same and they get as close as possible to the target maintaining

the required� = 0.33m distance. The algorithms again converge after only three iterations, however,

in contrast to the setup in Section 6.2, the longest these iterations take was measured to be only 0.4

seconds. Thus, comparing this duration with the OSQP setup to the one set in the previous section,

for which the lowest duration was 2 seconds, we achieve the same result about 5 times faster. This

efficiency and gain in speed proves to be invaluable for the MPC setup of the problem discussed in

the next section.

6.4 MPC Setup

Model predictive control is currently one of the most widely used techniques for controlling a number

of systems. This is thanks to the great compromise between optimality and speed of computation that

it provides [48]. Implemented in a receding horizon fashion, MPC provides a closed loop feedback

control to the otherwise open loop implementation of an optimal control problem. The idea behind

MPC is simple, we predict the future behaviour of the system over some horizon window using amodel
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and the estimates and measurements of the current state. Only the first input of this predictions is

implemented and to introduce feedback, this process is repeated. The most important feature of the

MPC for our system, is that it allows us to put constraints on states and inputs which is crucial for our

requirements. In this section we discuss how MPC is implemented and then apply it to the centralised

quadrotor collision avoidance problem (6.26).

6.4.1 MPC Overview

We consider a discrete state space representation of a linear model, with x(k) and u(k) being the

state and input vectors of the system at time k,

x(k + 1) = Ax(k) +Buk (6.27)

For a predicted input and state sequence generated by simulating the model for a prediction horizon

window of size N , The following vectors can be defined as stacked predicted sequences, similar to

Equation (6.15),

eu(k) =

2

6664

u0(k)
u1(k)
...

uN�1(k)

3

7775
(6.28) ex(k) =

2

6664

x1(k)
x2(k)
...

xN (k),

3

7775
(6.29)

where xi(k) = x(k + i) and ui(k) = u(k + i). These predicted sequences are usually generated by

solving an optimization problem. We consider a quadratic objective function with linear constraints

on states and inputs,

min
ex(k),eu(k)

J(ex(k), eu(k)) =
N�1X

i=0

(xi(k)
T
Qxi(k)

T + ui(k)
T
Rui(k)) + xN (k)TQNxN (k)

subject to: xmin  Gex(k)  xmax

umin Heu(k)  umax,

(6.30)

whereG andH are the constraint matrices,Q,R are weighting design matrices andQN is the termi-

nal weighting matrix for the terminal state xN (k). The size of the horizon window N does not change.

For the receding horizon implementation of the MPC, the above problem is solved at each time instant

k and some optimal inputs eu?(k) are generated.However, only the first predicted input u0(k) is input

to the plant. For the infinite horizon window, if there are no model errors and/or disturbances to the

system, then there is no difference between applying an optimal LQR controller, as in Section 4.3.1

and a receding horizon MPC controller for the unconstrained case. However, when we have a finite

sized horizon window, then this MPC introduced closed loop system can go unstable. To solve this

a dual mode of control is introduced [48], where the first N � 1 inputs define the first mode and the

control inputs are determined by optimisation and in the second mode for i = N,N +1, . . . the control
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6.4 MPC Setup

inputs are given by the stabilising feedback law, as ui(k) = Kxi(k). The terminal matrix QN is the

solution of the matrix Lyapunov equation [49] with the feedback gain K = �R�1
B

T
QN , as follows,

(A+BK)TQN +QN (A+BK) = �Q�K
T
RK, (6.31)

which is also the Algebraic Riccati Equation [50]. This choice of the terminal weighting matrix and

feedback law is proven, using the Lyapunov stability theory [48], to represent the infinite horizon

quadratic cost as,
1X

i=0

(xTi Qx
T
i + u

T
i Rui) = x

T
0 QNx0. (6.32)

Thus, by choosing the terminal weighting matrix to be the solution of the Lyapunov Equation (6.31),

the dual mode finite horizon control mode becomes equivalent to an infinite horizon window control.

This means, that the stability of an unconstrained problem is guaranteed. For a constrained problem,

as in (6.30), the stability of the system under MPC is guaranteed only if QN is a solution of (6.31), Q

is positive definite and for time instant k the predicted inputs over a horizon N are all feasible, i.e.,

satisfy the constraints for all k > 0. The last condition, also referred to as recursive feasibility, ensures

that the agents will not follow a path that will at some point bring them to an infeasibility; in our future

solutions of the problem (6.26) we assume that this condition holds. The inclusion of Robust MPC

algorithms for solving the quadrotor collision avoidance problem is discussed in Section 9.1.

6.4.2 Simulation Results

The advantages provided by MPC proved to be greatly applicable for our problem. It provides stability

and convergence, while solving a constrained optimisation problem in a very short time. We set up
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Figure 6.5: Trajectory tracking of three agents with 2 different configurations and �-s, generated
under a receding horizon implementation with a horizon window size of N = 10. The circles denote
the starting points and the crosses the targets.

32



6.4 MPC Setup

the MPC framework for the already augmented centralised collision avoidance problem (6.26) with

a horizon window of N = 10. We use the same structure of R, as we used in Section 6.3; for the

design Q matrix we use a weighting of 10 for the position deviation (p � r) and the weight of for the

velocity state ṗ is updated to 15, so that the flights are slower than before, decreasing the probability

of future infeasibilities. The augmented matrix is formed by the Kronecker product eQ = I
N ⌦Q, and

the terminal matrixQN is set to be the solution of the Algebraic Riccati Equation (6.31) for the chosen

Q and R.

The receding horizon is implemented by solving the problem (6.26) iteratively, without changing

the horizon window size N . At each iteration the constraints are updated. Specifically, in the first

constraint specifying the dynamics v0 is updated with the current state estimate. In simulation, this

is done by iterating the model, and in implementation the data would be received from the Crazyflie

sensors, as explained in Section 4.3.2. The matrix Aq is updated to integrate the latest nominal

trajectories (pi, pj). Inside the MPC loop there is also the linearisation of the nonconvex collision

avoidance constraint taking place in a separate loop. This is again terminated according to the tuning

parameter ✏, as described in Section 6.1. The convergence for this is reached in just a couple of

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

x [m]

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

y 
[m

]

Agent 1

Agent 2

Agent 3

(a) Configuration 1; � = 0.35m

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

x [m]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

y 
[m

]

Agent 1

Agent 2

Agent 3

(b) Configuration 2; � = 0.33m

Figure 6.6: Trajectory tracking of three agents with 2 different configurations and �-s, generated
under a receding horizon implementation with a horizon window size of N = 20. The circles denote
the starting points and the crosses the targets.

iterations, as we make use of the MPC calls (iterations) to start the next linearisation with a better

approximation for the nominal trajectories. We set up up the MPC problem and solve it using OSQP

for two different configurations as explained in previous sections. The results are shown in Figure 6.5.

The trajectories look different as the horizon window is 10 times smaller than in the previous case in

Section 6.3 and penalisation on velocity is increased. However, the constraints are still satisfied and

optimal solutions for this window size are achieved. EachMPC call takes nomore than 20milliseconds
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which is 50Hz and, thus perfect for using this with the real system online. This short duration is

achieved thanks to the efficient structure of the OSQP solver and the short horizon window size.

Changing the horizon window size to N = 20 we observe that the trajectories, shown in Figure

6.6, are already much more closer to the solution in Figure 6.4. The duration for each call in this case

is still very low, with the highest being around 30 milliseconds. Even though, this is fast enough to be

implemented with the Crazyflie fast dynamics, we will still be using the shorter window of N = 10 for

future tests so that the communication delay with a safety margin is accounted as well. The size N is

subject to change and adaptation to different scenarios. The formulation of the centralised collision

avoidance and trajectory tracking problem and its solution using fixed and receding horizon MPC

methods, now allows us to move on to its distribution using ADMM, as discussed in the next section.

7 Distributed Problem Setup

In this section we continue the setup of the multi-agent problem by presenting how the centralised

collision avoidance problem, formulated in (6.7) can be distributed to be solved among the quadrotor

agents using a fully decentralised version [24] of the ADMM algorithm described in Section 5.4.1.

This distributed or fully decentralised problem is then solved using OSQP for the quadrotor derived

dynamics (6.9) and then in a receding horizon fashion with MPC to introduce closed loop feedback

into the system.

7.1 Fully Decentralised ADMM

In ADMM, a decentralised algorithm, there is a need for a presence of an aggregator or a central

authority, as it was discussed in Section 5.4. Depending on the type of the problem, this authority

may hold different kinds of variables. However, it is always something that is common to all the agents.

The Fully Decentralised ADMM algorithm for collision avoidance [24] similar to Tracking-ADMM [26],

modifies the original ADMM to remove this aggregator dependence. Before we discuss how it is done

and implement it, we first bring the centralised problem with simple, double integrator dynamics in

(6.7) to the required ADMM form in (5.7).

min
pi,wi,vi,ai,wi!j

MX

i=1

F i(pi, ai)

subject to: (pi, vi, ai) 2 Si 8i
hij(wi, wi!j) � 0 8j 2N i and i

wi = pi; wi!j = pj 8j 2N i and i.

(7.1)
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7.1 Fully Decentralised ADMM

The Equation (7.1) above is thus formed, where the set Si incorporating the simple dynamics and

the state and input constraints is defined in (6.2). The objective function F i is defined in (6.3). The

linearised collision avoidance constraint hij � 0 is defined in (6.5), the variables (pi, vi, ai) correspond

to x and the newly introduced (wi, wi!j) correspond to z in (5.7). The latter are duplicate variables,

where wi is the duplicate of pi, and wi!j that of pj and is the so called proposed trajectory by agent i

for its j
th neighbour. These are all formed by vertically concatenating the decision variables for each

time step k over a horizon window of N , as was done Section 6.1 for the centralised case. Note that

the collision avoidance constraint is no longer imposed on the trajectories but on their duplicates, w.

The parallelisable iterative algorithm that solves this problem proposed by [24] follows the traditional

ADMM steps (5.8), but introduces two communication steps in between to achieve full parallelisation.

It is shown in Algorithm 1 and described in detail below.

Algorithm 1: Fully Decentralised ADMM algorithm [24] for each agent i = 1, . . . ,M

initialize �i, wi, {�i!j ,�j!i, wj!i}j2N i ;
repeat

1. prediction: update (pi, vi, ai) with

arg min
pi,vi,ai2Si

Fi(pi, ai) + �
T
i (pi � wi) +

⇢

2
kpi � wik2 +

NiX

j=1

(�Tj!i(pi � wj!i) +
⇢

2
kpi � wj!ik2)

2. communication I: send pi to j 2N i, and receive {pj}j2N i

3. linearisation: update {hij}j2N i based on (6.5) and pi, {pj}j2N i

4. coordination: update wi, {wi!j}j2N i with

arg min
wi,{wi!j}j2N i

�
T
i (pi � wi) +

⇢

2
kpi � wik2 +

NiX

j=1

(�Ti!j(pj � wi!j) +
⇢

2
kpj � wi!jk2),

subject to: hij(wi, wi!j) � 0, j 2N i,

5. mediation: update �i, {�i!j}j2N i} with
�i  �i + ⇢(xi � wi)

�i!j  �i!j + ⇢(xj � wi!j), j 2N i.

6. communication II: send (�i!j , wi!j) to j 2N i; receive {�j!i, wj!i}j2N i

until satisfaction of a stopping criterion

In the first step, following (5.8), the augmented Lagrangian of the problem is formed and minimised

with respect to the x variables, which in this case are (pi, vi, ai). The step is parallelisable; all the

agents perform it at the same time in parallel. It is called prediction and is formulated below,

arg min
pi,vi,ai2Si

Fi(pi, ai) + �
T
i (pi � wi) +

⇢

2
kpi � wik2 +

NiX

j=1

(�Tj!i(pi � wj!i) +
⇢

2
kpi � wj!ik2). (7.2)

The Lagrangian variables �i and �j!i, j 2N i, as well as the collision free trajectoriesw andwj!i, j 2
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7.1 Fully Decentralised ADMM

N i are initialised at the start locally for all the agents. The first term is the actual cost function, the

next two are the augmented Lagrangian terms for the constraint wi = pi with a constant ⇢. In the

final summation, the agent tries to stay close to the proposed trajectories for itself by its neighbours,

in other words the augmented Lagrangian for the reversed constraint wj!i = pi, j 2 N i is formed.

As a whole, In this step the agents satisfy their own dynamics while staying close to the collision free

trajectories w.

The second step is a communication step during which the current optimal position data pi is

shared by each agent with its neighbours. Each agent, thus receives the current estimate for pj , j 2

N i, the estimated trajectory of all of its neighbours.

During the third, coordination, step, following the classic ADMM structure, the augmented La-

grangian is minimised with respect to the z variables in (5.7), which correspond to (wi, wi!j) in (7.1).

As in the prediction step, coordination is also parallelisable and is formulated below for each agent i,

arg min
wi,{wi!j}j2N i

�
T
i (pi � wi) +

⇢

2
kpi � wik2 +

NiX

j=1

(�Ti!j(pj � wi!j) +
⇢

2
kpj � wi!jk2), (7.3a)

subject to: hij(wi, wi!j) � 0, j 2N i, (7.3b)

where the Lagrangian variables �i!j , j 2 N i are initialised at the start in parallel for all agents. The

first two terms, similar to the prediction step, are the augmented Lagrangian terms for the constraint

wi = pi, and the summation is the augmented Lagrangian term for the constraints wi!j = pj , j 2N i.

The collision avoidance constraint is enforced for the duplicate variables, for which the nominal tra-

jectories (pi, pj) are used. These are received by the agents during the previous communication step

and can be updated iteratively either at each MPC call, as in [44], or make use of the iterative nature of

the ADMM and update at each ADMM step, as [24] proposes. With the latter we can only guarantee

optimality of the solution if the iterations converge, however, this modification provides reduced con-

servatism and in most of the simulations it converges. The coordination step, thus, generates collision

free trajectories wi for each agent and proposed trajectories wi!j for their neighbours j 2 N i. The

the coupling linearised constraint is enforced on this, which is possible thanks to the communication

step before.

During the next mediation step, following the ADMM in (5.7), the dual variables are updated,

accumulating the gap between the predicted trajectories x and the collision free ones, w. This is

given as,

�i  �i + ⇢(xi � wi) (7.4a)
�i!j  �i!j + ⇢(xj � wi!j), j 2N i. (7.4b)
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7.2 Full Linearized Model Integration

The generated proposal trajectories by agent i for their neighbours, as well as the proposed La-

grangian variables are then communicated in the second communication step. More specifically each

agent i sends its wi!j and �i!j to its neighbours j 2 N i, and receives from those wj!i and �j!i

respectively. After this final step, the algorithm is then repeated from the prediction step (7.2) until the

iterations of all the agents converge.
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Figure 7.1: Trajectory tracking of three agents with
double integrator dynamics, solved using the fully
decentralised ADMM; � = 0.35m

The problem (7.1) is set up and solved using

YALMIP [45] and the distributed algorithm [24]

discussed above, exactly for the same config-

uration and design parameters as for the cen-

tralised solution shown in Figure 6.2 and dis-

cussed in Section 6.1. The Lagrangian vari-

ables and the collision free trajectories are all ini-

tialised with zeros and the constant ⇢ is set to 40.

As discussed earlier, the nominal trajectories for

the collision avoidance constraint are updated at

each ADMM iteration for a higher potential for re-

ducing conservatism. Thus, if it converges then

the solution is optimal. We stop the algorithm af-

ter 35 iterations and the trajectories are plotted in the Figure 7.1 above. The objective residual between

the distributed and centralised solutions for the current configuration is calculated to be around 5%,

which is expected as the successive linearisation with the ADMM algorithm takes place differently.

The trajectories, however, are similar to the centralised ones with the collision avoidance constraint

implemented for the same �.

7.2 Full Linearized Model Integration

The fully decentralised ADMM algorithm discussed in the previous section was applied to the simple

double integrator dynamics. Similar to Sections 6.2 and 6.3 for the centralised case, in this section

we set up and apply the discussed algorithm to the problem (7.5) with the reduced quadrotor model

in (6.9). As the OSQP solver proved to be very fast for the centralised problem, we set up everything

to meet its format (6.14). The reformulated centralised collision avoidance problem, for the Crazyflie

quadrotor dynamics Di given in (6.9), is given as follows,
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7.2 Full Linearized Model Integration

min
si,wi,ui,wi!j

MX

i=1

F i(si, ui)

subject to: (si, ui) 2Di 8i
hij(wi, wi!j) � 0 8j 2N i and i

wi = pi; wi!j = pj 8j 2N i and i,

(7.5)

where the state, input and position vectors si 2 Rnx(N+1), ui 2 RnuN and pi 2 R2(N+1) are formed by

the vertical concatenation of the variable vectors as explained in Section 6.2 and the w variables are

just duplicate variables for p, naturally having the same dimensions.

We start with the prediction step (7.2) and formulate its augmented matrix version for each agent

i for a horizon window size of N in Equation (7.6). The Lagrangian variable vectors are augmented,

similarly to the decision variables, such that e�i, e�j!i 2 R2(N+1) 8j 2 N i. The matrices eQi = Q ⌦

I
N+1 2 Rnx(N+1)⇥nx(N+1), eRi = R⌦ I

N+1 2 Rnx(N+1)⇥nx(N+1) are formed using the design matrices

for each agent. The vector for the linear term is defined as eqi = [2(Qri(1))T . . . 2(Qri(N + 1))T ]T 2

Rnx(N+1) for the individual target states ri(k) 2 Rnx 8k, and H
N+1 = H ⌦ I

N+1 2 R2(N+1)⇥nx(N+1),

with H defined in (6.21). The last matrix is introduced so that the state can be represented by just a

single vector si.

arg min
si,ui2Di

s
T
i
eQisi + u

T
i
eRui

� eqTi si + e�Ti pi +
M⇢

2
(pi

T
pi)� ⇢wi

T
pi +

0

@
X

j2N i

(e�Tj!i � ⇢wT
j!i)

1

A pi =
(7.6a)

= arg min
si,ui2Di

s
T
i

✓
fQi +

M⇢

2
I
N+1

◆
si

+

0

@�eqTi +

0

@e�Ti � ⇢wi
T +

X

j2N i

(e�Tj!i � ⇢wT
j!i)

1

AH
N+1

1

A si + u
T
i
eRiui

(7.6b)

The state and input vectors can then be concatenated vertically into one, such that the problem can

be represented with a single variable vi = [si ui]T , similar to (6.17), and represented in an OSQP

form of (6.14), as follows,

min
vi

1

2
v
T
i

"
eQid 0

0 fRi

#
v � eqTidvi

subject to: [(Ar � I) Br]vi = �vi0
umin  Aiuvi  umax,

(7.7)

where the matrix eQid 2 Rnx(N+1)⇥nx(N+1) and the vector eqid 2 Rnx(N+1)+nuN are the quadratic and

linear terms in Equation (7.6), respectively. The vector vi0 2 Rnx(N+1)+nuN is the initial state of the

agent i concatenated with zeros, as it was described for the centralised case in Section 6.3. Similar
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7.2 Full Linearized Model Integration

to the centralised case, we set constraints on the velocity inputs as defined by the quadrotor limits.

To do this we define the matrix Aiu 2 RnuN⇥nx(N+1)+nuN , where we have an identity matrix for the

last nuN ⇥ nuN sized square matrix and zeros for the rest, i.e the states.

Using the above defined augmented states, inputs, vectors and matrices the coordination step

(7.3) can now be reformulated as follows,

arg min
wi,wi!j

⇣
�e�i � ⇢piT

⌘
wi + wi

⇣
⇢

2
I
2(N+1)

⌘
wi

+
X

j2N i

⇣⇣
�e�Ti!j � ⇢pjT

⌘
wi!j + w

T
i!j

⇣
⇢

2
I
2(N+1)

⌘
wi!j

⌘ (7.8a)

subject to: ehij(wi, wi!j) � 0, j 2N i (7.8b)

where the vectors e�i!j 2 Rnu(N+1) and wi!j 2 R2(N+1) are formed as for the previous step and the

constraint (7.8b) is the linearised collision avoidance constraint for the augmented states. Now, to

formulate everything in an OSQP form, as was done (7.7), we first define a single augmented state

for agent i, for a horizon window size of N , as ewij 2 R2(N+1)M . This is given below, as,

ewij = [wi(0) . . . wi(N) . . . wi!1(0) . . . wi!1(N) . . . wi!Ni(0) . . . wi!Ni(N)]T .

The matrix formulation for (7.8) is then given below, as,

min
ewij

1

2
ewT
ijP ij ewij � eqTij ewij

subject to: Aiw ewij � eliw,
(7.9)

where P ij = I
M ⌦ ⇢

2I
2(N+1) 2 R2(N+1)M⇥2(N+1)M and eqij 2 R2(N+1)M are the quadratic and linear

terms in (7.8), respectively. The collision avoidance constraint vectoreliw 2 RNiN is formed in Equation

(7.10) by concatenating the vectors liw(k) 2 RNi for all k = 1, . . . , N . These, in turn, are formed by the

vertical concatenation of the values lij , defined in (6.20), but only for the agent i and its neighbourhood

j 2N i. Thes are linearised around the newly communicated position vectors (pi, pj).

eliw =
⇥
li1(1) . . . liNi(1) . . . li1(N) . . . liNi(N)

⇤T (7.10)

⌘
M
i (k) =

2

64
⌘
T
i1(k) . . . 0
... . . . ...
0 . . . ⌘

T
iNi

(k)

3

75 (7.11) ⌘
M
i =

2

64
⌘
M
i (1) . . . 0
... . . . ...
0 . . . ⌘

M
i (N)

3

75 (7.12)

Similar to the formulations in Section 6.3, the matrix ⌘i(k) 2 RNi⇥2Ni is first formed in (7.11), defined

for the timestep k. It is then augmented for all k = 1, . . . , N to form ⌘
M
i 2 RNiN⇥2(N)Ni in (7.12).

Using this, the constraint matrix is formulated asAiw = ⌘
M
i H iw 2 RNiN⇥2(N+1)M . To form the matrix

Hiw 2 R2(N)Ni⇥2(N+1)M , we first define the following to aid us,
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7.2 Full Linearized Model Integration

H1 =

2

666664

1 0
0 1
...

...
1 0
0 1

3

777775
(7.13) hj =

2

6666664

3

7777775

0 1
...

...
1 j

...
...

0 Ni

, (7.14)

with H1 2 R2Ni⇥2 and hj 2 RNi , which is a vector of zeros, except for its j
th element. Then, the

horizontal concatenation of matrices I
N+1
N ⌦H1 and I

N+1
N ⌦ (�I2) ⌦ hj , 8j 2 N i, gives the H iw

matrix for agent i, where I
N+1
N 2 RN⇥(N+1) is defined in Section 6.3.

The problem is set up following the algorithm and the OSQP formulations of its two optimisation

problems (7.7) and (7.9) and solved for exactly the same design matrices Q and R, and the same

horizon window size N = 100 as in Section 6.3. We use the same two configurations as in Figure

6.4; this allows us to calculate the objective residual between the centralised and the distributed

solutions to get a quantitative estimate of the proximity for those. The results are shown in Figure

7.2, for the constant value of ⇢ = 40 and for 45 iterations. We can see that for configuration 1 Figures

7.2a and 6.4a hardly differ, with the collision avoidance, and input constraints still satisfied. For this

configuration the objective residual is calculated to be only 0.38%. For the second configuration, for

the distributed and centralised solutions in Figures 7.2b and 6.4b, respectively, the only discernible

difference is the path that the agent one (in green) takes. The objective residual for this case is

calculated to be just 0.5%, meaning that both of the solutions reach very close to the same optimal

objective value, while having different solutions, as the trajectories are the solved optimal solutions

of the problems. The duration of the algorithm is estimated to take about 500 milliseconds for each
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(a) Configuration 1; � = 0.35m
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Figure 7.2: Trajectory tracking of three agents with 2 different configurations and �-s, generated in a
distributed fashion for a horizon window size of N = 100.

agent, however, this is for very large number of iterations and for a large horizon window size. In
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7.3 MPC Setup

practice, when implementing such an algorithm, MPC will be used to decrease the computation time

and introduce closed loop feedback. This is discussed in the following section.

7.3 MPC Setup

The model predictive control was discussed in detail in Section 6.4 and applied to the centralised

collision avoidance problem with Crazyflie quadrotor dynamics in 6.4.2. To ensure that the finite sized

receding horizon implementation behaves as if it was an infinite one, a dual mode was introduced.

In the first mode we have a finite sized horizon, and in the second the inputs are calculated by a

feedback rule: u = Kx. As it was discussed in Section 6.4, this is equivalent of having a special

terminal weight matrix QN , which must be the solution of the Lyapunov Equation (6.31).

The fully decentralized algorithm [24] is set up with OSQP [46], discussed in detail in Sections 7.1

and 7.2 for the Crazyflie quadrotor dynamics. The design parametersQ,R and N are kept the same

as in the centralised MPC setup in Section 6.4.2, and the value of ⇢ is the same compared to the

previous section, for direct comparison. After the ADMM iterations terminate, some optimal control

inputs u
?
i (k) 2 RnuN are generated for the current timestep k. As the MPC algorithm suggests, the

initial position vi0 is updated in (7.7) and the first control input u?0(k) is applied to the plant, or the

model in simulation. We note the important point, that the update of the nominal trajectories for the

linearisation of the collision avoidance constraint in (7.9), does not happen at this point, during the

serial MPC call, but instead during the iterations of the ADMM loop, as proposed by Modification 1 in

[24]. As we discussed earlier, this ensures optimality if the solutions converge and potentially provides

less conservatism, thanks to the more frequent updates of these trajectories. The results for the two

configurations used previously are shown in Figure 7.3 below.
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Figure 7.3: Trajectory tracking of three agents with 2 different configurations and �-s, generated in a
distributed, receding horizon fashion for a horizon window size of N = 10.
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We can see the resemblance of the Figures to the centralised MPC implementation for the same

configurations in Figure 6.5. The ADMM loop here is terminated after 15 iterations, and takes no more

100milliseconds per agent per loop. This is much faster compared to the tests we conducted for MPC

configuration without an OSQP setup.

8 Implementation on Quadrotors

In the previous sections the multi-agent collision avoidance problem was simulated successfully both

with centralised and distributed setups and in a receding horizon fashion for each, proving that in

an ideal environment without any model errors and external or internal disturbances, the agents are

able to track individual trajectories while staying in their velocity limits and avoiding collisions with

neighbours. Moreover, we also showed in Sections 6.4.2 and 7.3, that given the problem is feasible

for all future timesteps, then we also achieve closed loop stability. Following the Section 1.2 and the

Figure 1.2, in this section, a central system using Python and MATLAB [32, 31] is set up to implement

the generated optimal inputs from the MPC centralised simulations in Section 6.4.2. The full and

reduced models discussed in Section 6.2 are also compared.

8.1 Swarm Setup and Optimal Control Implementation

The MPC setup in Section 6.4.2 provides optimal control inputs for a three agent collision avoidance

trajectory tracking problem (6.26) simulated in a receding horizon fashion with a window size of N =

10. We then want to implement these optimal trajectories on three Crazyflies in an open loop fashion

to test how accurate the model is, the reliability of the communication with the CrazyRadio PA and to

set a practical arrangement for swarm control for later developments.

The hardware and software for the Crazyflies are set up according to Section 3 by equipping the

quadrotors with the Flow Deck sensors and updating their firmware with latest version [36]. In addi-

tion to the prerequisites such as localisation and data acquisition, a common frame of reference has

to be established as no central positioning system is used. To solve this, each drone is placed in a

predefined starting position and initialised using the same coordinate system for the whole network.

This is done at the startup by setting the initial positions of the Flow Deck Kalman filter in the Python

script. In Section 4.3 two control schemes were introduced, and as discussed earlier, for the multi

agent problem we use the on board mode, presented in detail in Section 4.3.2 and shown in Figure

4.8. In this mode the low level control for single quadrotor stabilisation is performed on board the

quadrotors, in the firmware, achieving faster and more reliable dynamics and wider available band-
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8.1 Swarm Setup and Optimal Control Implementation

width. Hence, the optimisation based controller that generates optimal inputs by solving the problem

(6.26) represents the high level controllerKh in Figure 4.8, with the exception that we are not closing

the loop with the reduced state sr, but applying the inputs for a certain horizon window in an open

loop. The optimisation problem (6.26) is solved in MATLAB [31] and the optimal inputs, ui are saved

for each agent i. The Python software then reads these inputs, which are the reference velocity in-

puts in (x, y) directions, as described in 6.2, and sends these to the quadcopters to be applied every

T = 0.1 seconds [32], as shown in Figure 4.8. One CrazyRadio PA is used for each drone, operating

at 2MBit/s Bandwidth and with a separate, unique, radio channel. Then, using the ROS system, as

described in Section 3.1, the position data of the drones is stored in individual rosbags (special data

files) for analysis.
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Figure 8.1: Trajectory tracking of three agents for� = 0.33m, generated in a receding horizon fashion
for a horizon window size of N = 10, at 3 different time steps. The purple trajectories in simulations
(a)-(c) show the real quadrotor positions, the crosses denote the targets, and the circles the initial
positions of the setup. The Figures (d) - (f) show the snapshots of the recorded flight.

The problem (6.26) is set up and solved exactly as in Section 6.4.2 with the same design param-

eters for the second configuration shown in Figure 6.5b. It is solved for two safety radii � = 0.33m

and � = 0.45m and the optimal inputs are applied as described. The results are shown in Figures

8.1 and 8.2 for the two radii, respectively. The flight videos can be accessed online [51, 52]. The

purple shadow trajectories in these figures denote the Crazyflie estimated trajectories saved by the

ROS system. The first conclusion that can be drawn from the above tests is that there is a very close

match between the measured trajectories of the Crazyflie quadrotors and the simulated, predicted

ones, as verified in the figures. This is particularly pleasing, as it is implemented in an open loop
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8.1 Swarm Setup and Optimal Control Implementation
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Figure 8.2: Trajectory tracking of three agents for� = 0.45m, generated in a receding horizon fashion
for a horizon window size of N = 10, at 3 different time steps. The purple trajectories in simulations
(a)-(c) show the real quadrotor positions, the crosses denote the targets, and the circles the initial
positions of the setup. The Figures (d) - (f) show the snapshots of the recorded flight.

fashion. In the final states for both of the configurations in Figures 8.1c and 8.2c, we can observe

that the quadrotor measured trajectories (in purple) at some points deviate from the predicted ones,

although not much. We conjecture that this occurs due to a number of reasons. Firstly, as we can see

from Figures 8.1a and 8.2a, the start positions for all of the agents are slightly shifted. This is due to

two factors: the imperfect function of the Flow Deck sensor under 20cm, causing the drone to vibrate

and shift slightly, and the corner effect of the flooring, which greatly affects the state estimation of the

Flow Deck sensor, as mentioned in Section 4.3.1. This latter is particularly visible for the agent three,

as it is the closest to the corner of the flooring. The second reason for such small deviations is the

intermittent breakup or slowdown of the communication links due to packet drops and losses. This is

verified by actuating the same inputs one by one and observing a much closer fit, as shown in Figure

8.3a, proving that a higher load on the communication bandwidth may cause sudden breakups and

jitter. Finally, the Flow Deck depends on the flooring conditions to work perfectly; having an uneven

floor may introduce vibrations and inaccurate readings. The first two of the mentioned problems can

be solved to a great extent by introducing a closed loop on-line implementation using the developed

MPC setup, as explained in Section 9.1. The last one is solved by using a flooring working perfectly

with Flow Deck to fix the inaccuracies in the readings.
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8.2 Full Model Comparison

8.2 Full Model Comparison

In Section 6.2 we reduced the ten state system to a six state one, which has been used throughout

the report for simulations, as well as practical implementations. We justified this simplification by

arguing that the additional states we ignored are all stable and that their influence was very low. This

is an indication that the coefficients for these states were non-zero only because of the numerical

errors introduced by using the MATLAB ”linmod” function and the SIMULINK program. To get an

understanding of the quality of our approximation, we repeat the test in the previous section with an

MPC setup and an open-loop implementation for the full discretized model (6.8) by only reducing the

inputs to be the (x, y) reference velocities. We then compare the predicted and measured trajectories

as before. For the same setup with the same configuration and design specifications, with the only

slightly different � = 0.3m we get the trajectories shown in Figure 8.3b as compared to the simplified

reducedmodel results in 8.3a. These are implemented for all agents in sequence to remove the effects

of communication. Although the trajectories still match very well for an open loop implementation, this
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(a) Simplified Model; � = 0.33m
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Figure 8.3: Trajectory tracking of three agents, simulated using a simplified(a) and a full(b) model
generated in a receding horizon fashion for a horizon window size of N = 10. The purple trajectories
in simulations show the real quadrotor positions, the crosses denote the targets, and the circles the
initial positions of the setup

full model match is worse than the one for the reduced one as shown in Figures 8.1 and 8.2. For all of

the tests with different configurations that we performed, this pattern persisted with the match for the

full model always being worse than the reduced one. This supports the fact that either the conjecture

that low value state coefficients were generated by numerical errors is true or that the full model is

too accurate and somehow overfitting takes place. In either of the cases, using the smaller model,

which showed a very good match with the real system as verified earlier is the more logical choice for

shorter computation time, simplicity and better match.

45



9 Conclusion

This project was aimed at achieving autonomous and stable flight for a swarm of Crazyflie quadrotors.

We modelled and successfully executed the three constituent subtasks towards achieving this goal.

The small size and the open-source software and firmware of the quadcopters allowed us to implement

some of the simulated algorithms in practice and verify the accuracy of both the system models and

the networked collision avoidance algorithms.

The control of a single quadrotor was considered by developing a linearised model and introducing

off-board and on-board control modes with a local sensor, removing the need for motion capture

systems. The tests in both modes under a LQR optimal control proved a near perfect match between

the linearised model and the non-linear plant with a height error of no more than 2cm for flights at 30cm

and higher. This linearised model was then simplified further and used for the multi agent problem.

A review of networked consensus and flocking problems was conducted. The iterative discrete

algorithms for decentralised and distributed problems provide more flexibility than potential field ap-

proaches by allowing the incorporation of more complex dynamics and objective functions. A cen-

tralised collision avoidance and trajectory tracking problem was set up and then distributed using a

variation of the ADMM algorithm. Linearising the nonconvex collision avoidance constraint, the prob-

lems were solved for the developed Crazyflie model using the OSQP solver [46] with a horizon window

size of 100 and a discretization step of 0.1 seconds. The objective residual between the centralised

and distributed problems was calculated to be less than 1%. For each setup a feedback loop was

then introduced with a receding horizon implementation for a horizon window size of 10 and the same

discretization. The Table 2 below shows the computation times for each of these setups. Note that the

centralised MPC is faster than the Crazyflie dynamics, making on-line closed loop control possible.

The distributed case is discussed in the next subsection. The generated optimal inputs for the cen-

Setup Centralised:
(Section 6.3)

Centralised MPC
(Section 6.4.2)

Distributed
( Section 7.2)

Distributed MPC
(Section 7.3)

Computation time
per agent (ms) 400 20 (per MPC call) 500 100 (per MPC call)

Table 2: Completion times for the centralised and distributed problems. The problems with a MPC
setup were solved for a horizon window size of N = 10, the others for N = 100

tralised MPC problem were then implemented on Crazyflie quadrotors in an open loop fashion using

the on-board control mode. In the absence of any model errors and disturbances, the results showed

a very close match between the predicted and observed trajectories with only minor deviations from

their optimal path. One of the keys towards achieving true autonomy is the independence from any
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9.1 Future Work and Extensions

centralised localisation systems. Keeping this level of autonomy, we successfully set up a system to

control both single and networked quadrotors that track trajectories and avoid collisions while logging

and analysing the data. This allows future users to build and improve upon, integrating more features.

9.1 Future Work and Extensions

There are a few directions for the project’s further development and improvement. We discuss some

of these, explaining how those can be built on the current setup. Firstly, to achieve a closed loop im-

plementation, at each MPC call the initial states of all the agents, whether in centralised or distributed

setups, are updated with their current estimated states. This closes the outer feedback loop in Figure

4.8. By the time the quadcopters communicate their position, they actuate the current optimal input.
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Figure 9.1: Distributed trajectory tracking of three
agents, simulated in a receding horizon fashion for
a horizon window size of N = 20, � = 0.33m, dis-
cretization step T = 0.05 s and one timestep delay.

This is possible if the agents implement only the

previous computed inputs. Naturally, this com-

putation time has to be less than the discretiza-

tion step T . The distributed MPC problem, pre-

sented in Section 7.3 is updated to incorporate

this delay and T is reduced to 0.05 seconds. It is

solved in less than 45 milliseconds for a horizion

window of N = 20 and eight ADMM iterations.

Thus, it leaves some time to account for com-

munication delays. The simulation is obviously,

much smoother, and thanks to the faster model,

the one timestep delay does not affect the sta-

bility, as shown in Figure 9.1. Making use of the already setup ROS system and callback functions,

this MPC loop can then be closed on the computer. This can then be improved further by eliminating

the computer for performing the optimisation, and programming everything directly in the firmware.

The newly introduced peer to peer communication protocol [53] can enable the information exchange.

This will greatly reduce the communication and operating system delays imposed by the CrazyRadio

and the computer. Further areas of extension include a more detailed analysis of the reduction of

the Crazyflie full model, and the possible improvement upon it. Furthermore, the robustness of the

networked system can be considered either by using stochastic control techniques [25] or by a more

traditional robust control and robust model predictive control analysis [48]. These would consider

the effects of uncertainties in the model and the environment, such as winds, when flown outdoors,

damaged propellers, motors, or sensor and battery failures.
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