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1 Introduction

We consider the problem of computing the information rate

I(X; Y )
�
= lim

n→∞
1

n
I(X1, . . . , Xn; Y1, . . . , Yn) (1)

between the input process X = (X1, X2, . . .) and the output process Y = (Y1, Y2, . . .) of a
time-invariant discrete-time channel with memory. We will assume that X is Markov or
hidden Markov, and we will primarily be interested in the case where the channel input
alphabet X (i.e., the set of possible values of Xk) is finite.

In many cases of practical interest, the computation of (1) is a problem. Analytical
simplifications of (1) are usually not available even if the input symbols Xk are i.u.d.
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(independent and uniformly distributed). The complexity of the direct numerical com-
putation of

In
�
=

1

n
I(X1, . . . , Xn; Y1, . . . , Yn) (2)

is exponential in n, and the sequence I1, I2, I3, . . . converges rather slowly even for very
simple examples.

Prior work on this subject includes investigations of (i) linear intersymbol interfer-
ence channels, (ii) generalizations of the Gilbert-Elliott channel, and (iii) channels with
constrained input, cf. the examples in Section 2. The binary-input linear intersymbol
interference channel was investigated by Hirt [19], who proposed a Monte-Carlo method
to evaluate certain quantities closely related to the i.u.d. information rate (cf. Section 4).
Shamai et al. [31], [32] also investigated the intersymbol interference channel and derived
various closed-form bounds on the capacity and on the i.u.d. information rate as well as
a lower-bound conjecture.

The Gilbert-Elliott channel was analyzed by Mushkin and Bar-David [26]. Goldsmith
and Varaiya extended that work to general channels with a freely evolving state [16] (cf.
Example 2); they gave expressions for the channel capacity and the information rate as
well as recursive methods for their evaluation.

Zehavi and Wolf studied the binary symmetric channel with run-length limited input
[40]; they derived a set of lower bounds for Markovian input and demonstrated some
numerical results from brute-force computations. Both the binary symmetric channel
and the Gaussian channel with run-length limited binary input were studied by Shamai
and Kofman, who obtained upper and lower bounds on the i.u.d. information rate [30].
A related topic is the continuous-time AWGN channel with peak constraint input, which
was addressed by Heegard et al. [17], [18].

Despite all this work, information rates of such channels could not be computed
accurately enough for most engineering purposes except for the Gilbert-Elliott channel
and its generalizations.

The first and main result of our own work (first reported in [3]) is a practical algorithm
to compute information rates for general finite-state source/channel models (to be defined
in Section 2). This algorithm was independently discovered also by Sharma and Singh
[33], [34] and by Pfister et al. [29]. We will review this algorithm in Section 3. (Sharma
and Singh [34] also gave various expressions for the information rate as well as proofs of
convergence; expressions for the information rate were also given by Holliday et al. [20].)

We will then extend this method to very general (non-finite state) channels with mem-
ory. In Section 5.3 and Appendix C, we demonstrate the use of reduced-state recursions
to compute upper and lower bounds on the information rate. In Section 6, we use finite-
state approximations of the channel; by simulations of the actual source/channel and
computations using the finite-state model, both an upper bound and a lower bound on
the information rate of the actual channel are obtained. The bounds will be tight if the
finite-state model is a good approximation of the actual channel. The lower bound holds
under very weak assumptions; the upper bound requires a lower bound on the conditional
entropy rate h(Y |X).

In this paper, we will always assume that the channel input process X is given; in the
numerical examples, we will often assume it to be i.u.d. Our parallel work on optimizing
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Figure 1: The factor graph of (3).

the process X over finite-state hidden Markov sources (cf. [21]) will be reported in a
separate paper [37]. Computational upper bounds on the channel capacity were proposed
in [36] and [39].

We will use the notation xn
k

�
= (xk, xk+1, . . . , xn) and xn �

= (x1, x2, . . . , xn).

2 Finite-State Source/Channel Models

In this section, we will assume that the channel input process X = (X1, X2, . . .), the chan-
nel output process Y = (Y1, Y2, . . .), and some auxiliary state process S = (S0, S1, S2, . . .)
satisfy

p(xn, yn, sn
0 ) = p(s0)

n∏
k=1

p(xk, yk, sk|sk−1) (3)

for all n > 0 and with p(xk, yk, sk|sk−1) not depending on k. We will assume that the
state Sk takes values in some finite set and we will assume that the process S is ergodic;
under the stated conditions, a sufficient condition for ergodicity is p(sk|s0) > 0 for all
s0, sk for all sufficiently large k.

For the sake of clarity, we will further assume that the channel input alphabet X is a
finite set and that the channel output Yk takes values in R; none of these assumptions is
essential, however. With these assumptions, the left-hand side of (3) should be understood
as a probability mass function in xk and sk and as a probability density in yk. We will
also assume that

E
[∣∣log p(Y1|s0, s1, x1)

∣∣] < ∞ (4)

for all s0, s1, x1, in order to guarantee the existence of certain limits, cf. [24]. This
condition formally excludes a finite channel output alphabet, but all results of this paper
are easily reformulated to hold for that case.

The factorization (3) is expressed by the factor graph of Fig. 1. (This graph is a
Forney-style factor graph, see [14], [25]; add a circle on each branch to obtain a factor
graph as in [23].)

Example 1 (Binary-input FIR filter with AWGN). Let

Yk =
m∑

i=0

giXk−i + Zk (5)

with fixed real coefficients gi, with Xk taking values in {+1,−1}, and where Z = (Z1, Z2, . . .)
is white Gaussian noise. If X is Markov of order L, i.e.,

p(xk|xk−1) = p(xk|xk−1
k−L), (6)
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Figure 2: Finite-state machine describing a run-length constraint.

then (3) holds for Sk
�= (Xk−M+1, . . . ,Xk−1,Xk) with M = max{m,L}.

As shown in Appendix B, the extension of this example to colored noise can be reduced
to the case of white noise.

Example 2 (Channel with freely evolving state). Let S′ = (S′
0, S

′
1, . . .) be a first-order

Markov process that is independent of X and with S′
k taking values in some finite set. Consider

a channel with

p(yn, s′0, . . . , s
′
n | xn) = p(s′0)

n∏
k=1

p(yk|xk, s
′
k−1) p(s′k|s′k−1) (7)

for all n > 0. If X is Markov of order L, then (3) holds for Sk
�= (S′

k,Xk−L+1, . . . ,Xk−1,Xk).
This class of channels includes the Gilbert-Elliott channel [26].

Example 3 (Channel with constrained input). Consider a memoryless channel with
input alphabet {0, 1}, and assume that no channel input sequence may contain more than two
consecutive ones. Note that the admissible channel input sequences correspond to the walks
through the directed graph shown in Fig. 2.

A finite-state process X that complies with these constraints may be obtained by assigning
probabilities p(sk|sk−1) to the edges of Fig. 2 such that

∑
sk

p(sk|sk−1) = 1. (The problem of
finding “good” branching probabilities p(sk|sk−1) is treated in [37]). We then have

p(xn, yn, sn
0 ) = p(s0)

n∏
k=1

p(sk|sk−1)p(xk|sk, sk−1)p(yk|xk), (8)

which is of the form (3).

Under the assumptions stated at the beginning of this section, the limit (1) exists.
Moreover, the sequence − 1

n
log p(Xn) converges with probability 1 to the entropy rate

H(X), the sequence − 1
n

log p(Y n) converges with probability 1 to the differential entropy
rate h(Y ), and − 1

n
log p(Xn, Y n) converges with probability 1 to H(X)+h(Y |X), cf. [9],

[24], and [12, Ch. IV-D]. The corresponding results for the case of a finite channel output
alphabet are contained already in [28].

3 Computing I(X ; Y ) for Finite-State Channels

From the above remarks, an obvious algorithm for the numerical computation of I(X; Y ) =
h(Y ) − h(Y |X) is as follows:
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Figure 3: Computation of p(yn) by message passing through the factor graph of (3).

1. Sample two “very long” sequences xn and yn.

2. Compute log p(xn), log p(yn), and log p(xn, yn). If h(Y |X) is known analytically,
then it suffices to compute log p(yn).

3. Conclude with the estimate

Î(X; Y )
�
= −1

n
log p(yn) − 1

n
log p(xn) +

1

n
log p(xn, yn) (9)

or, if h(Y |X) is known analytically, Î(X; Y )
�
= − 1

n
log p(yn) − h(Y |X).

The computations in Step 2 can be carried out by forward sum-product message
passing through the factor graph of (3), as illustrated in Fig. 3. Since the graph repre-
sents a trellis, this computation is just the forward sum-product recursion of the BCJR
algorithm [8].

Consider, for example, the computation of

p(yn) =
∑
xn

∑
sn
0

p(xn, yn, sn
0). (10)

Define the state metric µk(sk)
�
= p(sk, y

k). By straightforward application of the sum-
product algorithm [23], we recursively compute the messages (state metrics)

µk(sk) =
∑
xk

∑
sk−1

µk−1(sk−1) p(xk, yk, sk|sk−1) (11)

=
∑
xk

∑
sk−1
0

p(xk, yk, sk) (12)

for k = 1, 2, 3, . . ., as illustrated in Fig. 3. The desired quantity (10) is then obtained as

p(yn) =
∑
sn

µn(sn), (13)

the sum of all final state metrics.
For large k, the state metrics µk(.) computed according to (11) quickly tend to zero.

In practice, the recursion (11) is therefore changed to

µk(sk) = λk

∑
xk

∑
sk−1

µk−1(sk−1) p(xk, yk, sk|sk−1) (14)
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where λ1, λ2, . . . are positive scale factors. If these scale factors are chosen such that∑
sn

µn(sn) = 1, then

1

n

n∑
k=1

log λk = −1

n
log p(yn). (15)

The quantity − 1
n

log p(yn) thus appears as the average of the logarithms of the scale
factors, which converges (almost surely) to h(Y ).

If necessary, the quantities log p(xn) and log p(xn, yn) can be computed by the same
method: for p(xn), the recursion corresponding to (14) is

µk(sk) = λk

∑
sk−1

µk−1(sk−1) p(xk, sk|sk−1) (16)

and for p(xn, yn), the corresponding recursion is

µk(sk) = λk

∑
sk−1

µk−1(sk−1) p(xk, yk, sk|sk−1). (17)

If there is no feedback from the channel to the source, the computation (16) needs only
the source model rather than the joint source/channel model. In this case, if (6) holds,
H(X) can be computed in closed form as the entropy of a Markov source [11].

4 Numerical Examples

We will here focus on channels as in Example 1. Further numerical examples (including
channels as in Example 3 as well as the nonlinear channel of [2]) are given in [5] and [37].

The filter coefficients g0, g1, . . . , gm in Example 1 are often compactly represented by

the formal sum G(D)
�
=

∑m
k=0 gkD

k. The signal-to-noise ratio (SNR) will be defined as

SNR
�
=

E[X2
k ]

E[Z2
k ]

∑m
k=0 g2

k

. (18)

(It is clear that this SNR definition is inadequate for some applications, but this qualifica-
tion seems to apply also to all alternative definitions including that of [38].) For channels
as in Example 1, h(Y |X) = h(Z) is known analytically, which means that the algorithm
of Section 3 is only needed to compute h(Y ).

In all numerical examples reported in this paper, the sequence length n = 106 proved
to be sufficient.

Our first example is a channel as in Example 1 with transfer function G(D) = 1−D.
In the magnetic recording literature, this channel is known as the dicode channel. Fig. 4
shows the following information rates for this channel:

1. The information rate for i.u.d. input.

2. The maximum information rate for X Markov of order L = 1.

3. The maximum information rate for X Markov of order L = 2.
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The maximization of the information rate over the Markov sources can be done by the
methods of [37] or (in this simple example) by brute force. For comparison, Fig. 4 also
shows:

4. The capacity of the memoryless AWGN channel.

5. The capacity of the dicode channel for Gaussian (rather than binary) input.

The latter is obtained by the well-known waterfilling principle [11]. As the definition (18)
allows the channel to provide a power gain for non-white input, the waterfilling capacity
exceeds the capacity of the memoryless AWGN channel at low SNR.

The convergence behavior of the algorithm is illustrated by Fig. 5. The i.u.d.-input
information rate for the dicode channel at 3.01 dB was computed 10+100+1000 times,
each time by a simulation run of 106 symbols and with a new random seed. For each
blocklength n, Fig. 5 shows the minimum and the maximum computed estimate of the
information rate among the first 10, the next 100, and the remaining 1000 simulation
runs.

Fig. 6 shows information rates for a channel as in Example 1 with G(D) = 0.19 +
0.35D +0.46D2 +0.5D3 +0.46D4 +0.35D5 +0.19D6. (This particular example was used
by Hirt [19].) The following information rates are shown:

1. The information rate for i.u.d. input.

2. The maximum information rate for a Markov source of order L = 6.

3. The capacity of the memoryless AWGN channel.

4. The capacity of the channel for Gaussian (rather than binary) input.

Fig. 7 illustrates the performance of Hirt’s method [19] as well as a conjectured lower
bound on the channel capacity due to Shamai and Laroia [32]. The latter can be computed
by evaluating a single one-dimensional integral. Fig. 7 shows several rates for the channel
of Fig. 6, each for −5 dB, for 3 dB, and for 8 dB:

1. IHL(n) (see below) as a function of n.

2. IHU(n) (see below) as a function of n.

3. The Shamai-Laroia conjectured lower bound (SLLB).

4. The true information rate for i.u.d. input (computed by our algorithm).

As the figure shows, the Shamai-Laroia conjectured lower bound is extremely tight
for low SNR.

Hirt defined

IHL(n)
�
=

1

n
I(Xn; Y n|X0, X−1, . . . , X1−m) (19)

and

IHU(n)
�
=

1

n
I(Xn; Y n+m|X0, . . . , X1−m, Xn+1, . . . , Xn+m), (20)
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where the input process X is assumed to be i.u.d. Hirt computed these quantities by
numerical integration based on Monte-Carlo simulation. By standard arguments,

IHL(n) ≤ IHU(n) (21)

and
lim

n→∞
IHL(n) = lim

n→∞
IHU(n) = I(X; Y ). (22)

5 Extensions

5.1 Continuous Input Alphabet

As mentioned in Section 2, the assumption that the input alphabet X is finite is by no
means essential. Assume, for example that X = R and p(xn) is a probability density
consistent with (3). If p(xn) is sufficiently nice (which we do not wish to discuss further),
then the sequence − 1

n
log p(Xn) converges with probability 1 to the differential entropy

rate h(X) and the sequence − 1
n

log p(Xn, Y n) converges with probability 1 to h(X, Y ).
The only modification to the algorithm of Section 3 is that the recursion (14) becomes

µk(sk) = λk

∑
sk−1

µk−1(sk−1)

∫ ∞

−∞
p(xk, yk, sk|sk−1) dxk, (23)

which may be evaluated analytically or numerically.

5.2 Time-Varying and/or Non-Ergodic Source/Channel Model

If the factor p(xk, yk, sk|sk−1) in (3) depends on k, the quantity Î(X; Y ) defined by (9)
may still be computed as described in Section 3, but there is no general guarantee that
this estimate converges to I(X; Y ).

If the source/channel model is not ergodic, one may sample many sequences xn and
yn and average over the corresponding estimates (9).

5.3 Bounds on Entropy Rates from Reduced-State Recursions

The basic recursion (11) can be modified to yield upper and lower bounds on p(yn) and
thus on h(Y ) (and similarly for H(X) and h(Y |X)). The modified recursions can be
computed for channels where the number of states is large.

Let S ′
k be a subset of the time-k states. If the sum in the recursion (11) is modified

to
µk(sk) =

∑
xk

∑
sk−1∈S′

k−1

µk−1(sk−1) p(xk, yk, sk|sk−1), (24)

the sum of the final state metrics will be a lower bound on p(yn) and the corresponding
estimate of h(Y ) will be increased. We thus have the following theorem.

Theorem (Reduced-State Upper Bound). Omitting states from the computation
(11) yields an upper bound on h(Y ). �
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The sets S ′
k may be chosen arbitrarily. An obvious strategy is to keep only a fixed number

of states with the largest metrics.
By a similar argument, one may also obtain also lower bounds on h(Y ). A particular

case is worked out in Appendix C.
The upper bound can also be applied to certain non-finite-state channels as follows.

Consider, e.g., the autoregressive channel of Fig. 8 and assume that, at time zero, the
channel is in some fixed initial state. At time one, there will be two states; at time two,
there will be four states, etc. We track all these states according to (11) until there are
too many of them, and then we switch to the reduced-state recursion (24).

Some numerical examples for the upper bound of this section are given in Section 7.

6 Bounds on I(X ; Y ) Using an Auxiliary Channel

Upper and lower bounds on the information rate of very general (non-finite) state channels
can be computed by methods of the following general character.

1. Choose a finite-state (or otherwise tractable) auxiliary channel model that somehow
approximates the actual (difficult) channel. (The accuracy of this approximation
will affect the tightness, but not the validity of the bounds.)

2. Sample a “very long” channel input sequence and the corresponding channel output
sequence of the actual channel.

3. Use these sequences for a computation (in the style of Sections 3–5) using the
auxiliary channel model.

We begin by reviewing the underlying analytical bounds, which are well known. For
the sake of clarity, we first state these bounds for a discrete memoryless channel. Let X
and Y be two discrete random variables with joint probability mass function p(x, y). We
will call X the source and p(y|x) the channel law. Let q(y|x) be the law of an arbitrary
auxiliary channel with the same input and output alphabets as the original channel. We
will imagine that the auxiliary channel is connected to the same source X; its output
distribution is then

qp(y)
�
=

∑
x

p(x) q(y|x). (25)

In the following, we will assume that q(y|x) is chosen such that qp(y) > 0 whenever
p(y) > 0.

Theorem (Auxiliary-Channel Upper Bound).

I(X; Y ) ≤
∑
x,y

p(x, y) log
p(y|x)

qp(y)
(26)

= Ep

[
log p(Y |X) − log qp(Y )

]
, (27)

where the sum in (26) should be read as running over the support of p(x, y). Equality
holds in (26) if and only if p(y) = qp(y) for all y. �
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This bound appears to have been observed first by Topsøe [35]. The proof is straightfor-
ward. Let Iq(X; Y ) be the right-hand side of (26). Then

Iq(X; Y ) − I(X; Y ) =
∑
x,y

p(x, y)

[
log

p(y|x)

qp(y)
− log

p(y|x)

p(y)

]
(28)

=
∑
x,y

p(x, y) log
p(y)

qp(y)
(29)

=
∑

y

p(y) log
p(y)

qp(y)
(30)

= D
(
p(y)||qp(y)

)
(31)

≥ 0. (32)

Theorem (Auxiliary-Channel Lower Bound).

I(X; Y ) ≥
∑
x,y

p(x, y) log
q(y|x)

qp(y)
(33)

= Ep

[
log q(Y |X) − log qp(Y )

]
(34)

where the sum in (33) should be read as running over the support of p(x, y). �

This bound is implicit in the classical papers by Blahut [10] and Arimoto [1]. More-
over, it may also be obtained as a special case of a bound due to Fischer [13] on mis-
matched decoding, which in turn is a special case of a general result by Ganti et al. [15,
Equation (12) for s = 1]. It then follows from the results in [13] and [15] that the lower
bound is achievable by a maximum-likelihood decoder for the auxiliary channel.

A simple proof of (33) goes as follows. Let Iq(X; Y ) be the right-hand side of (33) and
for y satisfying p(y) > 0 (which by the assumption after equation (25) implies qp(y) > 0)
let

rp(x|y)
�
=

p(x)q(y|x)

qp(y)
(35)

be the “reverse channel” of the auxiliary channel. Then

I(X; Y ) − Iq(X; Y ) =
∑
x,y

p(x, y)

[
log

p(x, y)

p(x)p(y)
− log

q(y|x)

qp(y)

]
(36)

=
∑
x,y

p(x, y) log
p(x, y)

p(y)p(x)q(y|x)/qp(y)
(37)

=
∑
x,y

p(x, y) log
p(x, y)

p(y)rp(x|y)
(38)

= D
(
p(x, y)||p(y)rp(x|y)

)
(39)

≥ 0. (40)

As is easily verified, the difference between the above two bounds can be written as

Iq(X; Y ) − Iq(X; Y ) = D
(
p(x)p(y|x)||p(x)q(y|x)

)
. (41)
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The generalization of these bounds to the information rate of channels with memory
is straightforward. For any finite n > 0, the bounds clearly apply to In as in (2). If the
required limits for n → ∞ exist, the upper bound becomes

Iq(X; Y )
�
= lim

n→∞
Ep

[
− 1

n
log qp(Y

n) +
1

n
log p(Y n|Xn)

]
(42)

and the lower bound becomes

Iq(X; Y )
�
= lim

n→∞
Ep

[
− 1

n
log qp(Y

n) +
1

n
log q(Y n|Xn)

]
. (43)

Now assume that p(·|·) is some “difficult” (non-finite-state) ergodic channel. We can
compute bounds on its information rate by the following algorithm:

1. Choose a finite-state source p(·) and an auxiliary finite-state channel q(·|·) so that
their concatenation is a finite-state source/channel model as defined in Section 3.

2. Concatenate the source to the original channel p(·|·) and sample two “very long”
sequences xn and yn.

3. Compute log qp(y
n) and, if necessary, log p(xn) and log q(yn|xn)p(xn) by the method

described in Section 3.

4. Conclude with the estimates

Îq(X; Y )
�
= −1

n
log qp(y

n) − h(Y |X) (44)

and

Îq(X; Y )
�
= −1

n
log qp(y

n) − 1

n
log p(xn) +

1

n
log q(yn|xn)p(xn). (45)

Note that the term h(Y |X) in the upper bound (44) refers to the original channel and
cannot be computed by means of the auxiliary channel. However, this term can often be
determined analytically.

For this algorithm to work, (44) and (45) should converge with probability one to (42)
and (43), respectively. Sufficient conditions for the existence of such limits are discussed
in [28], [9], [24], [12, Ch. IV-D]. In particular, the following conditions are sufficient:

1. The original source/channel model p(x, y) is of the form (3) with finite state space,
with p(xk, yk, sk|sk−1) not depending on k, and with p(sk|s0) > 0 for all sufficiently
large k.

2. The auxiliary channel model q(y|x) (together with the original source p(x)) is of
the same form.

3. In addition to (4), we also have Ep

[∣∣log qp(Yk|sk−1, sk, xk)
∣∣] < ∞ for all sk−1, sk, xk.

Quantities very similar to (42) and (43) seem to have been computed by essentially
the same algorithm as far back as 1985, cf. [22].
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7 Numerical Examples for the Bounds

We illustrate the methods of Sections 5.3 and 6 by some numerical examples. As in
Section 4, we focus on channels as in Example 1 (and we will use the same definition of
the SNR). The input process X will always be assumed to be i.u.d.

Our first example is a memory-10 FIR filter with G(D) =
∑10

i=0
1

1+(i−5)2
Di. Fig. 10

shows the following curves.

1. Bottom: the exact information rate computed as described in Section 3.

2. Top: the reduced-state upper bound (RSUB) of Section 5.3, using the 100 (out of
1024) states with the largest state metric.

3. Middle: the reduced-state upper bound (still with 100 states) applied to an equiva-
lent channel which is obtained by replacing G(D) by the corresponding minimum-
phase polynomial.

The notion of a minimum-phase filter is reviewed in Appendix A, and the justification
for replacing G(D) by the corresponding minimum-phase polynomial (i.e., the minimum-
phase filter with the same amplitude response) is given in Appendix B. The motivation
for this replacement is that minimum-phase filters concentrate the signal energy into the
leading tap weights [27], which makes the reduced-state bound tighter.

It is obvious from Fig. 10 that the reduced-state upper bound works fine for high SNR
and becomes useless for low SNR.

Our next example is the channel of Fig. 8 with an autoregressive filter

G(D) = 1/(1 − αD) = (1 + αD + α2D2 + . . .)

for α = 0.8. Both the reduced-state bound of Section 5.3 and the auxiliary-channel bound
of Section 6 were applied. The auxiliary channel was obtained from the original channel
by inserting a uniform quantizer in the feedback loop, which results in the finite-state
channel of Fig. 9. Both the range of the quantizer and the noise variance of the auxiliary
channel were numerically optimized to give as good bounds as possible. Fig. 11 shows
the following curves.

1. Rightmost: the (indistinguishable) upper and lower bounds (AUB and ALB) using
the auxiliary channel of Fig. 9 with 512 states.

2. Very slightly to the left: the reduced-state upper bound (RSUB) using only 4 states.

3. Leftmost: the memoryless binary-input (BPSK) channel.

In this example, the auxiliary-channel bounds yield the true information rate up to the
accuracy of the plot. The reduced-state upper bound is extremely tight over the whole
SNR range even for very few states.

For this same setup, Fig. 12 shows these three bounds as a function of the number of
states (for SNR=7.45 dB). The superiority of the reduced-state bound is striking.

Our last example is an autoregressive filter with

G(D) = 1/(1.0000+0.3642·D+0.0842·D2+0.2316·D3−0.2842·D4+0.2084·D5+0.2000·D6).

Fig. 13 shows (from left to right):
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1. The capacity of the BPSK channel.

2. The reduced-state upper bound with only 2 states.

3. The reduced-state upper bound with 128 states.

8 Conclusions

We have presented a general method for the numerical computation of information rates of
finite-state source/channel models. By extensions of this method, upper and lower bounds
on the information rate can be computed for very general (non-finite state) channels. A
lower bound can be computed from simulated (or measured) channel input/output data
alone; for the corresponding upper bound, an additional assumption (such as a lower
bound on h(Y |X)) is needed. Bounds from channel approximations and bounds from
reduced-state trellis computations can be combined in several ways.
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Topsøe’s bound (26) as well as the references [13] and [15].

Appendix

A On Minimum-Phase Filters

This section summarizes some basic and well-known facts on discrete-time linear time-
invariant (LTI) systems, cf. [27].

For a discrete-time signal f : Z → R, we write fk
�
= f(k). Such a signal is left sided

if, for some m ∈ Z, fk = 0 for k > m; it is right-sided if, for some m ∈ Z, fk = 0 for
k < m; and it is causal if fk = 0 for k < 0.

An LTI system, or “filter”, is specified by its impulse response g; the output signal
y resulting from an arbitrary input signal x is given by yn =

∑
k∈Z xn−kgk. The filter is

stable (bounded-input bounded-output) if and only if
∑

k∈Z |gk| < ∞. The filter is causal
if and only if g is a causal signal.

The transfer function of such a filter is

G(z)
�
=

∑
k∈Z

gkz
−k, (46)

which may be interpreted either as a formal series in the indeterminate z (i.e., G(z) =
G(D) for D = z−1) or as a function Sg → C with domain Sg ⊂ C (essentially the region of
convergence of (46)) of the form Sg = {z ∈ C : r1 < |z| < r2}, where r1 is a nonnegative
real number and r2 ∈ R∪{∞}. If the filter is right-sided, then r1 = 0. If Sg contains the
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unit circle, then the filter is stable. An inverse to an LTI filter with transfer function G
is an LTI filter with transfer function H such that G(z)H(z) = 1.

Now assume that G(z) is a rational function. Then the following conditions are
equivalent:

1. G(z) is called minimum-phase.

2. All zeros and all poles of G(z) are inside the unit circle, and the degree (in z) of
the numerator equals the degree of the denominator.

3. The filter is causal and stable and has an inverse that is also causal and stable.

A filter H(z) is an all-pass filter if |H(eiΩ)| = 1 for all Ω ∈ R.

Theorem (Minimum-Phase/All-pass Decomposition). Let F (z) be a rational
function without zeros or poles on the unit circle. Then F (z) can be written as

F (z) = G(z)H(z), (47)

where G(z) is minimum-phase and H(z) is an all-pass. Moreover, H(z) can be realized as
a stable filter with a right-sided impulse response and 1/H(z) can be realized as a stable
filter with a left-sided impulse response. �

Clearly, |G(eiΩ)| = |F (eiΩ)| for all Ω ∈ R. For

F (z) =

∏m
k=1(z − zk)∏n
�=1(z − p�)

(48)

the corresponding minimum-phase filter G(z) is

G(z) =
zn−m

∏
k:|zk|<1(z − zk)

∏
k:|zk|>1(1 − zzk)∏n

�=1(z − p�)
(49)

where zk denotes the complex conjugate of zk.

B On Linear Channels with Additive Noise

Consider the channel of Fig. 14.A: the input process X, which is assumed to be stationary,
is filtered by a linear filter F (z) and then the noise process W is added. The function
F (z) is assumed to be rational without poles or zeros on the unit circle. We will review
the following facts.

1. If the noise is white Gaussian, replacing F (z) by the corresponding minimum-phase
filter G(z) (as in (47) and (49)) does not change the information rate I(X; Y ).

2. The case of colored Gaussian noise (as defined below) can be converted into the
case of white Gaussian noise.
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We begin with the first case. Clearly, when F (z) is decomposed according to (47),
the information rate I(X; Y ) remains unchanged (Fig. 14.B). It is then obvious that
the channel of Fig. 14.C also has the same information rate I(X; Y ). Omitting the
stable all-pass H(z) at the output does not increase the information rate, and thus the
information rate I(X; Y ′) of the channel in Fig. 14.D equals I(X; Y ) of the original
channel of Fig. 14.A. Finally, the (noncausal stable) all-pass filter 1/H(z) in Fig. 14.D
transforms white Gaussian noise into white Gaussian noise and can be omitted without
changing the information rate.

Now to the second case. Recall that colored Gaussian noise is filtered white Gaussian
noise. This case may thus be represented by Fig. 14.D, where W is white Gaussian noise
and where we now assume (without loss of generality) that the filter H(z) is minimum-
phase. The filter G(z) is arbitrary; in particular, we could have G(z) = 1. Appending the
minimum-phase filter H(z) at the output (which results in Fig. 14.C) does not change
the information rate. As before, Figures 14.C and 14.B are equivalent, and defining
F (z) = G(z)H(z), all channels in Fig. 14 have again the same information rate. If the
noise-coloring filter 1/H(z) is autoregressive, H(z) is an FIR filter.

C A Reduced-State Lower Bound on I(X ; Y )

In Section 5.3, it was pointed out that omitting states in the basic recursion (11) yields
an upper bound on the entropy rate h(Y ). Lower bounds on h(Y ) (and thus on I(X; Y ))
may be obtained by merging states. In this section, we give a particular example of this
type.

We consider a binary-input linear channel with

Yk =
m∑

�=0

g�Xk−� + Zk, (50)

with channel memory m ∈ Z∪{∞}, with fixed known channel coefficients g0, g1, . . . , gm ∈
R, and where Z = (Z1, Z2, . . .) is white Gaussian noise with variance σ2. For the sake of
clarity, the channel input process X = (X1, X2, . . .) is assumed to be a sequence of i.u.d.
random variables taking values in {+1,−1}.

The channel state at time k is the m-tuple (xk−1, xk−2, . . . , xk−m) of the m past channel
inputs. We will consider merged states of the form

(xk−1, xk−2, . . . , xk−M)
�
=

⋃
xk−M−1,...,xk−m

{(xk−1, . . . , xk−M , xk−M−1, . . . , xk−m)} (51)

for some positive integer M < m (which need not be the same for all merged states).
As in Section 5.3, we begin by assuming that the channel is in some known state at

time zero. At time one, there will be two states; at time two, there will be four states,
etc. We first compute the recursion (11) with all these states until there are too many of
them. From that moment on, we merge states into the form (51), and we keep expanding
and merging (merged) states according to some strategy that will not be detailed here.
(One such strategy is described in [5].)
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The crucial quantity in this computation is

p(yk|xk, xk−1, . . . , xk−m) =
1√
2πσ

e−(yk−w)2/(2σ2) (52)

with

w
�
= w(xk, . . . , xk−m)

�
= g0xk +

m∑
�=1

g�xk−�. (53)

For each state (xk−1, . . . , xk−m) in some merged state (xk−1, . . . , xk−M), w lies in the
interval [wL, wU] with

wU
�
= wU(xk, . . . , xk−M) (54)

�
= g0xk +

M∑
�=1

g�xk−� +

m∑
�=M+1

|g�| (55)

and

wL
�
= wL(xk, . . . , xk−M) (56)

�
= g0xk +

M∑
�=1

g�xk−� −
m∑

�=M+1

|g�|. (57)

For each state (xk−1, . . . , xk−m) in the merged state (xk−1, . . . , xk−M), we thus have

p(yk|xk, xk−1, . . . , xk−m) ≤ 1√
2πσ

e−(yk−ŵ)2/(2σ2), (58)

where

ŵ
�
= ŵ(xk, . . . , xk−M , yk)

�
=

⎧⎨
⎩

wL if yk < wL

wU if yk > wU

yk else
(59)

depends only on the merged state. Using the right-side of (58) in the recursion (11) yields
a lower bound on h(Y ).

In our numerical experiments so far, the lower bound of this section turned out to be
consistently weaker than (a comparable version of) the lower bound of Section 6.
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[2] D. Arnold, A. Kavčić, R. Kötter, H.-A. Loeliger, and P. O. Vontobel, “The binary
jitter channel: a new model for magnetic recording,” Proc. 2000 IEEE Int. Symp.
Information Theory, Sorrento, Italy, June 25–30, 2000, p. 433.

19



[3] D. Arnold and H.-A. Loeliger, “On the information rate of binary-input channels
with memory,” Proc. 2001 IEEE Int. Conf. on Communications, Helsinki, Finland,
June 11–14, 2001, pp. 2692–2695.

[4] D. Arnold and H.-A. Loeliger, “On finite-state information rates from channel sim-
ulations,” Proc. 2002 IEEE Int. Symp. Information Theory, Lausanne, Switzerland,
June 30 – July 5, 2002, p. 164.

[5] D. Arnold, Computing Information Rates of Finite-State Models with Application
to Magnetic Recording. ETH-Diss no. 14760. Hartung-Gorre Verlag, Konstanz, Ger-
many, 2002.

[6] D. Arnold, H.-A. Loeliger, and P. O. Vontobel, “Computation of information rates
from finite-state source/channel models,” Proc. 40th Annual Allerton Conference
on Communication, Control, and Computing, (Allerton House, Monticello, Illinois),
October 2 – October 4, 2002, pp. 457–466.
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