Factor Graphs and Algorithms

Brendan J. Frey Frank R. Kschischang
The Beckman Institute ECE Department
405 North Mathews Avenue University of Toronto
Urbana, IL 61801, USA Toronto, Ontario M5S 3G4, CANADA
frey@cs.utoronto.ca frank@comm.utoronto.ca
Hans-Andrea Loeliger Niclas Wiberg
Endora Tech AG Dept. of Electrical Engineering
Gartenstrafle 120 Linkoping University
CH-4052 Basel, SWITZERLAND S-581 83 Linkoping, SWEDEN
haloeliger@access.ch nicwi@isy.liu.se

Abstract—A factor graph is a bipartite graph that expresses how a global function
of several variables factors into a product of local functions. Factor graphs subsume
many other graphical models, including Bayesian networks, Markov random fields, and
Tanner graphs. We describe a general algorithm for computing “marginals” of the global
function by distributed message-passing in the corresponding factor graph. A wide variety
of algorithms developed in the artificial intelligence, statistics, signal processing, and
digital communications communities can be derived as specific instances of this general
algorithm, including Pearl’s “belief propagation” and “belief revision” algorithms, the
fast Fourier transform, the Viterbi algorithm, the forward /backward algorithm, and the
iterative “turbo” decoding algorithm.

1 Introduction

A factor graphis a bipartite graph that expresses how a global function of several variables
factors into a product of local functions.

Example 1. Suppose the real-valued function g(xq,x2,... ,x5) of five variables can be
written as

9(51?17 T, T3, Ly, 51?5) = fA(xlv $2)fB($27 T3, 51?4)f0(51?47 51?5)f2(51?2)f4(51?4)-

We refer to g as the global function and f4, fB, fo, f2 and fy as local functions. The set
of arguments of each local function is a subset of the arguments of g.

This factorization can be expressed via the factor graphs shown in Fig. 1. A factor graph
consists of two types of vertices: those associated with variables (the unfilled circles in
Fig. 1, called variable nodes) and those associated with local functions (the filled circles
in Fig. 1, called subset nodes). The edges of the factor graph are precisely those that join
the variable node for x; to the subset node for f if and only if x; is an argument of f.

In general, let X = {z;};en be a collection of variables, indexed by a finite set N =
{1,2,3,... ,n}. If £ is a nonempty subset of N, we denote by Xp the subset of X

Je {1,2} {2 3 4} {4,5}
(a) (b)

Figure 1: A factor graph that expresses that a global function factors as the product of

local functions fa(x1,x2)fe(22, x5, 24) fo(xa, 5) fa(xs) fa(x4). (a) Variable/function form,
(b) index/subset form.

indexed by F. For each 1 € N the variable z; takes on values from the alphabet A;.
In this paper, we will take A; to be finite for all : € N, though this assumption is not
essential. A particular assignment of a value to each of the variables of X will be referred
to as a configuration of the variables. Configurations of the variables can be viewed as
being elements of the Cartesian product W = []..y A, called the configuration space.
An element w = (wy,wy,...,w,) € W, with w; € A; is equivalent to the variable
assignment x; = wy, To = Wy, ..., T, = W,, and vice versa. We will have occasion to
view configurations both as assignments of values to variables, and as elements of W.

We are interested in functions with the elements of X as arguments, i.e., functions with
domain W. Let g : W — R denote such a function, referred to here as the global function.
For the moment we take the codomain, R, of g to be the set of real numbers, though
later, following [1-4], we shall allow R to be any semiring.

Let @ be a collection of subsets of N (i.e., a subset of the power set of N), not including
the empty set. Suppose that g can be written as a product of local functions with
arguments indexed by the elements of (), i.e.,

X) = I felXe) g

EecQ

Then a factor graph representation of (1) is a bipartite graph with vertex set N U@, and
edge set {{i, K} :1€ N, F € Q,i € E}. As stated earlier, we refer to those vertices that
are elements of N as variable nodes and those vertices that are elements of () as subset
nodes. An edge joins a variable node i to a subset node F if and only if ¢« € F, hence
the factor graph is a graphical representation of the relation “element of” in N x E. In

Example 1, we have N = {1,2,3,4,5}, and @ = {{1,2},{2,3,4},{4,5}, {2}, {4}}.

2 Examples of Factor Graphs

2.1 Set Membership Indicator Functions

In coding theory, as in systems theory, one is often interested in describing subsets B of
the set W of possible configurations. In the coding context, such a subset defines a code.
while in systems theory, B is referred to as the system’s behavior, and each element of B
is a valid configuration.

Set membership can in general be described with a binary-valued global indicator func-

(a) (b)

Figure 2: Factor graph representation of (a) a binary code, and (b) the a posteriori joint
probability mass function of the codeword symbols.

tion. For a set B C W, define Ig: W — {0,1} by

|1 ifwe B;
]B(w)—{o if w ¢ B.

It is often the case—by circumstance or by design—that this global indicator function
factors into a product of local indicator functions, each of which checks for locally valid
behavior. Specifically, it may happen that g(X) factors as in (1), where each factor
fe(XEg) of g(X) is itself a binary-valued indicator function. A configuration w € W
is said to be locally valid at E if the local function fr(wg) evaluates to unity at the
restriction wg of w to K. Thus a configuration w € W is a valid configuration if and
only if it is locally valid at all £ € Q.

For example, every binary linear block code can be described by a set of parity-check equa-
tions, in which each equation imposes the condition on a codeword @ = (21, 22,... ,2,)
that its restriction xp to a subset F of symbol positions must have even parity; i.e.,

summing in GF(2), >, .52 = 0.
Example 2. The factor graph corresponding to the binary code with parity-check matrix

1101000
H=1001120120
0001101

is shown in Fig. 2(a).

More generally, one could impose more complicated constraints, for example requiring
that g be an element of some more complicated linear code. Such codes were considered
by Tanner [5]. Even more generally, following Wiberg, et al. [3,6], one could introduce
(unobserved) state variables, not considered part of the “codeword,” but which partic-
ipate in defining locally valid behavior. These “local check” descriptions are naturally
described using a bipartite factor graph (called a Tanner graph in [3,6] or, to emphasize
that unobserved state variables are permitted, a Tanner-Wiberg-Loeliger graph [7]).

2.2 Indicator Functions and a Posteriori Probabilities

Continuing with Example 2, let us select, with uniform probability, a codeword (x4, ... ,z,)
to transmit over a memoryless channel, and suppose that y = (y1,... ,y,) is the corre-
sponding observed channel output. The a posteriori joint probability distribution of

{x1,...,2,} is then linearly proportional to

flenza,.a) = [fetes) [T Fwle), (2)
EeQ i=1

where, for each value of x;, f(y;|z;) is the corresponding likelihood function evaluated at

the observed channel output. We observe that (2) admits a factor graph representation

obtained by augmenting the factor graph representation of the code itself with “singleton”

local functions f(y;|x;) connected by a single edge to each variable. This is shown for

our example code in Fig. 2(b).

As we shall see, in computations involving the factor graph, such “singleton” local func-
tion nodes can be absorbed into the corresponding variable node, so that effectively, the
factor graph describing the a posteriori joint probability distribution, given the observed
channel output, is equivalent to the factor graph of the code itself.

2.3 Markov Random Fields

A Markov random field (see, e.g., [8]) is a graphical model based on an undirected graph
G'= (V, E) in which each vertex corresponds to a random variable. Denote by n(v) the
neighbors of v € V| i.e., the set of vertices of V connected to v by a single edge of E.
The graph ' is a Markov random field (MRF) if the distribution p(vy,... ,v,) satisfies
the local Markov property: (Vo € V) p(v|V\{v}) = p(v|n(v)). In other words, GG is an
MREF if every variable v is independent of non-neighboring variables in the graph, given
the values of its immediate neighbors. MRFs are well developed in statistics, and have
been used in a variety of applications (see, e.g., [8-11]). See [12] for a brief discussion of

the use of MRFs to describe codes.

Under fairly general conditions (e.g., positivity of the joint probability density is suffi-
cient), the joint probability mass function of an MRF can be expressed in terms of a
collection of Gibbs potential functions, defined on the set ¢} of maximal cliques in the
MRF. (A clique is a collection of vertices which are all pairwise neighbors, and such a
clique is maximal if it is not properly contained in any other clique.) In other words, the
distribution factors as

p(v1,ve,... ,oy) = 71 H YE(Ve) (3)

EecQ

where Z~! is a normalizing constant. For example (cf. Example 1), the MRF in Fig. 3(a)
can be used to express the factorization

p(v1, 02, 03,04, v5) = Z7 b4 (v1, v2) B (ve, V3, v4) (g, vs).

Clearly (3) has precisely the structure needed for a factor graph representation. Indeed,
a factor graph representation may be preferable to an MRF in expressing such a fac-
torization, since distinct factorizations, i.e., factorizations with different Qs in (3), may
yield precisely the same underlying MRF graph, whereas they will always yield distinct
factor graphs. (An example in a coding context of this MRF ambiguity is given in [12].)

O g » Q & &
2—4 ONNO
(a) (b)

Figure 3: Other graphical models: (a) a Markov random field, and (b) a Bayesian network.

2.4 Bayesian Networks

Bayesian networks (see, e.g., [13-16]) are graphical models for a collection of random vari-
ables that are based on directed acyclic graphs (DAGs). Bayesian networks, combined
with Pearl’s “belief propagation algorithm” [13] have become an important tool in expert
systems over the past decade. The first to connect Bayesian networks and belief propaga-
tion with applications in coding theory were MacKay and Neal [17], who independently
re-discovered Gallager’s earlier work on low-density parity-check codes [18] (including
Gallager’s decoding algorithm.) More recently, at least two papers [12,19] develop a
view of the “turbo decoding” algorithm [20] as an instance of probability propagation in
a Bayesian network code model.

Each vertex v in a Bayesian network is associated with a random variable. Denoting by
a(v) the set of parents of v (i.e., the set of vertices from which an edge is incident on v),
the distribution represented by the Bayesian network assumes the form

p(UhU?v"' 7U71) = Hp(vi|a(vi))7 (4)

where, if a(v;) = @, (i.e., v; has no parents) then we take p(v;|@) = p(v;). For example
(cf. Example 1), Fig. 3(b) shows a Bayesian network that expresses the factorization

p(vh U2, U3, V4, U5) = P(U1|U2)p(U2)p(U3|U27 U4)p(U4)p(U5|U4)-

Again, as in the Markov random field case, this graphical model expresses a factorization
that is suitable for a factor graph representation.

3 The Sum-Product Algorithm

As in the previous section, let g(X) be a global function over the variables in the set
X ={z; : 1 € N}, with variable x; taking on values in the finite set A;. For the moment,
we again take g as being real-valued.

In this section we describe a general algorithm that can be used to compute the marginal
functions

Gi(z) £ Z g(xr,...,2,) (5)

r1€AL,... . 2i—1€A—1,7i+1€Ai41,... ,Tn€Ap

for all variables x;, i € N. We adopt the convention that > = f(x:) = >, o4 f(:).
Similarly, for a subset J C N, the notation Zx,‘:ieJ f(Xy) means that we sum over all
possible configurations of the variables indexed by J. Thus G;(x;) = E% :jeN\{i}g(X).

The definition of marginal function can be extended an arbitrary subset J of N by
defining

Gi(Xy) = Z g(X).
zid€N\J
If g(x1,...,2,) is a probability distribution, then G;(x;) is a marginal distribution, and
G/7(X ;) is the joint probability distribution of the variables indexed by .J.

When n, the number of arguments of ¢ is small, we will sometimes use a modified notation
for the marginal functions. We replace an argument x; of ¢ with a ‘4’ sign to indicate
that the corresponding variable is to be summed over, i.e., “marginalized out.”

To perform marginalization, we take advantage of the factorization (1) of the global
function, as represented by a factor graph. We use two basic properties of the factor
graph: (1) products of local functions can be “gathered” along paths in the graph and
(2) variables can be represented in “summary” outside of regions of the graph in which
the variable is not “involved.”

3.1 An Example

Example 3. To explain what we mean by the rather vague terminology of the previous
sentence, let us consider the specific case in which the global function has the structure

g(x1, 29, 23) = a(1)b(w1, x2)c(xg, x3). (6)

This structure arises, for example, when g(x) is the joint probability distribution of three
random variables Xy, Xy, X3 that form the Markov chain X; — X3 — X3 given some
observation y.

Consider the computation of g(x1,+,4) = p(x1|y). We write

gl +,+) = ZZ a(xy)b(x, x2)c(xz, v3)
= alxy) Zb (21, 22) Z c(xq, x3), (7)

,/
c(z2,+)

be(er,+,4)

where we write be(xq, ¥, x3) for the product b(xq, x2)e(x2, x3). In (7) we have identified
the various factors that need to be computed to obtain g(x1,+,4). Our primary ob-
servation is that g(x,+,4) can be computed knowing just a(x1) and be(ay,+,+). The
latter factor can be computed knowing just b(xy,x2) and ¢(x2,+). These products can
be “gathered” along the path from variable node x3 to the variable node x; shown in
Fig. 4. Note that variable 3 can be “summarized,” i.e., marginalized out, outside of the
dashed region labeled ‘z3;” likewise for x,.

Analyzing the computation of the remaining marginal functions in the same manner, we
find that
g(‘|‘7$27‘|‘) = c(x%—l_)ab(—l_vx?) (8)
g(‘|‘7‘|‘7$3) = Z ab(—l_vx?)c(x?vx?)) = abc(—l_v—l'vx?))' (9)

z2€S5

Figure 4: Distributed marginalization for a Markov chain example. For each ¢, the region in
which x; must be carried is indicated by a dashed box.

Comparing with Fig. 4, we observe that the various factors needed to compute each
marginal function can be obtained as products of the “messages” sent along a particular
path in the factor graph. The product of the messages carried in the two directions over
any given edge is then a marginal function.

3.2 The General Algorithm

The sum-product algorithm operates via a “message passing” procedure that gathers
local function products along paths in the factor graph. We assume that this graph is
a tree, 1.e., that it contains no cycles. The description of the algorithm is simplified
by making the assumption that each node of the factor graph is a processor capable of
transmitting and receiving “messages” along the edges to which it is connected.

In its simplest realization, the sum-product algorithm operates as follows. The basic
operation at each node is to compute the product of the incoming messages at that
node. At a subset node, this product is also multiplied by the local function associated
with that node. These products are then transmitted on the “outgoing” edges, with the
caveat that outgoing messages transmitted along a particular edge should contain no
factors received on that edge. In this way, provided that the factor graph contains no
cycles, the product of the message transmitted along an edge with the message received
along that edge contains all factors of the global function.

This message-passing procedure is initiated at the leaf nodes in the factor-graph, i.e.,
those nodes on which only a single edge is incident. At leaf nodes that are subset nodes,
the transmitted message is a representation of the local function associated with that
node. At leaf nodes that are variable nodes, the transmitted message is a “unit” function
(the transmission of which, in a practical realization, is of course unnecessary). All other
nodes in the graph await the reception of enough messages to be able to compute an
outgoing message. Effectively, these nodes wait until messages arrive on all but one edge;
when this occurs, the incoming messages are multiplied together with the local function
(if any) and the result transmitted on the remaining edge. When a message is received
on that remaining edge, the appropriate local function products are distributed along all
the other incident edges. This general procedure of gathering local function products is

illustrated in Fig. 5(a).

The sum-product algorithm is made efficient by observing that the local function products
gathered along paths in the factor graph can themselves be marginalized, i.e., not all
variables must be carried along an edge. In general, a variable needs to be carried if
that variable is an argument of a subsequent local function; otherwise, that variable can
be marginalized out (cf. Example 3). This marginalization is carried out at the subset

(a) d abe IT labcd
.
a b
()
() PO SV
X3

(b)

Figure 5: The sum-product algorithm: (a) local function products are “gathered” along paths
from the leaves; (b) without cycles, only one variable must be “carried” along each edge; (¢)

with a cycle, more than one variable must be “carried” on some edges.

nodes, since these nodes are necessarily at the boundaries of the regions defining which
variables are to be carried. Fig. 5(b) illustrates which variables are to be carried along

each edge for the tree of Fig. 5(a).

Fig. 6 shows a fragment of a specific factor graph, which we assume forms a part of a

larger tree. The update rules for this fragment are as follows:

variable to subset: (the product rule)
ftesa() = ppoe(2) - poe ()
subset to variable: (the sum-product rule)

pase(w) =Y falw,y,2) - prysa(y) - e al2).

termination:

Fule) = fosa(®) - ()

(12)

Figure 6: A factor graph fragment, showing the update rules in this case.

3.3 Dealing with Cycles

The algorithm described above terminates only if the factor graph is a tree, i.e., contains
no cycles. Should the factor graph contain cycles, then these update rules will lead to the
endless propagation of messages around the cycles. Although these messages may “con-
verge” in some sense, when the factor graph has cycles, the values to which the messages
converge cannot be interpreted as being exact marginal functions. (Nevertheless, in the
decoding of turbo codes and low-density parity-check codes, this “iterative” algorithm
does provide excellent performance. See Section 5.)

We now give an example of how this endless looping of messages can be dealt with so
that exact marginal functions are obtained.

Example 4. Let us consider now the case where the factor graph contains a single cycle.
We consider the global function

g(w1, w2, w3) = a(wy, v2)b(w2, w3)c(w1, 3). (13)
The corresponding factor graph is shown in Fig. 7(a).

To perform exact marginalization, we construct a tree spanning the factor graph. We
define a variable = to be “involved” with every subset node F for which x € E. In
general, = will be involved with several subset nodes. We say that x must be “carried”
over all edges in the spanning tree that are on a path between the nodes with which x is
involved. The variable # must not be marginalized out, except when it must no longer
be carried. Provided that this rule is followed, exact marginalization is possible.

Thus, if we form the spanning tree shown in Fig. 7(b) (by cutting the cycle in the factor
graph at the location indicated), we see that the variable 23 must be carried over all
edges in the tree, but that z; and x5 need only be carried over a single edge, respectively.

Fig. 5(c) illustrates this situation for the loopy factor graph that includes the dotted

Figure 7: A spanning tree (b) for the factor graph (a), showing that x; must be carried
everywhere.

edge. If the dotted edge is omitted to form a spanning tree, we see that the variable x4
must be carried along edges beyond just those incident on variable node z4. In effect, the
“thickness,” i.e., the number of variables to be carried, of some edges must be increased
to perform an exact marginalization. In a factor graph that is a tree, each edge has unit
thickness.

In general, there will be many different trees that span a given “loopy” factor graph,
each of which will yield a different marginalization algorithm.

3.4 Message Passing Schedules

Thus far, we have only discussed the “two-way schedule,” in which message propagate
from the leaf nodes in the factor graph. In some implementations, it may be possible that
message passing can occur concurrently, while in other implementations, the messages
will of necessity be passed serially. In general a variety of message passing schedules are
possible. In [12], two such schedules—the two-way schedule, and the flooding schedule—
are described. The two-way schedule is best suited for a serial implementation, as it
causes the smallest possible total number of messages to be sent; namely, 2F, where ¥
is the number of edges in the spanning tree, whereas the flooding schedule may lead to
a faster convergence when the factor graph has cycles. We refer the reader to [12] for a
description of these message-passing schedules.

3.5 Generalization to other Semirings

Up to now, we have assumed that all products and sums are computed in the field of
real numbers. Obviously, this can be extended to an arbitrary ring. Indeed, as pointed
out by Verdu and Poor [1] and other authors (notably McEliece [2,4]; see also [3]),
the appropriate algebraic structure is that of a semiring, equipped with associative and
commutative ‘4’ and ‘x’ operations, and a distributive law that permits distribution of
‘<’ over ‘+’.

Probably the most relevant such semiring for applications in decoding is the one that
replaces ‘X’ with real addition and ‘4’ with ‘max’ or ‘min’. In channel coding for mem-
oryless channels, if we associate with each value that a variable can take on a cost equal
to the negative log-likelihood of the corresponding channel output, then we can asso-
ciate with each valid configuration a cost equal to the sum of the costs of the variables.
The minimum cost valid configuration is the “maximum-likelihood” sequence, the cost of
which is computed (in a factor graph containing no cycles) by the “min-sum” generaliza-
tion of the “sum-product” algorithm. The “min-sum” formulation is also the framework
in which so-called “nonserial” dynamic programming is posed; see [21] for a text book
treatment. See [6] for a discussion of the min-sum algorithm.

4 Examples

We now give a few examples of how the sum-product algorithm may be applied in practice.

Figure 8: The factor graph for a hidden Markov model (trellis).

4.1 Hidden Markov Models and Trellis Processing

Figure 8(a) shows the factor graph representation for a hidden Markov model. State vari-
ables (not observed) are indicated with a double circle. The local function T'(s;_1, z;, $;)
is an indicator function that indicates which state transitions are allowed, and also which
outputs (z;) are associated with the transitions. The output variables x; are observed at
the output of a memoryless channel. Corresponding to symbol x;, symbol y; is observed.

Since this factor graph is a tree, exact marginalization can be achieved via the sum-
product algorithm. This marginalization algorithm is be achieved in two “sweeps”
through the graph, running essentially left-to-right (forward) and right-to-left (back-
ward).

Let a;_1(s;—1) denote the message sent by state variable s;_; to the local function node
T, as shown in Fig. 8(b). Let fy.,(x;) denote the message sent by variable node z;.
Then, the sum-product algorithm will compute the message

a;(s;) = Z Z T(siz1, i, Si)ai—l(si—l)fyilm(xi)

Ti S¢—1

and send this to variable node s;. This is precisely the “forward” step in the for-
ward/backward algorithm described in [22]. The “backward” () step is described in
like manner. In this way, the sum-product algorithm specializes, on a trellis, to the well
known forward /backward algorithm. It is easy to see that the min-sum version special-
izes to the Viterbi algorithm (provided we take T'(s;_1,x;,s;) = oo for an “invalid” trellis
transition). Thus, we recover the well-known trellis-processing algorithms as special cases
of the sum-product algorithm.

4.2 The Fast Fourier Transform

Following Aji and McEliece [4], who develop a fast Hadamard transform using a graph-
based approach, we now develop the fast Fourier transform (FFT) using factor graphs.
For a complex-valued data vector with components f[n], n € {0,1,... ,N — 1}, the
N-point discrete Fourier transform F[k] is defined as

FlE =Y v

where k € {0,1,... ,N — 1} and W = exp(—j2n/N) is a complex Nth root of unity.

We consider the case N = 8, with W = exp(—jm/4), though the approach we take
generalizes in an obvious way to the case where N is an arbitrary power of two. Let

(a)
f a b c
(SRR SIS SR S0
XpsX1p Xo X0 X0 Yo V1 Yo Y1 Y2

X1 Yo
©

Figure 9: The discrete Fourier transform kernel: (a) factor graph; (b) a particular spanning
tree; (c) spanning tree after clustering, showing which variables must be carried.

Xo, T1, T2, Yo, Y1, Y2 be binary-valued, and define n = 4xy + 221 + 29, k£ = 4yz + 2y1 + yo.
We write the DFT kernel, which we take as our global function, in terms of the z;s and
Y;S as

g(x07 x17 x27 y07 y17y2) — fl:4x2 _I_ le _I_ xo]W(4l’2+21’1+l’0)(4y2+2y1+y0)
— f[4$2 ‘|‘2$1 _I_xo](_l)ﬂb’wo(_1)96’11/1(_1)96’01/2(_]')9001/1(_]')96’11/01/1/9001/07

since W% = W8 =1, W* = —1, and W? = —j. The factor graph corresponding to this
global function is shown in Fig. 9(a). We observe that the DFT of f[n] is the marginal
function F[4y; + 2y1 + yol = g(+, +, +, 41,42, ya)-

The factor graph in Fig. 9(a) has cycles, yet we wish to carry out exact marginalization,
so we form a spanning tree. There are many possible spanning trees, of which one is
shown in Fig. 9(b). (Different choices for the spanning tree will lead to possibly different
DFT algorithms when the min-sum algorithm is applied.) If we cluster the local functions
as shown in Fig. 9(b), essentially by defining

a(za,y0) = (—=1)"%,
b($1,y0,y1) = (_1)1’11/1(_]')9013/07
c(x07y07y17y2) = (—1)7;01/2(_]')7301/11/1/1’01/07

we arrive at the spanning tree shown in Fig. 9(c). Observe that three binary variables
(or eight complex quantities) must be carried over each edge in the path from vertex f
to vertex ys. Along this path, first x5, then xy, and then zy are marginalized out as yo,
Y1, and yo are added to the list of variables to be carried. In three steps, the function
f[n] is converted to the function F[k]. Clearly we have obtained a fast Fourier transform
as an instance of the sum-product algorithm.

4.3 Belief Propagation in Bayesian Networks

As discussed in Section 2.4, the probability distribution (4) corresponding to a Bayesian
network has the product form that allows a straightforward conversion to a factor graph

(a) (»)
a fix|a,b)

0 flclx, ...) fld
(a) @ (b) @

Figure 10: (a) A Bayesian network fragment with (b) the corresponding factor graph, in
which, by convention, the “child” vertex in each conditional distribution is indicated with an
arrow.

X, ...)

representation. For example, Fig. 10(a) shows a fragment of a Bayesian network, and
Fig. 10(b) shows the corresponding factor graph fragment. In general, a local function,
corresponding to a single factor of (4), assumes the form f(xz|a(x)), where a(z) is the set
of “parents” of variable x in the Bayesian network. In the factor graph representation
we have, by convention, identified the “child” vertex by an arrow. This allows the flow
of “causality” to be inferred equally well from the factor graph as from the Bayesian
network itself. Representing such causality using directed edges is often cited as one of
the basic advantages of modeling a probability distribution using a Bayesian network [13];
by including arrows in the corresponding factor graph, this advantage is retained.

It is easy to show that the sum-product algorithm, when applied to cycle-free Bayesian
networks, yields Pearl’s belief propagation algorithm [13]. See [12] for a discussion of this
correspondence.

5 Approximate “Marginalization” in Graphs with
Cycles

In a great many applications, one is forced to consider factor graphs that contain cycles.
In many such cases, exact marginalization in a spanning tree proves to be computationally
infeasible due to the excessive “thickness” of some of the edges. Examples of factor graphs
of this type include the graphs that describe low-density parity-check codes introduced
by Gallager [18], and the turbo codes introduced by Berrou, et al. [20]. (See [3,23] for a
Tanner graph description of turbo codes, and [12,19] for a Bayesian network description.)

Nevertheless, by proceeding as if the graph contained no cycles (i.e., by applying the
“carry-one-variable” sum-product algorithm), excellent results may be obtained. For
example, simulation results of MacKay and Neal [17] indicate that low-density parity-
check codes can be decoded (with reasonable complexity) using this approach so that
the E,/Ny required to achieve a bit error rate of 107° is within approximately 2dB of
the Shannon limit [17] (using antipodal signaling on a white Gaussian noise channel).
Even more impressive are the well-known results of Berrou, et al., who show that an
iterative sum-product decoding procedure for turbo codes can approach the Shannon
limit to within a 0.5 dB in E,/Nj required to achieve a bit error rate of 107°.

While a theoretical understanding of the convergence of the sum-product algorithm in
graphs with cycles has not, to the best of our knowledge, been achieved in general,
the excellent decoding performance obtained is undeniable. In our view, this is a great
motivation, not only to achieve a theoretical understanding of the properties of the sum-
product algorithm on graphs with cycles, but also to find further families of codes for
which the sum-product algorithm will prove effective.

6 Conclusions

Factor graphs provide a natural description of the factorization of a global function into
a product of local functions. As such, factor graphs are relevant to a broad spectrum
of application areas. We have illustrated that the sum-product algorithm encompasses
a wide variety of previously known algorithms, including the Viterbi algorithm, the for-
ward /backward algorithm, Pearl’s belief propagation algorithm, even the fast Fourier
transform. No doubt many other algorithms can be captured in this framework. Because
of its generality and essential simplicity, we feel that the sum-product algorithm should
be included as a part of every engineer’s standard “algorithms toolkit.”

Acknowledgments

The concept of factor graphs as a generalization of Tanner graphs was devised by a
group at ISIT "97 in Ulm that included the authors, G. D. Forney, Jr., R. Kotter, D. J.
C. MacKay, R. J. McEliece, and R. M. Tanner. We benefitted greatly from the many

discussions on this topic that took place in Ulm.

References

[1] S. Verdu and H. V. Poor, “Abstract dynamic programming models under commu-
tativity conditions,” SIAM J. on Control and Optimization, vol. 25, pp. 990-1006,
July 1987.

[2] R.J. McEliece, “On the BJCR trellis for linear block codes,” IEEE Transactions on
Information Theory, vol. 42, pp. 1072-1092, July 1996.

[3] N. Wiberg, Codes and Decoding on General Graphs. PhD thesis, Linképing Univer-
sity, Sweden, 1996.

[4] S. M. Aji and R. J. McEliece, “A general algorithm for distributing information on
a graph,” in Proc. 1997 IEEE Int. Symp. on Inform. Theory, (Ulm, Germany), p. 6,
July 1997.

[5] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. on
Inform. Theory, vol. I'T-27, pp. 533-547, Sept. 1981.

[6] N. Wiberg, H.-A. Loeliger, and R. Kétter, “Codes and iterative decoding on general
graphs,” Furopean Trans. on Telecommun., vol. 6, pp. 513-525, Sep./Oct. 1995.

7]

[12]

[13]
[14]
[15]

[16]

[18]

[19]

[20]

[21]

[22]

23]

G. D. Forney, Jr., “The forward-backward algorithm,” in Proc. 34th Annual Allerton
Conf. on Communication, Control, and Computing, (Allerton House, Monticello,

[linois), pp. 432-446, October 1996.

R. Kindermann and J. L. Snell, Markov Random Fields and their Applications.
Providence, Rhode Island: American Mathematical Society, 1980.

C. J. Preston, Gibbs States on Countable Sets. Cambridge University Press, 1974.

V. Isham, “An introduction to spatial point processes and Markov random fields,”

Int. Stat. Rev., vol. 49, pp. 21-43, 1981.

G. E. Hinton and T. J. Sejnowski, “Learning and relearning in Boltzmann machines,”
in Parallel Distributed Processing: Fzxplorations in the Microstructure of Cognition
(D. E. Rumelhart and J. L. McClelland, eds.), vol. I, pp. 282-317, Cambridge MA.:
MIT Press, 1986.

F. R. Kschischang and B. J. Frey, “Iterative decoding of compound codes by proba-
bility propagation in graphical models,” IEEFE J. Selected Areas in Commun., vol. 16,
Jan. 1998.

J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In-
ference. San Francisco, CA: Morgan Kaufmann, 1988. Revised second printing.

F. V. Jensen, An Introduction to Bayesian Networks. New York: Springer Verlag,
1996.

R. E. Neapolitan, Probabilistic Reasoning in Fzxpert Systems: Theory and Algo-
rithms. Toronto: John Wiley & Sons, 1990.

B. J. Frey, Bayesian Networks for Pattern Classification, Data Compression and
Channel Coding. Toronto, Canada: Department of Electrical and Computer
Engineering, University of Toronto, 1997. Doctoral dissertation available at
http://www.cs.utoronto.ca/~frey.

D. J. C. MacKay and R. M. Neal, “Good codes based on very sparse matrices,” in
Cryptography and Coding. 5th IMA Conference (C. Boyd, ed.), no. 1025 in Lecture
Notes in Computer Science, pp. 100-111, Berlin Germany: Springer, 1995.

R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA: M.I.'T. Press,
1963.

R. J. McEliece, D. J. C. MacKay, and J.-F. Cheng, “Turbo decoding as an instance
of Pearl’s ‘belief propagation’ algorithm,” IEFEE J. on Selected Areas in Commun.,
vol. 16, Jan. 1998.

C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting
coding and decoding: Turbo codes,” in Proc. IEEE Int. Conf. Commun. (ICC),
(Geneva, Switzerland), pp. 1064-1070, 1993.

U. Bertele and F. Brioschi, Nonserial Dynamic Programming. New York: Academic
Press, 1972.

L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for
minimizing symbol error rate,” IKEE Trans. on Inform. Theory, vol. 20, pp. 284—
287, Mar. 1974.

N. Wiberg, H.-A. Loeliger, and R. Kotter, “Codes and iterative decoding on general
graphs,” Furopean Transactions on Telecommunications, vol. 6, pp. 513-525, 1995.

