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Abstract�A factor graph is a bipartite graph that expresses how a global function
of several variables factors into a product of local functions� Factor graphs subsume
many other graphical models� including Bayesian networks� Markov random �elds� and
Tanner graphs� We describe a general algorithm for computing �marginals� of the global
function by distributed message�passing in the corresponding factor graph� A wide variety
of algorithms developed in the arti�cial intelligence� statistics� signal processing� and
digital communications communities can be derived as speci�c instances of this general
algorithm� including Pearl�s �belief propagation� and �belief revision� algorithms� the
fast Fourier transform� the Viterbi algorithm� the forward	backward algorithm� and the
iterative �turbo� decoding algorithm�

� Introduction

A factor graph is a bipartite graph that expresses how a global function of several variables
factors into a product of local functions�

Example �� Suppose the real�valued function g
x�� x�� � � � � x�� of �ve variables can be
written as

g
x�� x�� x�� x�� x�� � fA
x�� x��fB
x�� x�� x��fC
x�� x��f�
x��f�
x���

We refer to g as the global function and fA� fB� fC� f� and f� as local functions� The set
of arguments of each local function is a subset of the arguments of g�

This factorization can be expressed via the factor graphs shown in Fig� � A factor graph
consists of two types of vertices� those associated with variables 
the un�lled circles in
Fig� � called variable nodes� and those associated with local functions 
the �lled circles
in Fig� � called subset nodes�� The edges of the factor graph are precisely those that join
the variable node for xi to the subset node for f if and only if xi is an argument of f �

In general� let X � fxigi�N be a collection of variables� indexed by a �nite set N �
f� �� �� � � � � ng� If E is a nonempty subset of N � we denote by XE the subset of X
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Figure � A factor graph that expresses that a global function factors as the product of
local functions fA
x�� x��fB
x�� x�� x��fC
x�� x��f�
x��f�
x��� �a� Variable�function form�
�b� index�subset form�

indexed by E� For each i � N the variable xi takes on values from the alphabet Ai�
In this paper� we will take Ai to be �nite for all i � N � though this assumption is not
essential� A particular assignment of a value to each of the variables of X will be referred
to as a con�guration of the variables� Con�gurations of the variables can be viewed as
being elements of the Cartesian product W �

Q
i�N Ai� called the con�guration space�

An element w � 
w�� w�� � � � � wn� � W � with wi � Ai is equivalent to the variable
assignment x� � w�� x� � w�� � � � � xn � wn� and vice versa� We will have occasion to
view con�gurations both as assignments of values to variables� and as elements of W �

We are interested in functions with the elements of X as arguments� i�e�� functions with
domainW � Let g � W � R denote such a function� referred to here as the global function�
For the moment we take the codomain� R� of g to be the set of real numbers� though
later� following ����� we shall allow R to be any semiring�

Let Q be a collection of subsets of N 
i�e�� a subset of the power set of N�� not including
the empty set� Suppose that g can be written as a product of local functions with
arguments indexed by the elements of Q� i�e��

g
X� �
Y
E�Q

fE
XE�� 
�

Then a factor graph representation of 
� is a bipartite graph with vertex set N �Q� and
edge set ffi� Eg � i � N�E � Q� i � Eg� As stated earlier� we refer to those vertices that
are elements of N as variable nodes and those vertices that are elements of Q as subset
nodes� An edge joins a variable node i to a subset node E if and only if i � E� hence
the factor graph is a graphical representation of the relation �element of� in N � E� In
Example � we have N � f� �� �� �� �g� and Q � ff� �g� f�� �� �g� f�� �g� f�g� f�gg�

� Examples of Factor Graphs

��� Set Membership Indicator Functions

In coding theory� as in systems theory� one is often interested in describing subsets B of
the set W of possible con�gurations� In the coding context� such a subset de�nes a code�
while in systems theory� B is referred to as the system�s behavior� and each element of B
is a valid con�guration�

Set membership can in general be described with a binary�valued global indicator func�
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Figure �� Factor graph representation of �a� a binary code� and �b� the a posteriori joint
probability mass function of the codeword symbols�

tion� For a set B �W � de�ne IB �W � f�� g by

IB
w� �

�
 if w � B�
� if w �� B�

It is often the case�by circumstance or by design�that this global indicator function
factors into a product of local indicator functions� each of which checks for locally valid
behavior� Speci�cally� it may happen that g
X� factors as in 
�� where each factor
fE
XE� of g
X� is itself a binary�valued indicator function� A con�guration w � W
is said to be locally valid at E if the local function fE
wE� evaluates to unity at the
restriction wE of w to E� Thus a con�guration w � W is a valid con�guration if and
only if it is locally valid at all E � Q�

For example� every binary linear block code can be described by a set of parity�check equa�
tions� in which each equation imposes the condition on a codeword x � 
x�� x�� � � � � xn�
that its restriction xE to a subset E of symbol positions must have even parity� i�e��
summing in GF
���

P
i�E xi � ��

Example �� The factor graph corresponding to the binary code with parity�check matrix

H �

�
�   �  � � �
� �   �  �
� � �   � 

�
�

is shown in Fig� �
a��

More generally� one could impose more complicated constraints� for example requiring
that xE be an element of some more complicated linear code� Such codes were considered
by Tanner ���� Even more generally� following Wiberg� et al� ��� ��� one could introduce

unobserved� state variables� not considered part of the �codeword�� but which partic�
ipate in de�ning locally valid behavior� These �local check� descriptions are naturally
described using a bipartite factor graph 
called a Tanner graph in ����� or� to emphasize
that unobserved state variables are permitted� a Tanner�Wiberg�Loeliger graph �����

��� Indicator Functions and a Posteriori Probabilities

Continuing with Example �� let us select� with uniform probability� a codeword 
x�� � � � � xn�
to transmit over a memoryless channel� and suppose that y � 
y�� � � � � yn� is the corre�
sponding observed channel output� The a posteriori joint probability distribution of



fx�� � � � � xng is then linearly proportional to

f
x�� x�� � � � � xn� �
Y
E�Q

fE
xE�
nY
i��

f
yijxi�� 
��

where� for each value of xi� f
yijxi� is the corresponding likelihood function evaluated at
the observed channel output� We observe that 
�� admits a factor graph representation
obtained by augmenting the factor graph representation of the code itself with �singleton�
local functions f
yijxi� connected by a single edge to each variable� This is shown for
our example code in Fig� �
b��

As we shall see� in computations involving the factor graph� such �singleton� local func�
tion nodes can be absorbed into the corresponding variable node� so that e�ectively� the
factor graph describing the a posteriori joint probability distribution� given the observed
channel output� is equivalent to the factor graph of the code itself�

��� Markov Random Fields

A Markov random �eld 
see� e�g�� ���� is a graphical model based on an undirected graph
G � 
V�E� in which each vertex corresponds to a random variable� Denote by n
v� the
neighbors of v � V � i�e�� the set of vertices of V connected to v by a single edge of E�
The graph G is a Markov random �eld 
MRF� if the distribution p
v�� � � � � vn� satis�es
the local Markov property� 
�v � V � p
vjV nfvg� � p
vjn
v��� In other words� G is an
MRF if every variable v is independent of non�neighboring variables in the graph� given
the values of its immediate neighbors� MRFs are well developed in statistics� and have
been used in a variety of applications 
see� e�g�� ������ See ��� for a brief discussion of
the use of MRFs to describe codes�

Under fairly general conditions 
e�g�� positivity of the joint probability density is su��
cient�� the joint probability mass function of an MRF can be expressed in terms of a
collection of Gibbs potential functions� de�ned on the set Q of maximal cliques in the
MRF� 
A clique is a collection of vertices which are all pairwise neighbors� and such a
clique is maximal if it is not properly contained in any other clique�� In other words� the
distribution factors as

p
v�� v�� � � � � vN� � Z��
Y
E�Q

�E
VE� 
��

where Z�� is a normalizing constant� For example 
cf� Example �� the MRF in Fig� �
a�
can be used to express the factorization

p
v�� v�� v�� v�� v�� � Z���A
v�� v���B
v�� v�� v���
v�� v���

Clearly 
�� has precisely the structure needed for a factor graph representation� Indeed�
a factor graph representation may be preferable to an MRF in expressing such a fac�
torization� since distinct factorizations� i�e�� factorizations with di�erent Qs in 
��� may
yield precisely the same underlying MRF graph� whereas they will always yield distinct
factor graphs� 
An example in a coding context of this MRF ambiguity is given in �����
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Figure �� Other graphical models� �a� a Markov random �eld� and �b� a Bayesian network�

��� Bayesian Networks

Bayesian networks 
see� e�g�� ������ are graphical models for a collection of random vari�
ables that are based on directed acyclic graphs 
DAGs�� Bayesian networks� combined
with Pearl�s �belief propagation algorithm� ��� have become an important tool in expert
systems over the past decade� The �rst to connect Bayesian networks and belief propaga�
tion with applications in coding theory were MacKay and Neal ���� who independently
re�discovered Gallager�s earlier work on low�density parity�check codes ��� 
including
Gallager�s decoding algorithm�� More recently� at least two papers ��� �� develop a
view of the �turbo decoding� algorithm ���� as an instance of probability propagation in
a Bayesian network code model�

Each vertex v in a Bayesian network is associated with a random variable� Denoting by
a
v� the set of parents of v 
i�e�� the set of vertices from which an edge is incident on v��
the distribution represented by the Bayesian network assumes the form

p
v�� v�� � � � � vn� �

nY
i��

p
vija
vi��� 
��

where� if a
vi� � �� 
i�e�� vi has no parents� then we take p
vij�� � p
vi�� For example

cf� Example �� Fig� �
b� shows a Bayesian network that expresses the factorization

p
v�� v�� v�� v�� v�� � p
v�jv��p
v��p
v�jv�� v��p
v��p
v�jv���

Again� as in the Markov random �eld case� this graphical model expresses a factorization
that is suitable for a factor graph representation�

� The Sum�Product Algorithm

As in the previous section� let g
X� be a global function over the variables in the set
X � fxi � i � Ng� with variable xi taking on values in the �nite set Ai� For the moment�
we again take g as being real�valued�

In this section we describe a general algorithm that can be used to compute the marginal
functions

Gi
xi�
�

�
X

x��A����� �xi���Ai���xi���Ai������ �xn�An

g
x�� � � � � xn� 
��

for all variables xi� i � N � We adopt the convention that
P

xi
f
xi� �

P
xi�Ai

f
xi��
Similarly� for a subset J � N � the notation

P
xi�i�J

f
XJ � means that we sum over all
possible con�gurations of the variables indexed by J � Thus Gi
xi� �

P
xj �j�Nnfig g
X��



The de�nition of marginal function can be extended an arbitrary subset J of N by
de�ning

GJ 
XJ �
�

�
X

xi�i�NnJ

g
X��

If g
x�� � � � � xn� is a probability distribution� then Gi
xi� is a marginal distribution� and
GJ 
XJ � is the joint probability distribution of the variables indexed by J �

When n� the number of arguments of g is small� we will sometimes use a modi�ed notation
for the marginal functions� We replace an argument xi of g with a ��� sign to indicate
that the corresponding variable is to be summed over� i�e�� �marginalized out��

To perform marginalization� we take advantage of the factorization 
� of the global
function� as represented by a factor graph� We use two basic properties of the factor
graph� 
� products of local functions can be �gathered� along paths in the graph and

�� variables can be represented in �summary� outside of regions of the graph in which
the variable is not �involved��

��� An Example

Example �� To explain what we mean by the rather vague terminology of the previous
sentence� let us consider the speci�c case in which the global function has the structure

g
x�� x�� x�� � a
x��b
x�� x��c
x�� x��� 
��

This structure arises� for example� when g
x� is the joint probability distribution of three
random variables X��X��X� that form the Markov chain X� � X� � X� given some
observation y�

Consider the computation of g
x������ � p
x�jy�� We write

g
x������ �
X
x�

X
x�

a
x��b
x�� x��c
x�� x��

� a
x��
X
x�

b
x�� x��
X
x�

c
x�� x��

� �z 	
c�x��	
� �z 	

bc�x��	�	


� 
��

where we write bc
x�� x�� x�� for the product b
x�� x��c
x�� x��� In 
�� we have identi�ed
the various factors that need to be computed to obtain g
x������� Our primary ob�
servation is that g
x������ can be computed knowing just a
x�� and bc
x������� The
latter factor can be computed knowing just b
x�� x�� and c
x����� These products can
be �gathered� along the path from variable node x� to the variable node x� shown in
Fig� �� Note that variable x� can be �summarized�� i�e�� marginalized out� outside of the
dashed region labeled �x��� likewise for x��

Analyzing the computation of the remaining marginal functions in the same manner� we
�nd that

g
�� x���� � c
x����ab
�� x�� 
��

g
���� x�� �
X
x��S�

ab
�� x��c
x�� x�� � abc
���� x��� 
��
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Figure �� Distributed marginalization for a Markov chain example� For each i� the region in
which xi must be carried is indicated by a dashed box�

Comparing with Fig� �� we observe that the various factors needed to compute each
marginal function can be obtained as products of the �messages� sent along a particular
path in the factor graph� The product of the messages carried in the two directions over
any given edge is then a marginal function�

��� The General Algorithm

The sum�product algorithm operates via a �message passing� procedure that gathers
local function products along paths in the factor graph� We assume that this graph is
a tree� i�e�� that it contains no cycles� The description of the algorithm is simpli�ed
by making the assumption that each node of the factor graph is a processor capable of
transmitting and receiving �messages� along the edges to which it is connected�

In its simplest realization� the sum�product algorithm operates as follows� The basic
operation at each node is to compute the product of the incoming messages at that
node� At a subset node� this product is also multiplied by the local function associated
with that node� These products are then transmitted on the �outgoing� edges� with the
caveat that outgoing messages transmitted along a particular edge should contain no
factors received on that edge� In this way� provided that the factor graph contains no
cycles� the product of the message transmitted along an edge with the message received
along that edge contains all factors of the global function�

This message�passing procedure is initiated at the leaf nodes in the factor�graph� i�e��
those nodes on which only a single edge is incident� At leaf nodes that are subset nodes�
the transmitted message is a representation of the local function associated with that
node� At leaf nodes that are variable nodes� the transmitted message is a �unit� function

the transmission of which� in a practical realization� is of course unnecessary�� All other
nodes in the graph await the reception of enough messages to be able to compute an
outgoing message� E�ectively� these nodes wait until messages arrive on all but one edge�
when this occurs� the incoming messages are multiplied together with the local function

if any� and the result transmitted on the remaining edge� When a message is received
on that remaining edge� the appropriate local function products are distributed along all
the other incident edges� This general procedure of gathering local function products is
illustrated in Fig� �
a��

The sum�product algorithm is made e�cient by observing that the local function products
gathered along paths in the factor graph can themselves be marginalized� i�e�� not all
variables must be carried along an edge� In general� a variable needs to be carried if
that variable is an argument of a subsequent local function� otherwise� that variable can
be marginalized out 
cf� Example ��� This marginalization is carried out at the subset
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Figure �� The sum	product algorithm� �a� local function products are 
gathered� along paths
from the leaves� �b� without cycles� only one variable must be 
carried� along each edge� �c�
with a cycle� more than one variable must be 
carried� on some edges�

nodes� since these nodes are necessarily at the boundaries of the regions de�ning which
variables are to be carried� Fig� �
b� illustrates which variables are to be carried along
each edge for the tree of Fig� �
a��

Fig� � shows a fragment of a speci�c factor graph� which we assume forms a part of a
larger tree� The update rules for this fragment are as follows�

variable to subset� 
the product rule�

�x�A
x� � �B�x
x� 	 �C�x
x� 
��

subset to variable� 
the sum�product rule�

�A�x
x� �
X
y�z

fA
x� y� z� 	 �y�A
y� 	 �z�A
z�� 
�

termination�

Fx
x� � �x�A
x� 	 �A�x
x� 
��
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Figure �� A factor graph fragment� showing the update rules in this case�

��� Dealing with Cycles

The algorithm described above terminates only if the factor graph is a tree� i�e�� contains
no cycles� Should the factor graph contain cycles� then these update rules will lead to the
endless propagation of messages around the cycles� Although these messages may �con�
verge� in some sense� when the factor graph has cycles� the values to which the messages
converge cannot be interpreted as being exact marginal functions� 
Nevertheless� in the
decoding of turbo codes and low�density parity�check codes� this �iterative� algorithm
does provide excellent performance� See Section ���

We now give an example of how this endless looping of messages can be dealt with so
that exact marginal functions are obtained�

Example �� Let us consider now the case where the factor graph contains a single cycle�
We consider the global function

g
x�� x�� x�� � a
x�� x��b
x�� x��c
x�� x��� 
��

The corresponding factor graph is shown in Fig� �
a��

To perform exact marginalization� we construct a tree spanning the factor graph� We
de�ne a variable x to be �involved� with every subset node E for which x � E� In
general� x will be involved with several subset nodes� We say that x must be �carried�
over all edges in the spanning tree that are on a path between the nodes with which x is
involved� The variable x must not be marginalized out� except when it must no longer
be carried� Provided that this rule is followed� exact marginalization is possible�

Thus� if we form the spanning tree shown in Fig� �
b� 
by cutting the cycle in the factor
graph at the location indicated�� we see that the variable x� must be carried over all
edges in the tree� but that x� and x� need only be carried over a single edge� respectively�

Fig� �
c� illustrates this situation for the loopy factor graph that includes the dotted
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Figure �� A spanning tree �b� for the factor graph �a�� showing that x� must be carried
everywhere�



edge� If the dotted edge is omitted to form a spanning tree� we see that the variable x�
must be carried along edges beyond just those incident on variable node x�� In e�ect� the
�thickness�� i�e�� the number of variables to be carried� of some edges must be increased
to perform an exact marginalization� In a factor graph that is a tree� each edge has unit
thickness�

In general� there will be many di�erent trees that span a given �loopy� factor graph�
each of which will yield a di�erent marginalization algorithm�

��� Message Passing Schedules

Thus far� we have only discussed the �two�way schedule�� in which message propagate
from the leaf nodes in the factor graph� In some implementations� it may be possible that
message passing can occur concurrently� while in other implementations� the messages
will of necessity be passed serially� In general a variety of message passing schedules are
possible� In ���� two such schedules�the two�way schedule� and the  ooding schedule�
are described� The two�way schedule is best suited for a serial implementation� as it
causes the smallest possible total number of messages to be sent� namely� �E� where E
is the number of edges in the spanning tree� whereas the  ooding schedule may lead to
a faster convergence when the factor graph has cycles� We refer the reader to ��� for a
description of these message�passing schedules�

��� Generalization to other Semirings

Up to now� we have assumed that all products and sums are computed in the �eld of
real numbers� Obviously� this can be extended to an arbitrary ring� Indeed� as pointed
out by Verd!u and Poor �� and other authors 
notably McEliece ��� ��� see also �����
the appropriate algebraic structure is that of a semiring� equipped with associative and
commutative ��� and ��� operations� and a distributive law that permits distribution of
��� over ����

Probably the most relevant such semiring for applications in decoding is the one that
replaces ��� with real addition and ��� with �max� or �min�� In channel coding for mem�
oryless channels� if we associate with each value that a variable can take on a cost equal
to the negative log�likelihood of the corresponding channel output� then we can asso�
ciate with each valid con�guration a cost equal to the sum of the costs of the variables�
The minimum cost valid con�guration is the �maximum�likelihood� sequence� the cost of
which is computed 
in a factor graph containing no cycles� by the �min�sum� generaliza�
tion of the �sum�product� algorithm� The �min�sum� formulation is also the framework
in which so�called �nonserial� dynamic programming is posed� see ��� for a text book
treatment� See ��� for a discussion of the min�sum algorithm�

� Examples

We now give a few examples of how the sum�product algorithmmay be applied in practice�
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Figure �� The factor graph for a hidden Markov model �trellis��

��� Hidden Markov Models and Trellis Processing

Figure �
a� shows the factor graph representation for a hidden Markov model� State vari�
ables 
not observed� are indicated with a double circle� The local function T 
si��� xi� si�
is an indicator function that indicates which state transitions are allowed� and also which
outputs 
xi� are associated with the transitions� The output variables xi are observed at
the output of a memoryless channel� Corresponding to symbol xi� symbol yi is observed�

Since this factor graph is a tree� exact marginalization can be achieved via the sum�
product algorithm� This marginalization algorithm is be achieved in two �sweeps�
through the graph� running essentially left�to�right 
forward� and right�to�left 
back�
ward��

Let �i��
si��� denote the message sent by state variable si�� to the local function node
T � as shown in Fig� �
b�� Let fyijxi
xi� denote the message sent by variable node xi�
Then� the sum�product algorithm will compute the message

�i
si� �
X
xi

X
si��

T 
si��� xi� si��i��
si���fyijxi
xi�

and send this to variable node si� This is precisely the �forward� step in the for�
ward	backward algorithm described in ����� The �backward� 
�� step is described in
like manner� In this way� the sum�product algorithm specializes� on a trellis� to the well
known forward	backward algorithm� It is easy to see that the min�sum version special�
izes to the Viterbi algorithm 
provided we take T 
si��� xi� si� �
 for an �invalid� trellis
transition�� Thus� we recover the well�known trellis�processing algorithms as special cases
of the sum�product algorithm�

��� The Fast Fourier Transform

Following Aji and McEliece ���� who develop a fast Hadamard transform using a graph�
based approach� we now develop the fast Fourier transform 
FFT� using factor graphs�
For a complex�valued data vector with components f �n�� n � f�� � � � � � N � g� the
N �point discrete Fourier transform F �k� is de�ned as

F �k� �
N��X
n��

f �n�W nk

where k � f�� � � � � � N � g and W � exp
�j��	N� is a complex Nth root of unity�

We consider the case N � �� with W � exp
�j�	��� though the approach we take
generalizes in an obvious way to the case where N is an arbitrary power of two� Let
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Figure �� The discrete Fourier transform kernel� �a� factor graph� �b� a particular spanning
tree� �c� spanning tree after clustering� showing which variables must be carried�

x�� x�� x�� y�� y�� y� be binary�valued� and de�ne n � �x� � �x� � x�� k � �y� � �y� � y��
We write the DFT kernel� which we take as our global function� in terms of the xis and
yis as

g
x�� x�� x�� y�� y��y�� � f ��x� � �x� � x��W
��x�	�x�	x�
��y�	�y�	y�


� f ��x� � �x� � x��
��
x�y�
��x�y�
��x�y�
�j�x�y�
�j�x�y�W x�y� �

since W �� � W  � � W � � �� and W � � �j� The factor graph corresponding to this
global function is shown in Fig� �
a�� We observe that the DFT of f �n� is the marginal
function F ��y� � �y� � y�� � g
������ y�� y�� y���

The factor graph in Fig� �
a� has cycles� yet we wish to carry out exact marginalization�
so we form a spanning tree� There are many possible spanning trees� of which one is
shown in Fig� �
b�� 
Di�erent choices for the spanning tree will lead to possibly di�erent
DFT algorithms when the min�sum algorithm is applied�� If we cluster the local functions
as shown in Fig� �
b�� essentially by de�ning

a
x�� y�� � 
��x�y� �

b
x�� y�� y�� � 
��x�y�
�j�x�y��

c
x�� y�� y�� y�� � 
��x�y�
�j�x�y�W x�y� �

we arrive at the spanning tree shown in Fig� �
c�� Observe that three binary variables

or eight complex quantities� must be carried over each edge in the path from vertex f
to vertex y�� Along this path� �rst x�� then x�� and then x� are marginalized out as y��
y�� and y� are added to the list of variables to be carried� In three steps� the function
f �n� is converted to the function F �k�� Clearly we have obtained a fast Fourier transform
as an instance of the sum�product algorithm�

��� Belief Propagation in Bayesian Networks

As discussed in Section ���� the probability distribution 
�� corresponding to a Bayesian
network has the product form that allows a straightforward conversion to a factor graph



f(x  a,b)

f(d  x, ...)f(c  x, ...)

(a) (b)

a b

c d

x

a b

x

c d

Figure �� �a� A Bayesian network fragment with �b� the corresponding factor graph� in
which� by convention� the 
child� vertex in each conditional distribution is indicated with an
arrow�

representation� For example� Fig� �
a� shows a fragment of a Bayesian network� and
Fig� �
b� shows the corresponding factor graph fragment� In general� a local function�
corresponding to a single factor of 
��� assumes the form f
xja
x��� where a
x� is the set
of �parents� of variable x in the Bayesian network� In the factor graph representation
we have� by convention� identi�ed the �child� vertex by an arrow� This allows the  ow
of �causality� to be inferred equally well from the factor graph as from the Bayesian
network itself� Representing such causality using directed edges is often cited as one of
the basic advantages of modeling a probability distribution using a Bayesian network ����
by including arrows in the corresponding factor graph� this advantage is retained�

It is easy to show that the sum�product algorithm� when applied to cycle�free Bayesian
networks� yields Pearl�s belief propagation algorithm ���� See ��� for a discussion of this
correspondence�

� Approximate �Marginalization� in Graphs with

Cycles

In a great many applications� one is forced to consider factor graphs that contain cycles�
In many such cases� exact marginalization in a spanning tree proves to be computationally
infeasible due to the excessive �thickness� of some of the edges� Examples of factor graphs
of this type include the graphs that describe low�density parity�check codes introduced
by Gallager ���� and the turbo codes introduced by Berrou� et al� ����� 
See ������ for a
Tanner graph description of turbo codes� and ����� for a Bayesian network description��

Nevertheless� by proceeding as if the graph contained no cycles 
i�e�� by applying the
�carry�one�variable� sum�product algorithm�� excellent results may be obtained� For
example� simulation results of MacKay and Neal ��� indicate that low�density parity�
check codes can be decoded 
with reasonable complexity� using this approach so that
the Eb	N� required to achieve a bit error rate of ��� is within approximately �dB of
the Shannon limit ��� 
using antipodal signaling on a white Gaussian noise channel��
Even more impressive are the well�known results of Berrou� et al�� who show that an
iterative sum�product decoding procedure for turbo codes can approach the Shannon
limit to within a ��� dB in Eb	N� required to achieve a bit error rate of ����



While a theoretical understanding of the convergence of the sum�product algorithm in
graphs with cycles has not� to the best of our knowledge� been achieved in general�
the excellent decoding performance obtained is undeniable� In our view� this is a great
motivation� not only to achieve a theoretical understanding of the properties of the sum�
product algorithm on graphs with cycles� but also to �nd further families of codes for
which the sum�product algorithm will prove e�ective�

	 Conclusions

Factor graphs provide a natural description of the factorization of a global function into
a product of local functions� As such� factor graphs are relevant to a broad spectrum
of application areas� We have illustrated that the sum�product algorithm encompasses
a wide variety of previously known algorithms� including the Viterbi algorithm� the for�
ward	backward algorithm� Pearl�s belief propagation algorithm� even the fast Fourier
transform� No doubt many other algorithms can be captured in this framework� Because
of its generality and essential simplicity� we feel that the sum�product algorithm should
be included as a part of every engineer�s standard �algorithms toolkit��
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