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In this supplementary material, we present some addi-
tional information about our work. We first describe our
OF-trajectory affinity measure in Sec. 1. We then present in
Sec. 2 the video collection process we followed to produce
the PathTrack dataset. We finalize by detailing some as-
pects of our experiments, including: annotation-time mea-
surements in Sec. 3, the LP tracker that we use in our ex-
periments in Sec. 4 and how we associate the tracklets of
NOMT [b] to improve tracking performance in Sec. 5. The
supplementary video shows some sequences in our dataset
with their corresponding scene-label.

1. OF-trajectory affinity measure
Our affinity measure follows the intuition: detections

that share many Optical Flow (OF) trajectories are likely
to belong to the same object, so they should have a high
affinity c.f . Fig. 1. To formalize this, let qi be the binary
descriptor of detection i. Then qik is the binary value that
indicates whether OF trajectory k falls in detection i. And
its total length corresponds to the total number of OF tra-
jectories in the sequence. We define the affinity aij as the
intersection-over-union of the binary descriptors qi and qj:

aij =

∥∥qi ∧ qj
∥∥
1∥∥qi ∨ qj
∥∥
1

(1)

This affinity indeed reflects whether two detections share
many OF trajectories, thus being more likely of represent-
ing the same object. Note that the descriptors qi only need
to be computed once for each detection, making the affinity
computation efficient. [c, b] also found OF trajectories use-
ful for linking detections. In our experiments, we use the
code of [c] to link the fast optical flow of [e].

2. Video collection
In this section we describe the process we followed to

collect videos for the PathTrack dataset. It elaborates on
Sec. 4 in the main body of the paper. Collecting a large

Figure 1: Detections that share many OF-trajectories are likely to
belong to the same object.

amount of sequences for MOT is by itself challenging. The
sequences should be diverse and contain scenarios inter-
esting for tracking. Additionally, they should not contain
transitions or very shaky camera movement. Taking these
factors into consideration, we collected sequences for Path-
Track via the following procedure:

1. Video collection: First we queried and crawled
YouTube with 23 phrases corresponding to scenes
with complex human behavior. These include
“pedestrian+crossing”, “flash+mob” and “basket-
ball+game”.

2. Shot boundary detection: Edited videos are usu-
ally composed of multiple shots, which is not ideal
for tracking. Thus we used the sum-of-absolute-
differences shot boundary detector of ffmpeg [a] to
conservatively segment each video into continuous
shots.

3. Shot selection: We manually went through the shots
to select those useful as MOT sequences, i.e., those
that were not too shaky and depicted complex person
movement, obtaining the 720 sequences of PathTrack.



4. Video stabilization: Being filmed with hand-held
cameras, many of the sequences were originally shaky.
Shakiness complicates the annotation process and in-
troduces an unnecessary difficulty unrelated to track-
ing. Therefore, we stabilized the sequences with [d].

3. Annotation time
In our experiments, we evaluate the time-efficiency of

different annotation frameworks. In this section, we de-
scribe our time-measurement evaluation, which we have
used to produce Fig. 6 in the main body of our work. By
reviewing the working process of all the methods, we find
that the time ti to annotate a trajectory i is the summation
of three components: 1) a watching time tw required to fol-
low each trajectory while annotating it, for path supervision,
and for each of the Nb box annotations: 2) a box annota-
tion time to annotate a bounding box tb and 3) a context-
switching time tc required to understand from the context
what correction should be made. The latter only applies to
active learning methods, because they do not allow a contin-
uous annotation flow; they jump from one frame to another
abruptly and users need time to re-localize the object with
the help of context information:

ti = γtw +Nb(tb + tc) (2)

where γ is a penalty factor that applies to our path super-
vision only. It accounts for the time required to watch a
person in a video while following it with the mouse cursor.

We have measured these values in user study of 78 Ama-
zon Mechanical Turk (AMT) workers and 13 experts in vi-
sion. We show in Tab. 1 our measurements. To measure
the time for context-switching tc we sequentially asked the
user to annotate specific frames for specific objects accord-
ing proposed by the active learning version of VATIC [i].
For each annotation, the user was allowed to browse the be-
ginning of the trajectory and the span of time around the
frame to annotate. This is necessary, since active learning
usually presents challenging frames in which the object of
interest is occluded or the trajectory has switched to another
target. We measured how much the the user required to de-
cide he had enough context to annotate accurately.

Table 1: Time measurements from our user study. The watch-
ing slow-down γ is only necessary for path supervision and the
context-switching penalty only to the active learning version of
VATIC [i].

Time component LabelMe [k] VATIC [j] VATIC alearn [j] PathTrack (ours)

γ 1 × 1 × 1 × 1.5 ×
tb 5.2 s 5.2 s 5.2 s 5.2 s
tc 0 s 0 s 9.8 s 0 s

Importantly, some of these factors only apply to spe-
cific methods. The video needs to be slowed down during
path annotation, hence the γpath of 1.5. Also, the context-
switching time penalty tc only applies to to active learning,
as it is the only one that presents a frame to annotate with-
out any other context. We summarize these differences in
Tab. 1.

4. LP tracker

We detail in this section the Linear Programming (LP)
tracker that we use in our experimental section, c.f . Sec. 5.3.
We base our experiments on the standard min-cost flow
formulation tracker of [l]. It formulates the Multi-Object-
Tracking (MOT) problem as an integer Linear Program with
3 costs: 1) a detection-confidence costCi, 2) an affinity cost
Cij and 3) entry (Cen

i ) and exit (Cex
i ) costs:

T = argminT

∑
i

Cen
i feni +

∑
i,j

Cijfij +
∑
i

Cex
i fexi +

∑
i

Cifi

s.t. feni , fij , f
ex
i , fi ∈ {0, 1}

feni +
∑
j

fji = fi = fexi +
∑
j

fij

(3)

where the f binary variables indicate whether a cost is in-
cluded in the final energy or not. The last equality is the flow
conservation constraint that enforces the trajectory topol-
ogy.

We describe now the exact form of the costs that we use
for our tracker. The confidence cost Ci is log((1− si)/si),
where si is the 0-to-1 score of detection i. Note that this cost
is negative for detection scores over 0.5. This encourages
using confident detections in the final tracking solution. The
affinity cost Cij has the form − log(mij), where mij is the
matching score of detections i and j. This is the score that
we learn with a Convolutional Neural Network (CNN) in
our experiments. Detections further than 4 seconds apart
are assigned a matching score of zero, to limit big tempo-
ral jumps. The entry and exit costs have a common value
of − log(0.1), as is common in tracking literature. Since
we associate detections, we benefit from including the ad-
ditional context features (e.g. relative distance, size) of [g].
These are seamlessly integrated to the matching network
as input to the first fully connected layer. Similarly to the
appearance-only network, training this network on our data
raises the accuracy substantially, from 84% to 90%, com-
pared to training on MOT15.

The final trajectories are the result of minimizing Eq. (3),
with the aforementioned costs, using the cutting planes al-
gorithm. For more details on this optimization, we refer the
reader to [l].
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5. Tracklet association

In our experiments, c.f . Tab. 2b, we use our match-
ing network to improve the results of NOMT [b], the top-
performing tracker in MOT15. We provide the details in
this section.

Tracking methods are known to have problems track-
ing objects through prolonged periods of occlusion [f]. We
make the observation that appearance-based matching net-
works can help to solve this problem.

We formulate the tracklet-association problem as a
matching problem. We associate two tracklets i and j if
the following conditions if: a) there matching score is at
least 0.8, b) if this score is at least 5% higher than any other
matching alternative, a typical best-to-second-best match-
ing criteria [h] and c) if the tracklets fulfill some spatial
and temporal constraints. The closest detections must be
at most 4 seconds apart and at most one-fourth of the image
width away. The matching score between two tracklets is
computed as the median between 4 crops for each of them,
uniformly sampled in a period of 2 seconds.

Our results show that we are able to reliably associate
tracklets through lengthy occlusions.
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